Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = respiratory manikin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7131 KiB  
Article
A Manikin-Based Study of Particle Dispersion in a Vehicle Cabin
by Fatemeh Nabilou, Dennis Derwein, Alexander Kirmas, Abhinav Dhake, Rainer Vogt, Lutz Eckstein, Kai Rewitz and Dirk Müller
Atmosphere 2025, 16(2), 116; https://doi.org/10.3390/atmos16020116 - 22 Jan 2025
Viewed by 1031
Abstract
Recently, there has been a growing interest in understanding how respiratory particles spread within passenger cars, especially in light of ongoing challenges posed by infectious diseases. This study experimentally investigates dispersion patterns of respiratory airborne particles (<1 µm) within these confined spaces. The [...] Read more.
Recently, there has been a growing interest in understanding how respiratory particles spread within passenger cars, especially in light of ongoing challenges posed by infectious diseases. This study experimentally investigates dispersion patterns of respiratory airborne particles (<1 µm) within these confined spaces. The main objective is to introduce a manikin-based method for studying particle dispersion and assessing in-cabin air quality. To achieve this, a respiratory manikin as a particle source has been developed and tested under various use-cases, including variations in source emission (breathing vs. speaking), the HVAC ventilation mode (fresh and recirculation), and the blower level of the HVAC system (low and high). The findings reveal that for an infection source on the first row of the vehicle when cabin airflow originates from the front panel, the seat directly behind the particle source is associated with the highest particle exposure, while the seat adjacent to the source offers the lowest exposure. Among the tested configurations, the recirculation mode with an active HEPA filter and high blower level shows the lowest particle concentration at recipients’ breath levels during both breathing and speaking. These findings can be used to enhance the design of passenger cars to reduce the transmission of potentially pathogen-laden particles. Full article
(This article belongs to the Special Issue Exposure Assessment of Air Pollution (2nd Edition))
Show Figures

Figure 1

13 pages, 1056 KiB  
Review
Pathophysiology and Prevention of Manual-Ventilation-Induced Lung Injury (MVILI)
by Luke A. White, Steven A. Conrad and Jonathan Steven Alexander
Pathophysiology 2024, 31(4), 583-595; https://doi.org/10.3390/pathophysiology31040042 - 12 Oct 2024
Cited by 1 | Viewed by 4501
Abstract
Manual ventilation, most commonly with a bag-valve mask, is a form of short-term ventilation used during resuscitative efforts in emergent and out-of-hospital scenarios. However, compared to mechanical ventilation, manual ventilation is an operator-dependent skill that is less well controlled and is highly subject [...] Read more.
Manual ventilation, most commonly with a bag-valve mask, is a form of short-term ventilation used during resuscitative efforts in emergent and out-of-hospital scenarios. However, compared to mechanical ventilation, manual ventilation is an operator-dependent skill that is less well controlled and is highly subject to providing inappropriate ventilation to the patient. This article first reviews recent manual ventilation guidelines set forth by the American Heart Association and European Resuscitation Council for providing appropriate manual ventilation parameters (e.g., tidal volume and respiratory rate) in different patient populations in the setting of cardiopulmonary resuscitation. There is then a brief review of clinical and manikin-based studies that demonstrate healthcare providers routinely hyperventilate patients during manual ventilation, particularly in emergent scenarios. A discussion of the possible mechanisms of injury that can occur during inappropriate manual hyperventilation follows, including adverse hemodynamic alterations and lung injury such as acute barotrauma, gastric regurgitation and aspiration, and the possibility of a subacute, inflammatory-driven lung injury. Together, these injurious processes are described as manual-ventilation-induced lung injury (MVILI). This review concludes with a discussion that highlights recent progress in techniques and technologies for minimizing manual hyperventilation and MVILI, with a particular emphasis on tidal-volume feedback devices. Full article
Show Figures

