Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = reinforced concrete prefabricated building structures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
46 pages, 5055 KiB  
Review
Innovations and Applications in Lightweight Concrete: Review of Current Practices and Future Directions
by Diptikar Behera, Kuang-Yen Liu, Firmansyah Rachman and Aman Mola Worku
Buildings 2025, 15(12), 2113; https://doi.org/10.3390/buildings15122113 - 18 Jun 2025
Viewed by 1411
Abstract
Lightweight concrete (LWC) has emerged as a transformative material in sustainable and high-performance construction, driven by innovations in engineered lightweight aggregates, supplementary cementitious materials (SCMs), fiber reinforcements, and geopolymer binders. These advancements have enabled LWC to achieve compressive strengths surpassing 100 MPa while [...] Read more.
Lightweight concrete (LWC) has emerged as a transformative material in sustainable and high-performance construction, driven by innovations in engineered lightweight aggregates, supplementary cementitious materials (SCMs), fiber reinforcements, and geopolymer binders. These advancements have enabled LWC to achieve compressive strengths surpassing 100 MPa while reducing density by up to 30% compared to conventional concrete. Fiber incorporation enhances flexural strength and fracture toughness by 20–40%, concurrently mitigating brittleness and improving ductility. The synergistic interaction between SCMs and lightweight aggregates optimizes matrix densification and interfacial transition zones, curtailing shrinkage and bolstering durability against chemical and environmental aggressors. Integration of recycled and bio-based aggregates substantially diminishes the embodied carbon footprint by approximately 40%—aligning LWC with circular economy principles. Nanomaterials such as nano-silica and carbon nanotubes augment early-age strength development by 25% and refine microstructural integrity. Thermal performance is markedly enhanced through advanced lightweight fillers, including expanded polystyrene and aerogels, achieving up to a 50% reduction in thermal conductivity, thereby facilitating energy-efficient building envelopes. Although challenges persist in cost and workability, the convergence of hybrid fiber systems, optimized mix designs, and sophisticated multi-scale modeling is expanding the applicability of LWC across demanding structural, marine, and prefabricated contexts. In essence, LWC’s holistic development embodies a paradigm shift toward resilient, low-carbon infrastructure, cementing its role as a pivotal material in the evolution of next-generation sustainable construction. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

29 pages, 17587 KiB  
Article
Research on the Seismic Performance of Precast RCS Composite Joints Considering the Floor Slab Effect
by Yingchu Zhao, Jie Jia and Ziteng Li
Appl. Sci. 2025, 15(12), 6669; https://doi.org/10.3390/app15126669 - 13 Jun 2025
Viewed by 323
Abstract
Under the impetus of achieving global sustainable development goals, the civil construction industry is accelerating its transition towards high-quality, green, and low-carbon practices. Prefabricated, modular building technology has become a key tool due to its advantages in energy conservation, emission reduction, and shortened [...] Read more.
Under the impetus of achieving global sustainable development goals, the civil construction industry is accelerating its transition towards high-quality, green, and low-carbon practices. Prefabricated, modular building technology has become a key tool due to its advantages in energy conservation, emission reduction, and shortened construction periods. However, existing research on the seismic performance of prefabricated, modular, reinforced concrete column–beam (RCS) composite structures often focuses on the construction form of beam–column joints, paying less attention to the impact of floor slabs on the seismic performance of joints during earthquakes. This may make joints a weak link in structural systems’ seismic performance. To address this issue, this paper designs a prefabricated, modular RCS composite joint considering the effect of floor slabs and uses the finite element software ABAQUS 2023 to perform a quasi-static analysis of the joint. The reliability of the method is verified through comparisons with the experimental data. This study examines various aspects, including the joint design and the material’s constitutive relationship settings, focusing on the influence of parameters, such as the axial compression ratio and floor slab concrete strength, on the joint seismic performance. It concludes that the seismic performance of the prefabricated, modular RCS composite joints considering the effect of floor slabs is significantly improved. Considering the composite effect of the slabs, the yield loads in the positive and negative directions for node FJD-0 increased by 78.9% and 70.0%, respectively, compared to that of the slab-free node RCSJ3. The ultimate bearing capacities improved by 13.2% and 9.98%, respectively, and the energy dissipation capacity increased by 23%. Additionally, the variation in the axial load ratio has multiple effects on the seismic performance of the joints. Increasing the slab thickness significantly enhances the seismic performance of the joints under positive loading. The bolt pre-tensioning force has a crucial impact on improving the bearing capacity and overall stiffness of the joints. The reinforcement ratio of the slabs has a notable effect on the seismic performance of the joints under negative loading, while the concrete strength of the slabs has a relatively minor impact on the seismic performance of the joints. Therefore, the reasonable design of these parameters can optimize the seismic performance of joints, providing a theoretical basis and recommendations for engineering application and optimization. Full article
Show Figures

