Pathophysiology and Prevention of Manual-Ventilation-Induced Lung Injury (MVILI)
Abstract
:1. Introduction
2. Manual Ventilation
3. Manual Hyperventilation
4. Manual-Ventilation-Induced Lung Injury (MVILI)
4.1. Adverse Hemodynamic Changes
4.2. Gastric Regurgitation and Aspiration
4.3. Barotrauma
4.4. Sub-Barotraumatic and Secondary Inflammation-Driven Injury
4.5. Current Knowledge Gaps
5. Therapies for MVILI Reduction
5.1. Bag Size and Design Optimization
5.2. Pressure Manometry Monitoring
5.3. Tidal-Volume Feedback
6. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khoury, A.; Hugonnot, S.; Cossus, J.; De Luca, A.; Desmettre, T.; Sall, F.S.; Capellier, G. From Mouth-to-Mouth to Bag-Valve-Mask Ventilation: Evolution and Characteristics of Actual Devices—A Review of the Literature. BioMed Res. Int. 2014, 2014, 762053. [Google Scholar] [CrossRef] [PubMed]
- Ricard, J.-D. Manual ventilation and risk of barotrauma: Primum non nocere. Respir. Care 2005, 50, 338–339. [Google Scholar] [PubMed]
- Davies, J.D.; Costa, B.K.; Asciutto, A.J. Approaches to Manual VentilationDiscussion. Respir. Care 2014, 59, 810–824. [Google Scholar] [CrossRef] [PubMed]
- Panchal, A.R.; Bartos, J.A.; Cabañas, J.G.; Donnino, M.W.; Drennan, I.R.; Hirsch, K.G.; Kudenchuk, P.J.; Kurz, M.C.; Lavonas, E.J.; Morley, P.T.; et al. Part 3: Adult Basic and Advanced Life Support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2020, 142, S366–S468. [Google Scholar] [CrossRef] [PubMed]
- Soar, J.; Böttiger, B.W.; Carli, P.; Couper, K.; Deakin, C.D.; Djärv, T.; Lott, C.; Olasveengen, T.; Paal, P.; Pellis, T.; et al. European Resuscitation Council Guidelines 2021: Adult advanced life support. Resuscitation 2021, 161, 115–151. [Google Scholar] [CrossRef]
- Topjian, A.A.; Raymond, T.T.; Atkins, D.; Chan, M.; Duff, J.P.; Jr, B.L.J.; Lasa, J.J.; Lavonas, E.J.; Levy, A.; Mahgoub, M.; et al. Part 4: Pediatric Basic and Advanced Life Support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2020, 142, S469–S523. [Google Scholar] [CrossRef]
- Van de Voorde, P.; Turner, N.M.; Djakow, J.; de Lucas, N.; Martinez-Mejias, A.; Biarent, D.; Bingham, R.; Brissaud, O.; Hoffmann, F.; Johannesdottir, G.B.; et al. European Resuscitation Council Guidelines 2021: Paediatric Life Support. Resuscitation 2021, 161, 327–387. [Google Scholar] [CrossRef]
- Aziz, K.; Lee, H.C.; Escobedo, M.B.; Hoover, A.V.; Kamath-Rayne, B.D.; Kapadia, V.S.; Magid, D.J.; Niermeyer, S.; Schmölzer, G.M.; Szyld, E.; et al. Part 5: Neonatal Resuscitation: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2020, 142, S524–S550. [Google Scholar] [CrossRef]
- Madar, J.; Roehr, C.C.; Ainsworth, S.; Ersdal, H.; Morley, C.; Rüdiger, M.; Skåre, C.; Szczapa, T.; Pas, A.T.; Trevisanuto, D.; et al. European Resuscitation Council Guidelines 2021: Newborn resuscitation and support of transition of infants at birth. Resuscitation 2021, 161, 291–326. [Google Scholar] [CrossRef]