Figure 1

18 pages, 7546 KiB  
Article
Numerical Simulation of the Dispersion of Exhaled Aerosols from a Manikin with a Realistic Upper Airway
by Jiayu Wei, Hao Xie, Xiaole Chen, Xibin Quan, Zhicong Zhang, Xiaojian Xie, Jianping Shi and Guanghui Zeng
Atmosphere 2022, 13(12), 2050; https://doi.org/10.3390/atmos13122050 - 7 Dec 2022
Cited by 3 | Viewed by 2155
Abstract
Basic analysis of the flow field and aerosol deposition under different conditions when a spreader contains an upper airway tract is important to accurately predict the transmission of virus-laden aerosols. An upper airway was included to simulate aerosol transport and deposition. A flow [...] Read more.
Basic analysis of the flow field and aerosol deposition under different conditions when a spreader contains an upper airway tract is important to accurately predict the transmission of virus-laden aerosols. An upper airway was included to simulate aerosol transport and deposition. A flow field was simulated by the Transition SST model for validation. The simulation results show that, in the absence of the upper airway structure, an over-predicted aerosol deposition rate will occur. Higher upper-stream air velocity enhanced the intensity but added complexity to the recirculating flow between two manikins and increased the deposition rate of aerosol in the disseminator. A low-temperature environment can reduce the deposition rate of aerosol particles on the body of the disseminator due to a strong thermal plume. Therefore, the structure of the upper airway should be considered when predicting respiratory aerosol in order to increase the accuracy of aerosol propagation prediction. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Figure 1

18 pages, 5697 KiB  
Article
Coughing Intensity and Wind Direction Effects on the Transmission of Respiratory Droplets: A Computation with Euler–Lagrange Method
by Fengjiao Li, Guoyi Jiang and Tingting Hu
Atmosphere 2022, 13(4), 594; https://doi.org/10.3390/atmos13040594 - 7 Apr 2022
Cited by 6 | Viewed by 3136
Abstract
Studies on droplet transmission are needed to understand the infection mechanism of SARS-CoV-2. This research investigated the effects of coughing intensity and wind direction on respiratory droplets transportation using the Euler–Lagrange method. The results revealed that both coughing intensity and wind conditions considerably [...] Read more.
Studies on droplet transmission are needed to understand the infection mechanism of SARS-CoV-2. This research investigated the effects of coughing intensity and wind direction on respiratory droplets transportation using the Euler–Lagrange method. The results revealed that both coughing intensity and wind conditions considerably influence the transmission of small and medium droplets but had little effect on large droplets. A stronger coughing intensity resulted in small and medium droplets traveling farther in a calm wind and spreading widely and rapidly in a windy environment. The droplets do not travel far in the absence of ambient wind, even with stronger coughing. Medium droplets spread in clusters, and small droplets drifted out of the domain in the band area in different wind conditions except for 60° and 90° wind directions, in which cases, the droplets were blown directly downstream. In 0° wind direction, many droplets were deposited on the human body. The fast and upward movement of particles in 60° and 90° directions could cause infection risk with short exposure. In 180° wind direction, droplets spread widely and traveled slowly because of the reverse flow downstream, prolonged exposure can result in a high risk of infection. Full article
(This article belongs to the Topic Air Pollution and Occupational Exposure)
Show Figures

Figure 1

20 pages, 2912 KiB  
Article
Efficacy of Ventilation, HEPA Air Cleaners, Universal Masking, and Physical Distancing for Reducing Exposure to Simulated Exhaled Aerosols in a Meeting Room
by Jayme P. Coyle, Raymond C. Derk, William G. Lindsley, Francoise M. Blachere, Theresa Boots, Angela R. Lemons, Stephen B. Martin, Kenneth R. Mead, Steven A. Fotta, Jeffrey S. Reynolds, Walter G. McKinney, Erik W. Sinsel, Donald H. Beezhold and John D. Noti
Viruses 2021, 13(12), 2536; https://doi.org/10.3390/v13122536 - 17 Dec 2021
Cited by 28 | Viewed by 7930
Abstract
There is strong evidence associating the indoor environment with transmission of SARS-CoV-2, the virus that causes COVID-19. SARS-CoV-2 can spread by exposure to droplets and very fine aerosol particles from respiratory fluids that are released by infected persons. Layered mitigation strategies, including but [...] Read more.
There is strong evidence associating the indoor environment with transmission of SARS-CoV-2, the virus that causes COVID-19. SARS-CoV-2 can spread by exposure to droplets and very fine aerosol particles from respiratory fluids that are released by infected persons. Layered mitigation strategies, including but not limited to maintaining physical distancing, adequate ventilation, universal masking, avoiding overcrowding, and vaccination, have shown to be effective in reducing the spread of SARS-CoV-2 within the indoor environment. Here, we examine the effect of mitigation strategies on reducing the risk of exposure to simulated respiratory aerosol particles within a classroom-style meeting room. To quantify exposure of uninfected individuals (Recipients), surrogate respiratory aerosol particles were generated by a breathing simulator with a headform (Source) that mimicked breath exhalations. Recipients, represented by three breathing simulators with manikin headforms, were placed in a meeting room and affixed with optical particle counters to measure 0.3–3 µm aerosol particles. Universal masking of all breathing simulators with a 3-ply cotton mask reduced aerosol exposure by 50% or more compared to scenarios with simulators unmasked. While evaluating the effect of Source placement, Recipients had the highest exposure at 0.9 m in a face-to-face orientation. Ventilation reduced exposure by approximately 5% per unit increase in air change per hour (ACH), irrespective of whether increases in ACH were by the HVAC system or portable HEPA air cleaners. The results demonstrate that mitigation strategies, such as universal masking and increasing ventilation, reduce personal exposure to respiratory aerosols within a meeting room. While universal masking remains a key component of a layered mitigation strategy of exposure reduction, increasing ventilation via system HVAC or portable HEPA air cleaners further reduces exposure. Full article
(This article belongs to the Special Issue Aerosol Transmission of Viral Disease)
Show Figures

