Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (261)

Search Parameters:
Keywords = relative integrated navigation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 15013 KB  
Article
Atmospheric Weighted Average Temperature Enhancement Model for the European Region Considering Daily Variations and Residual Changes in Surface Temperature
by Bingbing Zhang, Tong Wu and Yi Shen
Remote Sens. 2026, 18(1), 36; https://doi.org/10.3390/rs18010036 - 23 Dec 2025
Viewed by 121
Abstract
The retrieval of precipitable water vapor (PWV) through Global Navigation Satellite System (GNSS) meteorology critically depends on the precise determination of atmospheric weighted mean temperature (Tm). Existing empirical models for Tm retrieval over Europe offer speed but suffer accuracy limitations due to complex [...] Read more.
The retrieval of precipitable water vapor (PWV) through Global Navigation Satellite System (GNSS) meteorology critically depends on the precise determination of atmospheric weighted mean temperature (Tm). Existing empirical models for Tm retrieval over Europe offer speed but suffer accuracy limitations due to complex local environmental and climatic factors. Aiming to improve Tm model accuracy in Europe, this study constructed the European Tm Enhanced Model (EurTm). The model was constructed based on 2014–2023 radiosonde data from 40 stations across Europe, with its parameters optimized through least squares estimation. The EurTm model integrates multiple factors, including Tm from Hourly Global Pressure and Temperature 2 (HGPT2), the difference between Ts obtained by HGPT2 and Ts measured by radiosonde stations, and diurnal variation. The EurTm model’s accuracy was validated by comparing its outputs with reference values derived from 2024 radiosonde data. The EurTm model underwent comparative analysis against the widely used Bevis, ETmPoly, and HGPT2 models. The EurTm model’s accuracy was 13.2%, 4.1%, and 32.7% higher than the Bevis, ETmPoly, and HGPT2 models at 40 modeling stations. At 13 non-modeling stations, the EurTm model outperformed the Bevis, ETmPoly, and HGPT2 models with accuracy enhancements of 16.1%, 4.7%, and 30.0%, respectively. Theoretical evaluation showed that the EurTm model achieved an RMSE of 0.20 mm and a relative error of 1.11% for GNSS-derived PWV, outperforming all comparative models. In conclusion, the EurTm model not only holds significant application value for GNSS PWV retrieval in Europe but also provides a novel approach for region-specific enhancements of global empirical Tm models by addressing characteristic regional features such as diurnal variations. Full article
Show Figures

Figure 1

30 pages, 22912 KB  
Article
HV-LIOM: Adaptive Hash-Voxel LiDAR–Inertial SLAM with Multi-Resolution Relocalization and Reinforcement Learning for Autonomous Exploration
by Shicheng Fan, Xiaopeng Chen, Weimin Zhang, Peng Xu, Zhengqing Zuo, Xinyan Tan, Xiaohai He, Chandan Sheikder, Meijun Guo and Chengxiang Li
Sensors 2025, 25(24), 7558; https://doi.org/10.3390/s25247558 - 12 Dec 2025
Viewed by 443
Abstract
This paper presents HV-LIOM (Adaptive Hash-Voxel LiDAR–Inertial Odometry and Mapping), a unified LiDAR–inertial SLAM and autonomous exploration framework for real-time 3D mapping in dynamic, GNSS-denied environments. We propose an adaptive hash-voxel mapping scheme that improves memory efficiency and real-time state estimation by subdividing [...] Read more.
This paper presents HV-LIOM (Adaptive Hash-Voxel LiDAR–Inertial Odometry and Mapping), a unified LiDAR–inertial SLAM and autonomous exploration framework for real-time 3D mapping in dynamic, GNSS-denied environments. We propose an adaptive hash-voxel mapping scheme that improves memory efficiency and real-time state estimation by subdividing voxels according to local geometric complexity and point density. To enhance robustness to poor initialization, we introduce a multi-resolution relocalization strategy that enables reliable localization against a prior map under large initial pose errors. A learning-based loop-closure module further detects revisited places and injects global constraints, while global pose-graph optimization maintains long-term map consistency. For autonomous exploration, we integrate a Soft Actor–Critic (SAC) policy that selects informative navigation targets online, improving exploration efficiency in unknown scenes. We evaluate HV-LIOM on public datasets (Hilti and NCLT) and a custom mobile robot platform. Results show that HV-LIOM improves absolute pose accuracy by up to 15.2% over FAST-LIO2 in indoor settings and by 7.6% in large-scale outdoor scenarios. The learned exploration policy achieves comparable or superior area coverage with reduced travel distance and exploration time relative to sampling-based and learning-based baselines. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