- Nielsen, A.M.; Isbye, D.L.; Lippert, F.K.; Rasmussen, L.S. Basic life support and automated external defibrillator skills among ambulance personnel: A manikin study performed in a rural low-volume ambulance setting. Scand. J. Trauma Resusc. Emerg. Med. 2012, 20, 34–37. [Google Scholar] [CrossRef]
- Khoury, A.; Sall, F.S.; De Luca, A.; Pugin, A.; Pili-Floury, S.; Pazart, L.; Capellier, G. Evaluation of Bag-Valve-Mask Ventilation in Manikin Studies: What Are the Current Limitations? BioMed Res. Int. 2016, 2016, 4521767. [Google Scholar] [CrossRef] [PubMed]
- Niebauer, J.M.; White, M.L.; Zinkan, J.L.; Youngblood, A.Q.; Tofil, N.M. Hyperventilation in Pediatric Resuscitation: Performance in Simulated Pediatric Medical Emergencies. Pediatrics 2011, 128, e1195–e1200. [Google Scholar] [CrossRef] [PubMed]
- Zweiker, D.; Schwaberger, H.; Urlesberger, B.; Mileder, L.P.; Baik-Schneditz, N.; Pichler, G.; Schmölzer, G.M.; Schwaberger, B. Does the Number of Fingers on the Bag Influence Volume Delivery? A Randomized Model Study of Bag-Valve-Mask Ventilation in Infants. Children 2018, 5, 132. [Google Scholar] [CrossRef]
- Martin, J.A.; Hamilton, B.E.; Osterman, M.J.K.; Driscoll, A.K. Births: Final Data for 2019. Natl. Vital. Stat. Rep. 2021, 70, 1–51. [Google Scholar] [PubMed]
- Condò, V.; Cipriani, S.; Colnaghi, M.; Bellù, R.; Zanini, R.; Bulfoni, C.; Parazzini, F.; Mosca, F. Neonatal respiratory distress syndrome: Are risk factors the same in preterm and term infants? J. Matern. Neonatal Med. 2017, 30, 1267–1272. [Google Scholar] [CrossRef]
- Aufderheide, T.P.; Sigurdsson, G.; Pirrallo, R.G.; Yannopoulos, D.; McKnite, S.; von Briesen, C.; Sparks, C.W.; Conrad, C.J.; Provo, T.A.; Lurie, K.G. Hyperventilation-Induced Hypotension During Cardiopulmonary Resuscitation. Circulation 2004, 109, 1960–1965. [Google Scholar] [CrossRef]
- Aufderheide, T.P.; Lurie, K.G. Death by hyperventilation: A common and life-threatening problem during cardiopulmonary resuscitation. Crit. Care Med. 2004, 32, S345–S351. [Google Scholar] [CrossRef]
- O’neill, J.F.; Deakin, C.D. Do we hyperventilate cardiac arrest patients? Resuscitation 2007, 73, 82–85. [Google Scholar] [CrossRef]
- Theres, H.; Binkau, J.; Laule, M.; Heinze, R.; Hundertmark, J.; Blobner, M.; Erhardt, W.; Baumann, G.; Stangl, K. Phase-related changes in right ventricular cardiac output under volume-controlled mechanical ventilation with positive end-expiratory pressure. Crit. Care Med. 1999, 27, 953–958. [Google Scholar] [CrossRef]
- Cournand, A.; Motley, H.L.; Werko, L.; Richards, D.W. Physiological Studies of the Effects of Intermittent Positive Pressure Breathing on Cardiac Output in Man. Am. J. Physiol. Content 1947, 152, 162–174. [Google Scholar] [CrossRef]
- Paradis, N.A.; Martin, G.B.; Rivers, E.P.; Goetting, M.G.; Appleton, T.J.; Feingold, M.; Nowak, R.M. Coronary Perfusion Pressure and the Return of Spontaneous Circulation in Human Cardiopulmonary Resuscitation. JAMA 1990, 263, 1106–1113. [Google Scholar] [CrossRef] [PubMed]