Figure 1

23 pages, 3542 KiB  
Article
Numerical Study on In-Plane Behaviour of Light Timber-Framed Wall Elements Under a Horizontal Load Impact
by Miroslav Premrov and Erika Kozem Šilih
Buildings 2025, 15(5), 778; https://doi.org/10.3390/buildings15050778 - 27 Feb 2025
Viewed by 695
Abstract
This study analyses the many different parameters of the in-plane flexibility problem regarding the lateral behaviour of light timber-framed (LTF) wall elements with different types of sheathing material (FPB, OSB, or even reinforced concrete), as well as the thickness of the timber frame [...] Read more.
This study analyses the many different parameters of the in-plane flexibility problem regarding the lateral behaviour of light timber-framed (LTF) wall elements with different types of sheathing material (FPB, OSB, or even reinforced concrete), as well as the thickness of the timber frame elements (internal or external wall elements). The analysis simultaneously considers bending, shear, and timber-to-framing connection flexibility, while assuming stiff-supported wall elements as prescribed by Eurocode 5. Particular emphasis is placed on the sliding deformation between sheathing boards and the timber frame, which can significantly reduce the overall stiffness of LTF wall elements. The influence of fastener spacing (s) on sliding deformation and overall stiffness is comprehensively analysed, as well as the different bending and shear behaviours of the various sheathing materials. The results show that reducing the fastener spacing can significantly improve the stiffness of OSB wall elements, while it is less critical for FPB elements used in mid-rise timber buildings. A comparison of external and internal wall elements revealed a minimal difference in racking stiffness (3.3%) for OSB and FPB specimens, highlighting their comparable performance. The inclusion of RC sheathing on one side of the LTF elements showed significant potential to improve torsional behaviour and in-plane racking stiffness, making it a viable solution for strengthening prefabricated multi-storey timber buildings. These findings provide valuable guidance for optimizing the design of LTF walls, ensuring improved structural performance and extended application possibilities in modern timber construction. Full article
(This article belongs to the Special Issue Advances and Applications in Timber Structures)
Show Figures

Figure 1

25 pages, 8621 KiB  
Article
Assessment of In-Plane Timber Floor Stiffness as Structural Diaphragms: A Numerical Approach to Lateral Load Response
by Jelena Vilotijević and Miroslav Premrov
Forests 2025, 16(1), 56; https://doi.org/10.3390/f16010056 - 31 Dec 2024
Viewed by 1038
Abstract
The behaviour of horizontal floor diaphragms plays a crucial role in ensuring the overall response of a building during earthquakes, as the stiffness of these diaphragms determines whether the structure will act as an integrated system. If the diaphragms do not exhibit sufficient [...] Read more.
The behaviour of horizontal floor diaphragms plays a crucial role in ensuring the overall response of a building during earthquakes, as the stiffness of these diaphragms determines whether the structure will act as an integrated system. If the diaphragms do not exhibit sufficient stiffness, differences in the redistribution of forces on wall elements arise, increasing the risk of significant deformations and even local damage, which is commonly observed in earthquake-affected areas. Additionally, flexible diaphragms heighten the risk of torsional effects. Due to these factors, more attention should be given to the response of buildings with flexible diaphragms. Eurocode standard specifies general requirements under which diaphragms should be considered rigid within their plane, depending on the maximum diaphragm moment. However, specific guidelines regarding the geometric and material properties of elements that significantly impact seismic behaviour are not included in the existing European standards. This served as a basis for conducting a numerical study analysing the in-plane behaviour of floor elements made from different materials. This study, limited to a simple box-shaped structure with masonry walls, symmetrical in both orthogonal directions, evaluated and thoroughly analysed the deformations for different types of diaphragms, including prefabricated wooden frame-panel floors, CLT panels, and reinforced concrete slabs. Special emphasis was placed on wooden structural elements due to the increased demand for timber construction, as the behaviour of these elements needs to be properly studied, especially in seismic regions. The study results were obtained through FEM analysis using the SCIA Engineer software, version 22. The modelling of elements was carried out considering the orthotropy of brick wall and wooden ceiling elements, as well as simulating the appropriate shear stiffness of the connecting means. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