28 pages, 82399 KB  
Article
Assessment of Smartphone GNSS Measurements in Tightly Coupled Visual Inertial Navigation
by Mehmet Fikret Ocal, Murat Durmaz, Engin Tunali and Hasan Yildiz
Appl. Sci. 2025, 15(23), 12796; https://doi.org/10.3390/app152312796 - 3 Dec 2025
Viewed by 552
Abstract
Precise, seamless, and high-rate navigation remains a major challenge, particularly when relying on low-cost sensors. With the decreasing cost of cameras, Inertial Measurement Units (IMUs), and Global Navigation Satellite System (GNSS) receivers, tightly coupled fusion frameworks, such as GVINS, have gained considerable attention. [...] Read more.
Precise, seamless, and high-rate navigation remains a major challenge, particularly when relying on low-cost sensors. With the decreasing cost of cameras, Inertial Measurement Units (IMUs), and Global Navigation Satellite System (GNSS) receivers, tightly coupled fusion frameworks, such as GVINS, have gained considerable attention. GVINS is an optimization-based factor-graph framework that integrates visual and inertial measurements with single-frequency GNSS-code pseudorange observations to provide robust and drift-free navigation. This study aimed to evaluate the potential of applying GVINS to low-cost, low-power, and single-frequency GNSS receivers, particularly those embedded in smartphones, by integrating 1 Hz GNSS measurements collected in three challenging urban scenarios into the GVINS framework to produce seamless 10 Hz positioning estimates. The experiments were conducted using an Xsens MTi-1 IMU and global-shutter (GS) cameras, as well as a Samsung A51 smartphone and a u-blox ZED-F9P GNSS receiver. GVINS was modified to process 1 Hz GNSS measurements. Differential corrections from a nearby GNSS reference station were also incorporated to assess their impact on optimization-based filters, such as GVINS. The performance of GVINS and Differential GVINS (D-GVINS) solutions using smartphone measurements was compared against standard point positioning (SPP) and differential GPS (DGPS) results obtained from the same smartphone GNSS receiver, as well as the GVINS solution derived from u-blox ZED-F9P measurements sampled at 1 Hz. Experimental results show that GVINS effectively operates with smartphone GNSS measurements, reducing 3D RMS errors by 80.4%, 64.9%, and 83.8% for the sports field, campus-walking, and campus-driving datasets, respectively, when differential corrections are applied relative to the SPP solution. These results highlight the potential of smartphone GNSS receivers within the GVINS framework: Even though they observe fewer constellations, lower signal quality, and a lower number of satellites, they can still achieve a performance comparable to that of a relatively higher-end dual-frequency GNSS receiver, the u-blox ZED-F9P. Further studies will focus on adapting the GVINS algorithm to run directly on smartphones to utilize all the available measurements, including the camera, IMU, barometer, magnetometer, and additional ranging sensors. Full article
Show Figures