Figure 1

19 pages, 8473 KiB  
Article
Numerical Investigation of Bioaerosol Transport in a Compact Lavatory
by Jingyuan Wan, Jianjian Wei, Yingtien Lin and Tengfei (Tim) Zhang
Buildings 2021, 11(11), 526; https://doi.org/10.3390/buildings11110526 - 8 Nov 2021
Cited by 17 | Viewed by 3349
Abstract
The lavatory is a fertile area for the transmission of infectious disease through bioaerosols between its users. In this study, we built a generic compact lavatory model with a vacuum toilet, and computational fluid dynamics (CFD) is used to evaluate the effects of [...] Read more.
The lavatory is a fertile area for the transmission of infectious disease through bioaerosols between its users. In this study, we built a generic compact lavatory model with a vacuum toilet, and computational fluid dynamics (CFD) is used to evaluate the effects of ventilation and user behaviors on the airflow patterns, and the resulting fates of bioaerosols. Fecal aerosols are readily released into the lavatory during toilet flush. Their concentration rapidly decays in the first 20 s after flushing by deposition or dilution. It takes about 315 s to 348 s for fine bioaerosols (<10 µm in diameter) to decrease to 5% of the initial concentration, while it takes 50 and 100 µm bioaerosols approximately 11 and <1 s, respectively, to completely deposit. The most contaminated surfaces by aerosol deposition include the toilet seat, the bowl, and the nearby walls. The 10 µm aerosols tend to deposit on horizontal surfaces, while the 50 and 100 µm bioaerosols almost always deposit on the bowl. In the presence of a standing thermal manikin, the rising thermal plume alters the flow field and more bioaerosols are carried out from the toilet; a large fraction of aerosols deposit on the manikin’s legs. The respiratory droplets generated by a seated coughing manikin tend to deposit on the floor, legs, and feet of the manikin. In summary, this study reveals the bioaerosol dilution time and the easily contaminated surfaces in a compact lavatory, which will aid the development of control measures against infectious diseases. Full article
Show Figures