- Ruben, H.; Knudsen, E.J.; Carugati, G. Gastric Inflation in Relation to Airway Pressure. Acta Anaesthesiol. Scand. 1961, 5, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Bowman, F.P.; Menegazzi, J.J.; Check, B.D.; Duckett, T.M. Lower Esophageal Sphincter Pressure During Prolonged Cardiac Arrest and Resuscitation. Ann. Emerg. Med. 1995, 26, 216–219. [Google Scholar] [CrossRef]
- Gabrielli, A.; Wenzel, V.; Layon, A.J.; von Goedecke, A.; Verne, N.G.; Idris, A.H. Lower Esophageal Sphincter Pressure Measurement during Cardiac Arrest in Humans: Potential Implications for Ventilation of the Unprotected Airway. Anesthesiology 2005, 103, 897–899. [Google Scholar] [CrossRef] [PubMed]
- Stone, B.; Chantler, P.; Baskett, P. The incidence of regurgitation during cardiopulmonary resuscitation: A comparison between the bag valve mask and laryngeal mask airway. Resuscitation 1998, 38, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, V.; Idris, A.H.; Banner, M.J.; Kubilis, P.S.; Williams, J.L. Influence of tidal volume on the distribution of gas between the lungs and stomach in the nonintubated patient receiving positive-pressure ventilation. Crit. Care Med. 1998, 26, 364–368. [Google Scholar] [CrossRef]
- Fitz-Clarke, J.R. Fast or Slow Rescue Ventilations: A Predictive Model of Gastric Inflation. Respir. Care 2018, 63, 502–509. [Google Scholar] [CrossRef]
- Munford, B.J.; Wishaw, K.J. Critical Incidents with Nonrebreathing Valves. Anesth. Intensive Care 1990, 18, 560–563. [Google Scholar] [CrossRef]
- Cooper, R.M.; Grgas, S. Fatal Barotrauma Resulting from Misuse of a Resuscitation Bag. Anesthesiology 2000, 93, 892–893. [Google Scholar] [CrossRef]
- Rodriguez, A.L.; Sánchez, L.L.; Julia, J.A. Pneumoperitoneum Associated with Manual Ventilation Using a Bag—Valve Device. Acad. Emerg. Med. 1995, 2, 944. [Google Scholar] [CrossRef]
- Kim, J.B.; Jung, H.-J.; Lee, J.M.; Im, K.S.; Kim, D.J. Barotrauma developed during intra-hospital transfer—A case report. Korean J. Anesthesiol. 2010, 59, S218–S221. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Joo, Y.Y.; Oh, Y.S.; Seo, Y.R.; Joo, H.S.; Kim, S.C.; Rhee, C.K. Barotrauma after Manual Ventilation in a Patient with Life-Threatening Massive Hemoptysis. Korean J. Crit. Care Med. 2015, 30, 308–312. [Google Scholar] [CrossRef]
- Slutsky, A.S.; Ranieri, V.M. Ventilator-Induced Lung Injury. N. Engl. J. Med. 2013, 369, 2126–2136. [Google Scholar] [CrossRef]
- Deboisblanc, B.P. Black Hawk, Please Come Down: Reflections on a hospital’s struggle to survive in the wake of Hurricane Katrina. Am. J. Respir. Crit. Care Med. 2005, 172, 1239–1240. [Google Scholar] [CrossRef]
- Branson, R.D.; Johannigman, J.A.; Daugherty, E.L.; Rubinson, L. Surge capacity mechanical ventilation. Respir. Care 2008, 53, 78. [Google Scholar]
- Blackburn, M.B.; Hudson, I.L.; Rodriguez, C.; Wienandt, N.; Ryan, K.L. Acute overventilation does not cause lung damage in moderately hemorrhaged swine. J. Appl. Physiol. 2021, 130, 1337–1344. [Google Scholar] [CrossRef] [PubMed]