19 pages, 4391 KiB  
Article
Research on Bearing Capacity of a Novel Prestressed Concrete Prefabricated Foundation with High Uplift Resistance Characteristic
by Wei Zhang, Zhengzhong Ding, Hewen Kang, Pengzhong Lin, Guolu Wen, Deng Yong, Chouxiao Lu, Jiawei Wang, Xiangrui Meng, Kunjie Rong and Li Tian
Buildings 2024, 14(12), 3743; https://doi.org/10.3390/buildings14123743 - 24 Nov 2024
Cited by 1 | Viewed by 1158
Abstract
Unlike traditional building structures, transmission tower foundations endure significant vertical and horizontal loads, with particularly high uplift resistance requirements in complex terrains. Moreover, challenges such as difficult material transport and low construction efficiency arise in these regions. This study, based on practical projects, [...] Read more.
Unlike traditional building structures, transmission tower foundations endure significant vertical and horizontal loads, with particularly high uplift resistance requirements in complex terrains. Moreover, challenges such as difficult material transport and low construction efficiency arise in these regions. This study, based on practical projects, proposes a novel high uplift resistance prestressed concrete prefabricated foundation (HURPCPF) tailored for transmission line systems in complex terrains. A refined finite element model is developed using ABAQUS to analyze its performance under uplift, compressive, and horizontal loads. Comparative studies with cast-in-situ concrete foundations evaluate the HURPCPF’s bearing capacity, while parametric analysis explores the impacts of foundation depth and dimensions. The results show that the proposed HURPCPF exhibits a linear load–displacement relationship, with uniform deformation and good integrity under compressive and uplift conditions. During overturning, the tilt angle is less than 1/500, meeting safety standards. The design of prestressed steel strands and internal reinforcement effectively distributes tensile stress, with a maximum stress of 290 MPa, well below the yield stress of 400 MPa. Compared to cast-in-situ concrete foundations, the displacement at the top of the HURPCPF’s column differs by less than 7%, indicating comparable bearing performance. As foundation depth and size increase, vertical displacement of the HURPCPF decreases, enhancing its uplift resistance. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