Figure 1

20 pages, 1019 KB  
Article
Cross-Validated Neural Network Optimization for Explainable Energy Prediction in Industrial Mobile Robots
by Danel Rico-Melgosa, Ekaitz Zulueta, Jorge Rodriguez-Guerra, Ibai Inziarte-Hidalgo and Iñigo Aramendia
Appl. Sci. 2025, 15(23), 12644; https://doi.org/10.3390/app152312644 - 28 Nov 2025
Viewed by 197
Abstract
Accurate energy prediction is essential for energy-aware planning and navigation of autonomous mobile robots (AMRs). This study investigates whether a compact feed-forward neural network (FFNN) can predict relative energy consumption from operational variables with high accuracy and interpretability. Using a curated dataset of [...] Read more.
Accurate energy prediction is essential for energy-aware planning and navigation of autonomous mobile robots (AMRs). This study investigates whether a compact feed-forward neural network (FFNN) can predict relative energy consumption from operational variables with high accuracy and interpretability. Using a curated dataset of controlled translation and rotation trials on a KUKA KMP 1500P, energy demand is expressed as the per-trial reduction in battery state of charge (SoC), defined as N1%. For unit-free reporting, it is also considered the normalized SoC consumed per trial, defined as E=1/N1%. Model development followed a two-stage optimization pipeline, (i) systematic feature-subset screening and (ii) cross-validated architecture and regularization search with early stopping, assessed by a composite of MSE, MAE, R2, and the 68th-percentile absolute error (X68) as the prediction precision index. The selected FFNN (ReLU multilayer perceptron with L2 weight decay) achieved strong generalization on the independent test set (MAE = 0.9954, MSE = 4.5512, R2 = 0.9795, X68 = 0.0193). Post hoc explainability methods (SHAP and input perturbation) identified angular velocity and linear acceleration as the dominant predictors, with payload mass exerting secondary effects. These results demonstrate that a compact, regularized FFNN provides accurate, repeatable, and interpretable energy predictions suitable for integration into digital twin platforms and downstream industrial scheduling. Full article
(This article belongs to the Special Issue Advances in Power System for Energy Storage)
Show Figures

Figure 1

24 pages, 15361 KB  
Article
UAV Sensor Data Fusion for Localization Using Adaptive Multiscale Feature Matching Mechanisms Under GPS-Deprived Environment
by Yu-Shun Wang and Chia-Hao Chang
Aerospace 2025, 12(12), 1048; https://doi.org/10.3390/aerospace12121048 - 25 Nov 2025
Viewed by 357
Abstract
The application of unmanned vehicles in civilian and military fields is increasingly widespread. Traditionally, unmanned vehicles primarily rely on Global Positioning Systems (GPSs) for positioning; however, GPS signals can be limited or completely lost in conditions such as building obstructions, indoor environments, or [...] Read more.
The application of unmanned vehicles in civilian and military fields is increasingly widespread. Traditionally, unmanned vehicles primarily rely on Global Positioning Systems (GPSs) for positioning; however, GPS signals can be limited or completely lost in conditions such as building obstructions, indoor environments, or electronic interference. In addition, countries are actively developing GPS jamming and deception technologies for military applications, making precise positioning and navigation of unmanned vehicles in GPS-denied or constrained environments a critical issue that needs to be addressed. In this work, authors propose a method based on Visual–Inertial Odometry (VIO), integrating the extended Kalman filter (EKF), an Inertial Measurement Unit (IMU), optical flow, and feature matching to achieve drone localization in GPS-denied environments. The proposed method uses the heading angle and acceleration data obtained from the IMU as the state prediction for the EKF, and estimates relative displacement using optical flow. It further corrects the optical flow calculation errors through IMU rotation compensation, enhancing the robustness of visual odometry. Additionally, when re-selecting feature points for optical flow, it combines a KAZE feature matching technique for global position correction, reducing drift errors caused by long-duration flight. The authors also employ an adaptive noise adjustment strategy that dynamically adjusts the internal state and measurement noise matrices of the EKF based on the rate of change in heading angle and feature matching reliability, allowing the drone to maintain stable positioning in various flight conditions. According to the simulation results, the proposed method is able to effectively estimate the flight trajectory of drones without GPS. Compared to results that rely solely on optical flow or feature matching, it significantly reduces cumulative errors. This makes it suitable for urban environments, forest areas, and military applications where GPS signals are limited, providing a reliable solution for autonomous navigation and positioning of drones. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