- Bogossian, E.G.; Peluso, L.; Creteur, J.; Taccone, F.S. Hyperventilation in Adult TBI Patients: How to Approach It? Front. Neurol. 2021, 11, 580859. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, Q.; Wang, E. Hyperventilation in neurological patients: From physiology to outcome evidence. Curr. Opin. Anaesthesiol. 2019, 32, 568–573. [Google Scholar] [CrossRef]
- Nair, J.; Lakshminrusimha, S. Update on PPHN: Mechanisms and treatment. Semin. Perinatol. 2014, 38, 78–91. [Google Scholar] [CrossRef]
- Blanch, L.; Villagra, A.; Sales, B.; Montanya, J.; Lucangelo, U.; Luján, M.; García-Esquirol, O.; Chacón, E.; Estruga, A.; Oliva, J.C.; et al. Asynchronies during mechanical ventilation are associated with mortality. Intensiv. Care Med. 2015, 41, 633–641. [Google Scholar] [CrossRef]
- The Asynchronies in the Intensive Care Unit (ASYNICU) Group; De Haro, C.; Ochagavia, A.; López-Aguilar, J.; Fernandez-Gonzalo, S.; Navarra-Ventura, G.; Magrans, R.; Montanyà, J.; Blanch, L. Patient-ventilator asynchronies during mechanical ventilation: Current knowledge and research priorities. Intensive Care Med. Exp. 2019, 7, 43. [Google Scholar] [CrossRef]
- Saddawi-Konefka, D.; Hung, S.L.; Kacmarek, R.M.; Jiang, Y. Optimizing Mask Ventilation: Literature Review and Development of a Conceptual Framework. Respir. Care 2015, 60, 1834–1840. [Google Scholar] [CrossRef] [PubMed]
- Sivco, C.S.; Cherian, V.T. What Every Anesthesiologist Should Know About the Manual Resuscitation Bag. A&A Pract. 2018, 11, 288–291. [Google Scholar] [CrossRef]
- Roy, S.; Bunting, L.; Stahl, S.; Textor, D. Inline Positive End-Expiratory Pressure Valves: The Essential Component of Individualized Split Ventilator Circuits. Crit. Care Explor. 2020, 2, e0198. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, V.; Idris, A.H.; Banner, M.J.; Fuerst, R.S.; Tucker, K.J. The Composition of Gas Given by Mouth-to-Mouth Ventilation During CPR. Chest 1994, 106, 1806–1810. [Google Scholar] [CrossRef] [PubMed]
- Fothergill, J. XI. Observations on a case published in the last volume of the medical essays, &c. of recovering a man dead in appearance, by distending the lungs with air. Printed at Edinburgh, 1744; by John Fothergill, Licent. Coll. Med. Lond. Philos. Trans. R. Soc. Lond. 1744, 43, 275–281. [Google Scholar] [CrossRef]
- AMBU, Ambu® SPUR® II Datasheet, (n.d.). Available online: https://www.ambuusa.com/emergency-care-and-training/resuscitators/product/ambu-spur-ii (accessed on 14 January 2021).
- Laerdal, The BAG II Manual Single-Use Self-Inflating Resuscitator User Guide, (n.d.). Available online: https://cdn.laerdal.com/downloads/f4968/the_bag_ii (accessed on 23 December 2021).
- Intersurgical, Bag-Valve-Mask Resuscitators Information Sheet, (n.d.). Available online: https://www.intersurgical.com/content/files/72303/1893681232 (accessed on 23 December 2021).
- AirLife, AirflowTM Manual Resuscitator, (n.d.). Available online: https://connect.myairlife.com/resource/airflow-manual-resuscitator-literature-sheet/ (accessed on 23 December 2021).