29 pages, 6644 KiB  
Article
Structural Design and Technology of Pocket Foundations for Long Precast Concrete Columns in Seismic Areas
by Horia Constantinescu and Traian-Nicu Toader
Buildings 2024, 14(11), 3466; https://doi.org/10.3390/buildings14113466 - 30 Oct 2024
Viewed by 3791
Abstract
The connection between a prefabricated reinforced concrete column and a pocket foundation is a case treated from a general perspective in the European Standard named EN 1992-1-1 (EC2), and when the structural engineer deals with the dimensioning or verification of the connection, he [...] Read more.
The connection between a prefabricated reinforced concrete column and a pocket foundation is a case treated from a general perspective in the European Standard named EN 1992-1-1 (EC2), and when the structural engineer deals with the dimensioning or verification of the connection, he must tackle several unknowns. The present work aims to fill in the missing information by presenting detailed calculation models based on the strut-and-tie method for four widely used pocket foundations: a pedestal pocket foundation with smooth, rough or keyed internal walls and a pad foundation with a pocket possessing keyed internal walls. In establishing the strut-and-tie models and writing the equation for the internal forces, we consider several standards (EC2, NBR 9062 and DIN 1045-1), good practices (from Austria, England, Germany and Romania) and numerous experimental and numerical investigations. Additionally, detailed design prescriptions applicable to seismic areas are given. This manuscript covers a wide range of design and technology aspects necessary for designing and building columns connected with pocket foundations, information for which is shown only in fragmented form or partially in other publications. Afterward, as a case study, a pocket foundation is designed in all four variations, with the structural design particularities, similitudes and differences being pointed out. Finally, to conclude, we mention the advantages and disadvantages of pocket foundations with respect to the type of internal wall surface used. Quantifiable data based on the case study undertaken are available. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 7769 KiB  
Article
Seismic Performance of Embedded Connections for Precast Hybrid Coupled Wall Systems: Experimental Study and Theoretical Analysis
by Hailu Lu, Mingzhou Su, Yadong Wang, Yubo Zhou and Shihao Shen
Buildings 2024, 14(8), 2503; https://doi.org/10.3390/buildings14082503 - 13 Aug 2024
Viewed by 1236
Abstract
The novel precast hybrid coupled wall structure system considers convenience requirements for the production and construction of prefabricated components. In this study, to determine the ultimate shear strength of embedded beam-to-wall connections, four full-scale specimens were meticulously designed using the “weak connections and [...] Read more.
The novel precast hybrid coupled wall structure system considers convenience requirements for the production and construction of prefabricated components. In this study, to determine the ultimate shear strength of embedded beam-to-wall connections, four full-scale specimens were meticulously designed using the “weak connections and strong components” methodology. Under low-cycle loading on a coupling steel beam, the experimental results indicated that the shear strength of the specimen was approximately twice that predicted by the Mattock–Gaafar mechanical model employed in Seismic Provisions for Structural Steel Buildings (ANSI/AISC 341-16). Therefore, a mechanical model was established to analyze the force transfer between the steel beam and concrete wall. Finally, design formulas for the shear strength were proposed, in addition to corresponding suggestions for construction reinforcement in the embedded area and adjacent zones. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

34 pages, 23021 KiB  
Article
Experimental Study on Seismic Performance of Precast High-Titanium Heavy Slag Concrete Sandwich Panel Wall
by Jinkun Sun, Rita Yi Man Li, Dagang Su, Housong Gong and Xiantao Zhang
Buildings 2024, 14(8), 2450; https://doi.org/10.3390/buildings14082450 - 8 Aug 2024
Viewed by 1556
Abstract
Precast concrete (PC) shear wall members are essential components of the precast concrete shear wall structural system. Therefore, it is crucial to research their materials, and seismic performance is an important and vital indicator to promote the development of prefabricated buildings. This study [...] Read more.
Precast concrete (PC) shear wall members are essential components of the precast concrete shear wall structural system. Therefore, it is crucial to research their materials, and seismic performance is an important and vital indicator to promote the development of prefabricated buildings. This study introduced a new type of precast concrete sandwich shear wall, the precast high-titanium heavy slag concrete sandwich panel wall (PHCSPW), by replacing ordinary concrete coarse and fine aggregates with high-titanium heavy slag and adding insulation boards. This study constructed a cast-in-place high-titanium heavy slag concrete wall (CHCW) for comparative pseudo-static tests to validate its seismic performance. Finite element simulation analysis was conducted to compare and validate the reliability of the test. Considering the limitations of the test conditions, it also researched the seismic performance of PHCSPW by simulating different parameters such as reinforcement ratio, concrete strength, and axial compression ratio. It concludes the following: (1) The failure mode, stress-strain distribution, and ultimate bearing capacity values of PHCSPW and CHCW were consistent with theoretical and experimental analysis results. (2) PHCSPW exhibited high stiffness before cracking but experienced a rapid stiffness degradation rate after cracking. (3) The development trend of the PHCSPW and CHCW hysteresis curve is the same as the skeleton curve. There is little difference between the bearing capacity and deformation capacity after cracking. Comparing the hysteresis loops of CHCW and PHCSPW, it is found that PHCSPW has a larger hysteresis loop area, which indicates that PHCSPW has better energy dissipation capacity. The value of the yield load of the specimen compared with the peak load is between 0.636 and 0.888; that is, the difference inthe early-stage stiffness of the specimen is small. The yield load of PHCSPW is slightly larger than that of CHCW. The maximum carrying capacity of CHCW is about 68.31% of that of PHCSPW. (4) The simulation of different parameters revealed that the energy dissipation capacity of the members increased within a specific range with an increasing reinforcement ratio. PHCSPW demonstrated superior energy dissipation capacity. The influence of concrete strength on the energy dissipation capacity of the members was relatively small. The energy dissipation capacity of the members decreased with increasing axial compression ratio. Full article
Show Figures