21 pages, 12290 KB  
Article
Land Surface Reflection Differences Observed by Spaceborne Multi-Satellite GNSS-R Systems
by Xiangyue Li, Xudong Tong and Qingyun Yan
Remote Sens. 2025, 17(23), 3807; https://doi.org/10.3390/rs17233807 - 24 Nov 2025
Viewed by 496
Abstract
With the accelerated launch of spaceborne Global Navigation Satellite System Reflectometry (GNSS-R) satellites, GNSS-R has gradually emerged as an important technique for remote sensing. However, due to its pseudo-random observation mode, the use of a single system makes it difficult to provide continuous [...] Read more.
With the accelerated launch of spaceborne Global Navigation Satellite System Reflectometry (GNSS-R) satellites, GNSS-R has gradually emerged as an important technique for remote sensing. However, due to its pseudo-random observation mode, the use of a single system makes it difficult to provide continuous spatiotemporal coverage over a specific area within the short term. Although interpolation methods can partially alleviate the coverage gaps, their application is limited by accuracy and reliability constraints, which still restrict the practical use of GNSS-R in terrestrial surface monitoring. To address this issue, conducting joint analyses and data fusion of multi-satellite GNSS-R observations has become an important approach to improving the continuity and accuracy of surface monitoring. However, systematic studies on the integration of multi-satellite GNSS-R data remain relatively limited. Moreover, differences in orbital inclination, antenna design, and signal bandwidth among various spaceborne GNSS-R systems lead to discrepancies in their land observations. Therefore, this study systematically analyzes the reflectivity differences among multiple GNSS-R satellites (e.g., the Cyclone Global Navigation Satellite System (CYGNSS), Fengyun-3 (FY-3), and Tianmu-1 (TM-1)) under consistent surface roughness and land cover conditions, with the aim of providing a theoretical and methodological foundation for the fusion and integrated application of multi-satellite GNSS-R data. The results show that, except for desert regions, the spatial distribution of the correlation coefficients from the least squares fitting of reflectivity between different spaceborne GNSS-R satellites exhibits a pattern similar to that of an established variable, i.e., the vegetation–roughness composite variable (VR), with higher inter-system correlations occurring in areas characterized by lower VR values. Significant reflectivity deviations were observed near water bodies and river networks, such as the Amazon, Paraná, Congo, Niger, Nile, Ganges, Mekong, and Yangtze, where both the fitting intercepts and biases are relatively large. In addition, the reflectivity correlations between CYGNSS–TM-1 and CYGNSS–FY-3 are both strongly influenced by surface vegetation cover type. As the correlation increases, the proportion of non-vegetated and forested areas decreases, while that of grasslands, shrublands, and cropland/vegetation mosaics increases. Analysis of inter-system reflectivity correlations across different land cover types indicates that forested areas exhibit low-to-moderate correlations but maintain stable structural characteristics, whereas wooded areas show moderate correlations slightly lower than those of forests. Grasslands, shrublands, and croplands are mainly distributed within regions of moderate surface roughness and correlation, among which croplands have the highest proportion of highly correlated grids, demonstrating the greatest potential for multi-source data fusion. Wetlands display high roughness and low correlation, largely influenced by dynamic water variations, while bare soils show low roughness (0.2–0.4) but still weak correlations. Full article
Show Figures

Figure 1

27 pages, 5618 KB  
Article
Real-Time Semantic Reconstruction and Semantically Constrained Path Planning for Agricultural Robots in Greenhouses
by Tianrui Quan, Junjie Luo, Shuxin Xie, Xuesong Ren and Yubin Miao
Agronomy 2025, 15(12), 2696; https://doi.org/10.3390/agronomy15122696 - 23 Nov 2025
Viewed by 588
Abstract
To address perception and navigation challenges in precision agriculture caused by GPS signal loss and weakly structured environments in greenhouses, this study proposes an integrated framework for real-time semantic reconstruction and path planning. This framework comprises three core components: First, it introduces a [...] Read more.
To address perception and navigation challenges in precision agriculture caused by GPS signal loss and weakly structured environments in greenhouses, this study proposes an integrated framework for real-time semantic reconstruction and path planning. This framework comprises three core components: First, it introduces a semantic segmentation method tailored for greenhouse environments, enhancing recognition accuracy of key navigable areas such as furrows. Second, it designs a visual-semantic fusion SLAM point cloud reconstruction algorithm and proposes a semantic point cloud rasterization method. Finally, it develops a semantic-constrained A* path planning algorithm adapted for semantic maps. We collected a segmentation dataset (1083 images, 4 classes) and a reconstruction dataset from greenhouses in Shanghai. Experiments demonstrate that the segmentation algorithm achieves 95.44% accuracy and 87.93% mIoU, with a 3.9% improvement in furrow category recognition accuracy. The reconstructed point cloud exhibits an average relative error of 7.37% on furrows. In practical greenhouse validation, single-frame point cloud fusion took approximately 0.35 s, while path planning was completed in under 1 s. Feasible paths avoiding crops were successfully generated across three structurally distinct greenhouses. Results demonstrate that this framework can stably and in real-time accomplish semantic mapping and path planning, providing effective technical support for digital agriculture. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