- Doerges, V.; Sauer, C.; Ocker, H.; Wenzel, V.; Schmucker, P. Smaller tidal volumes during cardiopulmonary resuscitation: Comparison of adult and paediatric self-inflatable bags with three different ventilatory devices. Resuscitation 1999, 43, 31–37. [Google Scholar] [CrossRef]
- Dafilou, B.; Schwester, D.; Ruhl, N.; Marques-Baptista, A. It’s In The Bag: Tidal Volumes in Adult and Pediatric Bag Valve Masks. J. Emerg. Med. 2020, 21, 722–726. [Google Scholar] [CrossRef]
- Wenzel, V.; Keller, C.; Idris, A.H.; Dörges, V.; Lindner, K.H.; Brimacombe, J.R. Effects of smaller tidal volumes during basic life support ventilation in patients with respiratory arrest: Good ventilation, less risk? Resuscitation 1999, 43, 25–29. [Google Scholar] [CrossRef]
- Hart, D.; Reardon, R.; Ward, C.; Miner, J. Face Mask Ventilation: A Comparison of Three Techniques. J. Emerg. Med. 2013, 44, 1028–1033. [Google Scholar] [CrossRef]
- Cho, Y.C.; Cho, S.W.; Chung, S.P.; Yu, K.; Kwon, O.Y.; Kim, S.W. How can a single rescuer adequately deliver tidal volume with a manual resuscitator? An improved device for delivering regular tidal volume. Emerg. Med. J. 2011, 28, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Merrell, J.G.; Scott, A.C.; Stambro, R.; Boukai, A.; Cooper, D.D. Improved simulated ventilation with a novel tidal volume and peak inspiratory pressure controlling bag valve mask: A pilot study. Resusc. Plus 2023, 13, 100350. [Google Scholar] [CrossRef] [PubMed]
- Grinnan, D.C.; Truwit, J.D. Clinical review: Respiratory mechanics in spontaneous and assisted ventilation. Crit. Care 2005, 9, 472–484. [Google Scholar] [CrossRef] [PubMed]
- Zmora, E.; Merritt, T.A. Control of peak inspiratory pressure during manual ventilation. A controlled study. Am. J. Dis. Child. 1982, 136, 46–48. [Google Scholar] [CrossRef]
- Karsdon, J.; Stijnen, T.; Berger, H.M. The effect of a manometer on the mean airway pressure during hand ventilation, an in vitro study. Eur. J. Pediatr. 1989, 148, 574–576. [Google Scholar] [CrossRef]
- O’Donnell, C.P.F.; Davis, P.G.; Lau, R.; Dargaville, P.A.; Doyle, L.W.; Morley, C.J. Neonatal resuscitation 3: Manometer use in a model of face mask ventilation. Arch. Dis. Child.-Fetal Neonatal Ed. 2005, 90, F397–F400. [Google Scholar] [CrossRef]
- Gertler, R. Respiratory Mechanics. Anesthesiol. Clin. 2021, 39, 415–440. [Google Scholar] [CrossRef]
- Foglia, E.E.; Pas, A.B.T. Effective ventilation: The most critical intervention for successful delivery room resuscitation. Semin. Fetal Neonatal Med. 2018, 23, 340–346. [Google Scholar] [CrossRef]
- Kattwinkel, J.; Stewart, C.; Walsh, B.; Gurka, M.; Paget-Brown, A. Responding to Compliance Changes in a Lung Model During Manual Ventilation: Perhaps Volume, Rather Than Pressure, Should be Displayed. Pediatrics 2009, 123, e465–e470. [Google Scholar] [CrossRef]
- Kern, K.B.; Stickney, R.E.; Gallison, L.; Smith, R.E. Metronome improves compression and ventilation rates during CPR on a manikin in a randomized trial. Resuscitation 2010, 81, 206–210. [Google Scholar] [CrossRef]
- Lim, J.S.; Cho, Y.C.; Kwon, O.Y.; Chung, S.P.; Yu, K.; Kim, S.W. Precise minute ventilation delivery using a bag-valve mask and audible feedback. Am. J. Emerg. Med. 2012, 30, 1068–1071. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Beom, J.H.; You, J.S.; Cho, J.; Min, I.K.; Chung, H.S. Effect of flashlight guidance on manual ventilation performance in cardiopulmonary resuscitation: A randomized controlled simulation study. PLoS ONE 2018, 13, e0198907. [Google Scholar] [CrossRef]