Figure 1

14 pages, 5636 KiB  
Article
Evaluation of a Filtering Facepiece Respirator and a Pleated Particulate Respirator in Filtering Ultrafine Particles and Submicron Particles in Welding and Asphalt Plant Work Environments
by Aniruddha Mitra, Atin Adhikari, Clinton Martin, Gracia Dardano, Pascal Wagemaker and Caleb Adeoye
Int. J. Environ. Res. Public Health 2021, 18(12), 6437; https://doi.org/10.3390/ijerph18126437 - 14 Jun 2021
Cited by 4 | Viewed by 3900
Abstract
Manufacturing sites, such as welding, casting, and asphalt production (fumes), generate vast numbers of ultrafine particles of <0.1 µm in size and submicron particles close to the ultrafine range (0.1–0.5 µm). Although cumulative masses of these particles are negligible in comparison to the [...] Read more.
Manufacturing sites, such as welding, casting, and asphalt production (fumes), generate vast numbers of ultrafine particles of <0.1 µm in size and submicron particles close to the ultrafine range (0.1–0.5 µm). Although cumulative masses of these particles are negligible in comparison to the larger particles, the health effects are more severe due to the higher penetration in the human lower respiratory tract, other body parts crossing the respiratory epithelial layers, and the larger surface area. This research investigates the effectiveness of two common commercially available N95 filtering facepieces and N95 pleated particulate respirator models against ultrafine and submicron particles. Two specific types of respirators, the N95 filtering facepiece and the N95 pleated particulate models, in both sealed and unsealed conditions to the manikin face, were tested at various commercial and academic manufacturing sites, a welding and foundry site, and an asphalt production plant. Two TSI Nanoscan SMPS nanoparticle counters were used simultaneously to collect data for particles of 10–420 nm in size from inside and outside of the respirators. While one of them represented the workplace exposure levels, the other one accounted for the exposure upon filtration through the respiratory surfaces. The results showed the particles generated by these manufacturing operations were mostly within the range of from 40 to 200 nm. Results also indicated that while the percentage of filtration levels varied based on the particle size, it remained mostly within the desired protection level of 95% for both of the N95 respirator models in sealed conditions and even for the N95 pleated particulate model in the unsealed condition. However, in the case of the N95 filtering facepiece model, unsealed respirators showed that the percentage of penetration was very high, decreasing the protection levels to 60% in some cases. Although the number of workplace airborne particle levels varied considerably, the filtration percentages were relatively consistent. Full article
(This article belongs to the Special Issue Aerosol Generations in Working Environments)
Show Figures

Figure 1

18 pages, 2555 KiB  
Article
A Sensor for Spirometric Feedback in Ventilation Maneuvers during Cardiopulmonary Resuscitation Training
by Rodolfo Rocha Vieira Leocádio, Alan Kardek Rêgo Segundo and Cibelle Ferreira Louzada
Sensors 2019, 19(23), 5095; https://doi.org/10.3390/s19235095 - 21 Nov 2019
Cited by 8 | Viewed by 5505
Abstract
This work proposes adapting an existing sensor and embedding it on mannequins used in cardiopulmonary resuscitation (CPR) training to accurately measure the amount of air supplied to the lungs during ventilation. Mathematical modeling, calibration, and validation of the sensor along with metrology, statistical [...] Read more.
This work proposes adapting an existing sensor and embedding it on mannequins used in cardiopulmonary resuscitation (CPR) training to accurately measure the amount of air supplied to the lungs during ventilation. Mathematical modeling, calibration, and validation of the sensor along with metrology, statistical inference, and spirometry techniques were used as a base for aquiring scientific knowledge of the system. The system directly measures the variable of interest (air volume) and refers to spirometric techniques in the elaboration of its model. This improves the realism of the dummies during the CPR training, because it estimates, in real-time, not only the volume of air entering in the lungs but also the Forced Vital Capacity (FVC), Forced Expiratory Volume (FEVt) and Medium Forced Expiratory Flow (FEF20–75%). The validation of the sensor achieved results that address the requirements for this application, that is, the error below 3.4% of full scale. During the spirometric tests, the system presented the measurement results of (305 ± 22, 450 ± 23, 603 ± 24, 751 ± 26, 922 ± 27, 1021 ± 30, 1182 ± 33, 1326 ± 36, 1476 ± 37, 1618 ± 45 and 1786 ± 56) × 10−6 m3 for reference values of (300, 450, 600, 750, 900, 1050, 1200, 1350, 1500, 1650 and 1800) × 10−6 m3, respectively. Therefore, considering the spirometry and pressure boundary conditions of the manikin lungs, the system achieves the objective of simulating valid spirometric data for debriefings, that is, there is an agreement between the measurement results when compared to the signal generated by a commercial spirometer (Koko brand). The main advantages that this work presents in relation to the sensors commonly used for this purpose are: (i) the reduced cost, which makes it possible, for the first time, to use a respiratory volume sensor in medical simulators or training dummies; (ii) the direct measurement of air entering the lung using a noninvasive method, which makes it possible to use spirometry parameters to characterize simulated human respiration during the CPR training; and (iii) the measurement of spirometric parameters (FVC, FEVt, and FEF20–75%), in real-time, during the CPR training, to achieve optimal ventilation performance. Therefore, the system developed in this work addresses the minimum requirements for the practice of ventilation in the CPR maneuvers and has great potential in several future applications. Full article
Show Figures