24 pages, 647 KB  
Article
Survey on Monocular Metric Depth Estimation
by Jiuling Zhang, Yurong Wu and Huilong Jiang
Computers 2025, 14(11), 502; https://doi.org/10.3390/computers14110502 - 20 Nov 2025
Cited by 2 | Viewed by 2033
Abstract
Monocular metric depth estimation (MMDE) aims to generate depth maps with an absolute metric scale from a single RGB image, which enables accurate spatial understanding, 3D reconstruction, and autonomous navigation. Unlike conventional monocular depth estimation that predicts only relative depth, MMDE maintains geometric [...] Read more.
Monocular metric depth estimation (MMDE) aims to generate depth maps with an absolute metric scale from a single RGB image, which enables accurate spatial understanding, 3D reconstruction, and autonomous navigation. Unlike conventional monocular depth estimation that predicts only relative depth, MMDE maintains geometric consistency across frames and supports reliable integration with visual SLAM, high-precision 3D modeling, and novel view synthesis. This survey provides a comprehensive review of MMDE, tracing its evolution from geometry-based formulations to modern learning-based frameworks. The discussion emphasizes the importance of datasets, distinguishing metric datasets that supply absolute ground-truth depth from relative datasets that facilitate ordinal or normalized depth learning. Representative datasets, including KITTI, NYU-Depth, ApolloScape, and TartanAir, are analyzed with respect to scene composition, sensor modality, and intended application domain. Methodological progress is examined across several dimensions, including model architecture design, domain generalization, structural detail preservation, and the integration of synthetic data that complements real-world captures. Recent advances in patch-based inference, generative modeling, and loss design are compared to reveal their respective advantages and limitations. By summarizing the current landscape and outlining open research challenges, this work establishes a clear reference framework that supports future studies and facilitates the deployment of MMDE in real-world vision systems requiring precise and robust metric depth estimation. Full article
Show Figures

Figure 1

10 pages, 2944 KB  
Proceeding Paper
Bilateral Teleoperation with Force Feedback and Obstacle Detection-Based Navigation for Mobile Robots in Congested Environments
by Diego Andrés Carranza, Gabriela M. Andaluz and Paulo Leica
Eng. Proc. 2025, 115(1), 22; https://doi.org/10.3390/engproc2025115022 - 15 Nov 2025
Viewed by 298
Abstract
This paper presents the implementation of a bilateral teleoperation system for mobile robots operating in congested environments, incorporating force feedback and obstacle-aware navigation. The system uses the Novint Falcon device as the master interface and a mobile robot as the slave unit. A [...] Read more.
This paper presents the implementation of a bilateral teleoperation system for mobile robots operating in congested environments, incorporating force feedback and obstacle-aware navigation. The system uses the Novint Falcon device as the master interface and a mobile robot as the slave unit. A control strategy is developed that integrates mechanical impedance models and a force-based obstacle detection and avoidance algorithm. Additionally, the control law incorporates feedback based on the relative velocities of surrounding objects to account for dynamic interactions and contribute to system stability. Experimental tests were conducted to evaluate the performance of the teleoperation system, focusing on remote navigation, obstacle avoidance, and bidirectional interaction through force feedback in congested scenarios. Full article
(This article belongs to the Proceedings of The XXXIII Conference on Electrical and Electronic Engineering)
Show Figures