- You, K.M.; Lee, C.; Kwon, W.Y.; Lee, J.C.; Suh, G.J.; Kim, K.S.; Park, M.J.; Kim, S. Real-time tidal volume feedback guides optimal ventilation during simulated CPR. Am. J. Emerg. Med. 2017, 35, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Park, S.O.; Lee, K.R.; Hong, D.Y.; Baek, K.J. Efficacy of Amflow®, a Real-Time-Portable Feedback Device for Delivering Appropriate Ventilation in Critically Ill Patients: A Randomised, Controlled, Cross-Over Simulation Study. Emerg. Med. Int. 2020, 2020, 5296519. [Google Scholar] [CrossRef] [PubMed]
- Heo, S.; Yoon, S.Y.; Kim, J.; Kim, H.S.; Kim, K.; Yoon, H.; Hwang, S.Y.; Cha, W.C.; Kim, T. Effectiveness of a Real-Time Ventilation Feedback Device for Guiding Adequate Minute Ventilation: A Manikin Simulation Study. Medicina 2020, 56, 278. [Google Scholar] [CrossRef]
- Khoury, A.; De Luca, A.; Sall, F.S.; Pazart, L.; Capellier, G. Ventilation feedback device for manual ventilation in simulated respiratory arrest: A crossover manikin study. Scand. J. Trauma Resusc. Emerg. Med. 2019, 27, 93. [Google Scholar] [CrossRef]
- Maxey, B.S.; White, L.A.; Solitro, G.F.; Conrad, S.A.; Alexander, J.S. Experimental validation of a portable tidal volume indicator for bag valve mask ventilation. BMC Biomed. Eng. 2022, 4, 9. [Google Scholar] [CrossRef]
- White, L.A.; Maxey, B.S.; Solitro, G.F.; Conrad, S.A.; Davidson, K.P.; Alhaque, A.; Alexander, J.S. Enhanced Manual Ventilation with a Handheld Audiovisual Device—‘BENGI’—Insights from a Pilot Study in Special Operations Medicine. J. Spec. Oper. Med. 2024; in press. [Google Scholar]
AHA Recommendations | ERC Recommendations | |||
---|---|---|---|---|
Adult | VT | 500–600 mL or chest rise | 500–600 mL or chest rise | |
RR | −AA | 30:2 or 10 breaths/min | 30:2 or 10 breaths/min | |
+AA | 10 breaths/min | 10 breaths/min | ||
Pediatric | VT | No specific recommendation | 6–8 mL/kg, or chest rise | |
RR | −AA | 30:2 (1 rescuer) or 15:2 (≥2 rescuers) | 15:2 | |
+AA | 20–30 breaths/min | 25 (infants), 20 (1–8 yo), 15 (8–12) yo, or 10 (>12 yo) breaths/min | ||
Neonatal | PIP | Up to 30 (term) or 20–25 cm H2O (preterm) but occasionally higher if needed | 30 (term) or 25 cm H2O (preterm), or 5–8 mL/kg if being monitored | |
RR | −CC | 40–60 breaths/min | 30 breaths/min | |
+CC | 3:1 | 3:1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
White, L.A.; Conrad, S.A.; Alexander, J.S. Pathophysiology and Prevention of Manual-Ventilation-Induced Lung Injury (MVILI). Pathophysiology 2024, 31, 583-595. https://doi.org/10.3390/pathophysiology31040042
White LA, Conrad SA, Alexander JS. Pathophysiology and Prevention of Manual-Ventilation-Induced Lung Injury (MVILI). Pathophysiology. 2024; 31(4):583-595. https://doi.org/10.3390/pathophysiology31040042
Chicago/Turabian StyleWhite, Luke A., Steven A. Conrad, and Jonathan Steven Alexander. 2024. "Pathophysiology and Prevention of Manual-Ventilation-Induced Lung Injury (MVILI)" Pathophysiology 31, no. 4: 583-595. https://doi.org/10.3390/pathophysiology31040042
APA StyleWhite, L. A., Conrad, S. A., & Alexander, J. S. (2024). Pathophysiology and Prevention of Manual-Ventilation-Induced Lung Injury (MVILI). Pathophysiology, 31(4), 583-595. https://doi.org/10.3390/pathophysiology31040042