Figure 1

8 pages, 816 KiB  
Article
Does the Number of Fingers on the Bag Influence Volume Delivery? A Randomized Model Study of Bag-Valve-Mask Ventilation in Infants
by David Zweiker, Hanna Schwaberger, Berndt Urlesberger, Lukas P Mileder, Nariae Baik-Schneditz, Gerhard Pichler, Georg M Schmölzer and Bernhard Schwaberger
Children 2018, 5(10), 132; https://doi.org/10.3390/children5100132 - 21 Sep 2018
Cited by 5 | Viewed by 5661
Abstract
We sought to compare the effectiveness of two versus five fingers used for bag-valve-mask (BVM) ventilation on effective tidal volume (VTeff) delivery in an infant resuscitation model. In a randomised cross-over study, 40 healthcare professionals ventilated a modified leak-free infant resuscitation [...] Read more.
We sought to compare the effectiveness of two versus five fingers used for bag-valve-mask (BVM) ventilation on effective tidal volume (VTeff) delivery in an infant resuscitation model. In a randomised cross-over study, 40 healthcare professionals ventilated a modified leak-free infant resuscitation manikin with both two and five fingers, using a self-inflating bag. The delivered and effective tidal volumes, ventilation rate, and mask leak were measured and recorded using a respiratory function monitor. We found no significant differences in the VTeff (five-finger 61.7 ± 23.9 vs. two-finger 58.8 ± 16.6 mL; p = 0.35) or ventilatory minute volume (2.71 ± 1.59 vs. 2.76 ± 1.24 L/min; p = 0.40) of both BVM ventilation techniques. However, there was an increase in the delivered tidal volume (VTdel) and mask leak when using the five-finger technique compared with the two-finger technique (VTdel 96.1 ± 19.4 vs. 87.7 ± 15.5 mL; p < 0.01; and mask leak 34.6 ± 23.0 vs. 30.0 ± 21.0%; p = 0.02). Although the five-finger technique was associated with an increased mask leak, the number of fingers used during the BVM ventilation had no effect on VTeff in an infant resuscitation model. Full article
(This article belongs to the Special Issue Emerging Concepts in Neonatal Resuscitation)
Show Figures

Figure 1

15 pages, 5071 KiB  
Article
Field Evaluation of N95 Filtering Facepiece Respirators on Construction Jobsites for Protection against Airborne Ultrafine Particles
by Atin Adhikari, Aniruddha Mitra, Abbas Rashidi, Imaobong Ekpo, Jacob Schwartz and Jefferson Doehling
Int. J. Environ. Res. Public Health 2018, 15(9), 1958; https://doi.org/10.3390/ijerph15091958 - 7 Sep 2018
Cited by 16 | Viewed by 6108
Abstract
Exposure to high concentrations of airborne ultrafine particles in construction jobsites may play an important role in the adverse health effects among construction workers, therefore adequate respiratory protection is required. The performance of particulate respirators has never been evaluated in field conditions against [...] Read more.
Exposure to high concentrations of airborne ultrafine particles in construction jobsites may play an important role in the adverse health effects among construction workers, therefore adequate respiratory protection is required. The performance of particulate respirators has never been evaluated in field conditions against ultrafine particles on construction jobsites. In this study, respiratory protection levels against ultrafine particles of different size ranges were assessed during three common construction related jobs using a manikin-based set-up at 85 L/min air flow rate. Two NanoScan SMPS nanoparticle counters were utilized for measuring ultrafine particles in two sampling lines of the test filtering facepiece respirator—one from inside the respirator and one from outside the respirator. Particle size distributions were characterized using the NanoScan data collected from outside of the respirator. Two models of N95 respirators were tested—foldable and pleated. Collected data indicate that penetration of all categories of ultrafine particles can exceed 5% and smaller ultrafine particles of <36.5 nm size generally penetrated least. Foldable N95 filtering facepiece respirators were found to be less efficient than pleated N95 respirators in filtering nanoparticles mostly at the soil moving site and the wooden building frameworks construction site. Upon charge neutralization by isopropanol treatment, the ultrafine particles of larger sizes penetrated more compared to particles of smaller sizes. Our findings, therefore, indicate that N95 filtering facepiece respirators may not provide desirable 95% protection for most categories of ultrafine particles and generally, 95% protection is achievable for smaller particles of 11.5 to 20.5 nm sizes. We also conclude that foldable N95 respirators are less efficient than pleated N95 respirators in filtering ultrafine particles, mostly in the soil moving site and the wooden building framework construction site. Full article
(This article belongs to the Section Occupational Safety and Health)
Show Figures

Figure 1

Back to TopTop