Figure 1

16 pages, 10412 KiB  
Article
Bond Behavior and Failure Mechanisms of the Interface between Engineered Cementitious Composites and Shaped Steel
by Jiaojiao Pan, Zhenbin Huang, Tingting Lu and Mingke Deng
Buildings 2024, 14(7), 2233; https://doi.org/10.3390/buildings14072233 - 19 Jul 2024
Cited by 2 | Viewed by 1070
Abstract
Due to their excellent ductility and crack-control ability, engineered cementitious composites (ECCs) combined with shaped steel can produce steel-reinforced engineering cementitious composite (SRECC) structures which exhibit significant advantages in prefabricated buildings. The interface bond behavior is the base for the cooperative working performance [...] Read more.
Due to their excellent ductility and crack-control ability, engineered cementitious composites (ECCs) combined with shaped steel can produce steel-reinforced engineering cementitious composite (SRECC) structures which exhibit significant advantages in prefabricated buildings. The interface bond behavior is the base for the cooperative working performance of the shaped steel and ECC. This study included push-out tests of one ordinary concrete control specimen and ten ECC specimens. The various parameters were the ECC compressive strength, fiber volume content, cover thickness, and the embedded length of shaped steel. The bond stress–slip curves at the loading and free end were obtained, and the effects of various parameters on the characteristic points of curves were analyzed. The results indicated that the ordinary concrete specimen failed in brittle splitting, with the cracks completely penetrating the surface of the specimen. Due to the fiber-bridging effect in ECCs effectively preventing the development and extension of cracks, the shaped steel at the free end was obviously pushed out, and the surrounding matrix maintained good integrity after testing finished. For ECC specimens, bond or splitting-bond failure occurred, exhibiting outstanding ductility. Compared with the ordinary concrete specimen, the standard ultimate and residual bond strength of ECC specimens improved by 37.9% and 27.4%, respectively. Besides the increase in ECC compressive strength, the fiber volume content and cover thickness had a significant positive influence on the ultimate and residual bond strength, whereas the effect of the embedded length was the opposite. Finally, the calculation equations of characteristic bond strength were proposed, and the calculated values matched well with the experimental values. Full article
Show Figures