Figure 1

20 pages, 3536 KB  
Article
Accuracy Analysis of SINS/CNS Integrated Attitude Determination Based on Simplified Spatio-Temporal Model
by Conghai Ruan, Hanxu Li, Chonghui Li, Shaojie Chen and Zhiqiang Hong
Sensors 2025, 25(22), 6898; https://doi.org/10.3390/s25226898 - 12 Nov 2025
Viewed by 339
Abstract
For ground-based Celestial Navigation System/Strapdown Inertial Navigation System (CNS/SINS) integrated navigation with arcsecond-level accuracy, the current spatio-temporal transformation model involves a considerable amount of astronomical knowledge, making it difficult for ordinary navigation professionals to quickly master and operate. There has been no strict [...] Read more.
For ground-based Celestial Navigation System/Strapdown Inertial Navigation System (CNS/SINS) integrated navigation with arcsecond-level accuracy, the current spatio-temporal transformation model involves a considerable amount of astronomical knowledge, making it difficult for ordinary navigation professionals to quickly master and operate. There has been no strict argumentation on which parameters can be simplified in the calculation process. Under the premise of ensuring that the attitude accuracy of ground integrated navigation meets the requirement of 5 arcseconds, through argumentation and quantitative analysis, the complex links in the spatio-temporal transformation model that contribute minimally to the final attitude measurement accuracy can be eliminated, significantly reducing the complexity of the model and lowering the threshold for its use. The factors considered in this paper include proper motion, annual parallax, light deflection, aberration of light, details of the precession-nutation model, details of the time system, and calibration parameters. Factors contributing less than 0.1 arcsecond to the accuracy during the coordinate transformation process are ignored or approximately simplified. Error analysis shows that the corrections for annual parallax and light deflection have negligible effects on accuracy. Except for the calculation of the Earth’s rotation angle, which requires a relatively precise UT1-UTC time, the time input in the calculation process of other astronomical parameters can directly use UTC time. Experimental measurements show that the calibration parameters obtained by the method in this paper have high robustness, and the parameter accuracy meets the requirements of attitude calculation. The proposed simplified spatio-temporal model reduces the computational load by 90%, can meet the arcsecond-level attitude measurement accuracy requirements of ground-based CNS/INS integrated navigation, and has the potential to be extended to more general dynamic or air/space-based intelligent navigation scenarios. Full article
(This article belongs to the Special Issue Signal Processing for Satellite Navigation and Wireless Localization)
Show Figures

Figure 1

22 pages, 1020 KB  
Article
Spherical Fuzzy CRITIC–ARAS Framework for Evaluating Flow Experience in Metaverse Fashion Retail
by Adnan Veysel Ertemel, Nurdan Tümbek Tekeoğlu and Ayşe Karayılan
Processes 2025, 13(11), 3578; https://doi.org/10.3390/pr13113578 - 6 Nov 2025
Viewed by 432
Abstract
The Metaverse—an evolving convergence of virtual and physical realities—has emerged as a transformative platform, particularly within the fashion and retail industries. Its immersive nature aligns closely with the principles of flow theory, which describes the optimal psychological state of deep engagement and enjoyment. [...] Read more.
The Metaverse—an evolving convergence of virtual and physical realities—has emerged as a transformative platform, particularly within the fashion and retail industries. Its immersive nature aligns closely with the principles of flow theory, which describes the optimal psychological state of deep engagement and enjoyment. This study investigates the dynamics of fashion retail shopping in the Metaverse through a novel multi-criteria decision-making (MCDM) framework. Specifically, it integrates the CRITIC and ARAS methods within a spherical fuzzy environment to address decision-making under uncertainty. Flow theory is employed as the theoretical lens, with its dimensions serving as evaluation criteria. By incorporating spherical fuzzy sets, the model accommodates expert uncertainty more effectively. The findings provide empirical insights into the relative importance of flow constructs in shaping immersive consumer experiences in Metaverse-based retail environments. This study offers both theoretical contributions to the literature on digital consumer behavior and practical implications for fashion brands navigating immersive virtual ecosystems. Sensitivity analyses and comparative validation further demonstrate the robustness of the proposed framework. Full article
Show Figures

Figure 1

24 pages, 1908 KB  
Article
Integrated LiDAR-Based Localization and Navigable Region Detection for Autonomous Berthing of Unmanned Surface Vessels
by Haichao Wang, Yong Yin, Liangxiong Dong and Helang Lai
J. Mar. Sci. Eng. 2025, 13(11), 2079; https://doi.org/10.3390/jmse13112079 - 31 Oct 2025
Viewed by 658
Abstract
Autonomous berthing of unmanned surface vehicles (USVs) requires high-precision positioning and accurate detection of navigable region in complex port environments. This paper presents an integrated LiDAR-based approach to address these challenges. A high-precision 3D point cloud map of the berth is first constructed [...] Read more.
Autonomous berthing of unmanned surface vehicles (USVs) requires high-precision positioning and accurate detection of navigable region in complex port environments. This paper presents an integrated LiDAR-based approach to address these challenges. A high-precision 3D point cloud map of the berth is first constructed by fusing LiDAR data with real-time kinematic (RTK) measurements. USV pose is then estimated by matching real-time LiDAR scans to the prior map, achieving robust, RTK-independent localization. For safe navigation, a novel navigable region detection algorithm is proposed, which combines point cloud projection, inner-boundary extraction, and target clustering. This method accurately identifies quay walls and obstacles, generating reliable navigable areas and ensuring collision-free berthing. Field experiments conducted in Ling Shui Port, Dalian, China, validate the proposed approach. Results show that the map-based positioning reduces absolute trajectory error (ATE) by 55.29% and relative trajectory error (RTE) by 38.71% compared to scan matching, while the navigable region detection algorithm provides precise and stable navigable regions. These outcomes demonstrate the effectiveness and practical applicability of the proposed method for autonomous USV berthing. Full article
(This article belongs to the Special Issue New Technologies in Autonomous Ship Navigation)
Show Figures

Figure 1

36 pages, 3632 KB  
Article
Integrated Modeling of Maritime Accident Hotspots and Vessel Traffic Networks in High-Density Waterways: A Case Study of the Strait of Malacca
by Sien Chen, Xuzhe Cai, Jiao Qiao and Jian-Bo Yang
J. Mar. Sci. Eng. 2025, 13(11), 2052; https://doi.org/10.3390/jmse13112052 - 27 Oct 2025
Cited by 1 | Viewed by 1136
Abstract
The Strait of Malacca faces persistent maritime safety challenges due to high vessel density and complex navigational conditions. Current risk assessment methods often lean towards treating static accident analysis and dynamic traffic modeling separately, although some nascent hybrid approaches exist. However, these hybrids [...] Read more.
The Strait of Malacca faces persistent maritime safety challenges due to high vessel density and complex navigational conditions. Current risk assessment methods often lean towards treating static accident analysis and dynamic traffic modeling separately, although some nascent hybrid approaches exist. However, these hybrids frequently lack the capacity for comprehensive, real-time factor integration. This study proposes an integrated framework coupling accident hotspot identification with vessel traffic network analysis. The framework combines trajectory clustering using improved DBSCAN with directional filters, Kernel Density Estimation (KDE) for accident hotspots, and Fuzzy Analytic Hierarchy Process (FAHP) for multi-factor risk evaluation, acknowledging its subjective and region-specific nature. The model was trained and tuned exclusively on the 2023 dataset (47 incidents), reserving the 2024 incidents (24 incidents) exclusively for independent, zero-information-leakage validation. Results demonstrate superior performance: Area Under the ROC Curve (AUC) improved by 0.14 (0.78 vs. 0.64; +22% relative to KDE-only), and Precision–Recall AUC (PR-AUC) improved by 0.16 (0.65 vs. 0.49); both p < 0.001. Crucially, all model tuning and parameter finalization (including DBSCAN/Fréchet, FAHP weights, and adaptive thresholds) relied solely on 2023 data, with the 2024 incidents reserved exclusively for independent temporal validation. The model captures 75.2% of reported incidents within 20% of the study area. Cross-validation confirms stability across all folds. The framework reveals accidents concentrate at network bottlenecks where traffic centrality exceeds 0.15 and accident density surpasses 0.6. Model-based associations suggest amplification through three pathways: environmental-mediated (34%), traffic convergence (34%), and historical persistence (23%). The integrated approach enables identification of both where and why maritime accidents cluster, providing practical applications for vessel traffic services, risk-aware navigation, and evidence-based safety regulation in congested waterways. Full article
(This article belongs to the Special Issue Recent Advances in Maritime Safety and Ship Collision Avoidance)
Show Figures

Figure 1

13 pages, 16914 KB  
Article
Traversal by Touch: Tactile-Based Robotic Traversal with Artificial Skin in Complex Environments
by Adam Mazurick and Alex Ferworn
Sensors 2025, 25(21), 6569; https://doi.org/10.3390/s25216569 - 25 Oct 2025
Viewed by 662
Abstract
We evaluate tactile-first robotic traversal on the Department of Homeland Security (DHS) figure-8 mobility test using a two-way repeated-measures design across various algorithms (three tactile policies—M1 reactive, M2 terrain-weighted, M3 memory-augmented; a monocular camera baseline, CB-V; a tactile histogram baseline, T-VFH; and an [...] Read more.
We evaluate tactile-first robotic traversal on the Department of Homeland Security (DHS) figure-8 mobility test using a two-way repeated-measures design across various algorithms (three tactile policies—M1 reactive, M2 terrain-weighted, M3 memory-augmented; a monocular camera baseline, CB-V; a tactile histogram baseline, T-VFH; and an optional tactile-informed replanner, T-D* Lite) and lighting conditions (Indoor, Outdoor, and Dark). The platform is the custom-built Eleven robot—a quadruped integrating a joint-mounted tactile tentacle with a tip force-sensitive resistor (FSR; Walfront 9snmyvxw25, China; 0–10 kg range, ≈0.1 N resolution @ 83 Hz) and a woven Galvorn carbon-nanotube (CNT) yarn for proprioceptive bend sensing. Control and sensing are fully wireless via an ESP32-S3, Arduino Nano 33 BLE, Raspberry Pi 400, and a mini VESC controller. Across 660 trials, the tactile stack maintained ∼21 ms (p50) policy latency and mid-80% success across all lighting conditions, including total darkness. The memory-augmented tactile policy (M3) exhibited consistent robustness relative to the camera baseline (CB-V), trailing by only ≈3–4% in Indoor and ≈13–16% in Outdoor and Dark conditions. Pre-specified, two one-sided tests (TOSTs) confirmed no speed equivalence in any M3↔CB-V comparison. Unlike vision-based approaches, tactile-first traversal is invariant to illumination and texture—an essential capability for navigation in darkness, smoke, or texture-poor, confined environments. Overall, these results show that a tactile-first, memory-augmented control stack achieves lighting-independent traversal on DHS benchmarks while maintaining competitive latency and success, trading modest speed for robustness and sensing independence. Full article
(This article belongs to the Special Issue Intelligent Robots: Control and Sensing)
Show Figures

Figure 1

28 pages, 1103 KB  
Article
An Efficient and Effective Model for Preserving Privacy Data in Location-Based Graphs
by Surapon Riyana and Nattapon Harnsamut
Symmetry 2025, 17(10), 1772; https://doi.org/10.3390/sym17101772 - 21 Oct 2025
Viewed by 608
Abstract
Location-based services (LBSs), which are used for navigation, tracking, and mapping across digital devices and social platforms, establish a user’s position and deliver tailored experiences. Collecting and sharing such trajectory datasets with analysts for business purposes raises critical privacy concerns, as both symmetry [...] Read more.
Location-based services (LBSs), which are used for navigation, tracking, and mapping across digital devices and social platforms, establish a user’s position and deliver tailored experiences. Collecting and sharing such trajectory datasets with analysts for business purposes raises critical privacy concerns, as both symmetry in recurring behavior mobility patterns and asymmetry in irregular movement mobility patterns in sensitive locations collectively expose highly identifiable information, resulting in re-identification risks, trajectory disclosure, and location inference. In response, several privacy preservation models have been proposed, including k-anonymity, l-diversity, t-closeness, LKC-privacy, differential privacy, and location-based approaches. However, these models still exhibit privacy issues, including sensitive location inference (e.g., hospitals, pawnshops, prisons, safe houses), disclosure from duplicate trajectories revealing sensitive places, and the re-identification of unique locations such as homes, condominiums, and offices. Efforts to address these issues often lead to utility loss and computational complexity. To overcome these limitations, we propose a new (ξ, ϵ)-privacy model that combines data generalization and suppression with sliding windows and R-Tree structures, where sliding windows partition large trajectory graphs into simplified subgraphs, R-Trees provide hierarchical indexing for spatial generalization, and suppression removes highly identifiable locations. The model addresses both symmetry and asymmetry in mobility patterns by balancing generalization and suppression to protect privacy while maintaining data utility. Symmetry-driven mechanisms that enhance resistance to inference attacks and support data confidentiality, integrity, and availability are core requirements of cryptography and information security. An experimental evaluation on the City80k and Metro100k datasets confirms that the (ξ, ϵ)-privacy model addresses privacy issues with reduced utility loss and efficient scalability, while validating robustness through relative error across query types in diverse analytical scenarios. The findings provide evidence of the model’s practicality for large-scale location data, confirming its relevance to secure computation, data protection, and information security applications. Full article
Show Figures

Figure 1

Back to TopTop