Figure 1

12 pages, 2185 KiB  
Article
Selection of 110 kV Prefabricated Steel Substations Considering Seismic Vulnerability in China
by Weixian Che, Junbo Liang, Jun Deng and Jiang Yi
Buildings 2024, 14(7), 2197; https://doi.org/10.3390/buildings14072197 - 16 Jul 2024
Viewed by 1138
Abstract
Prefabricated modular substations are expected to become the mainstream construction type for substations in China. However, there is a lack of scientific basis for structural selection and seismic performance evaluation. Taking a 110 kV substation as an example, this study compares the construction [...] Read more.
Prefabricated modular substations are expected to become the mainstream construction type for substations in China. However, there is a lack of scientific basis for structural selection and seismic performance evaluation. Taking a 110 kV substation as an example, this study compares the construction cost of cast-in situ reinforced concrete (RC) substations and prefabricated steel (PS) ones. Two types of PS structures are considered: one with H-section steel columns and the other with box-section steel columns. A seismic vulnerability analysis is performed to compare the probability distribution of various damage states of substation building structures under different seismic damage levels. Results indicate that the construction cost of PS structures is approximately 27.9% higher than that of cast-in situ concrete. When using H-section steel columns, there is a significant difference in the flexural stiffness in two horizontal directions, resulting in reduced seismic performance in the weak-axis direction. The construction cost of using box-section steel columns is slightly higher than that of the H-section steel case, but its seismic performance is significantly improved. Although the probability of slight and moderate damage states for the box-section steel column scheme is generally higher than that of the cast-in situ RC scheme, the probability of collapse is reduced. Thus, box-section steel columns are recommended for prefabricated modular substation building structures. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

27 pages, 11313 KiB  
Article
Progressive Collapse Behavior of a Precast Reinforced Concrete Frame System with Layered Beams
by Vitaly I. Kolchunov, Natalia V. Fedorova, Sergei Y. Savin and Pavel A. Kaydas
Buildings 2024, 14(6), 1776; https://doi.org/10.3390/buildings14061776 - 12 Jun 2024
Cited by 5 | Viewed by 2322
Abstract
A possible way to improve the structural safety and robustness of precast building structures is to develop effective precast frame systems with layered beams, which combine prefabricated parts with cast-in situ ordinary concrete, high-performance concrete, fiber concrete, or FRP. The paper provides a [...] Read more.
A possible way to improve the structural safety and robustness of precast building structures is to develop effective precast frame systems with layered beams, which combine prefabricated parts with cast-in situ ordinary concrete, high-performance concrete, fiber concrete, or FRP. The paper provides a new type of precast reinforced concrete frame system with layered beams for rapidly erected multi-story buildings resistant to accidental actions. Using a combination of the variational method and two-level design schemes, a simplified analytical model has been developed for structural analysis of the precast reinforced concrete frame system, both for serviceable and ultimate limit states as well as for accidental actions. The proposed model allows for determining shear deformations and the formation and opening of longitudinal cracks in the intermediate contact zone between precast and monolithic parts of reinforced concrete structural elements of the frame, as well as the formation and opening of normal cracks because of the action of axial tensile force or bending moment in these elements. The design model was validated by comparing the calculated and experimental data obtained from testing scaled models of the precast reinforced concrete frame system with layered beams. The paper investigates and thoroughly analyzes the factors affecting the stiffness and bearing capacity of the intermediate contact zone, discusses the criteria for the formation of shear cracks along the contact zone of precast and monolithic concrete, and examines the change in the stiffness and dissipative properties of layered elements at different stages of their static–dynamic loading. The robustness of the experimental models of the structural system was not ensured under the specified load, section dimensions, and reinforcement scheme. Following an accidental action, longitudinal cracks were observed in the contact joint between the monolithic and prefabricated parts in the layered beams. This occurred almost simultaneously with the opening of normal cracks in adjacent sections. A comprehensive analysis of the results indicated a satisfactory degree of agreement between the proposed semi-analytical model and the test data. Full article
(This article belongs to the Special Issue Safety and Optimization of Building Structures—2nd Edition)
Show Figures

Figure 1

22 pages, 2321 KiB  
Article
Primary Energy and Carbon Impacts of Structural Frames with Equivalent Design Criteria: Influence of Different Materials and Levels of Prefabrication
by Chiara Piccardo, Camille Steinik, Simone Caffè, Alessio Argentoni and Chiara Calderini
Sustainability 2024, 16(10), 4209; https://doi.org/10.3390/su16104209 - 17 May 2024
Cited by 2 | Viewed by 1642
Abstract
This study aims to analyze the life-cycle primary energy and climate impacts of structural frames, paying particular attention to the design and prefabrication of different structural materials. The study considers an existing single-story office building with a composite concrete–steel structure and compares it [...] Read more.
This study aims to analyze the life-cycle primary energy and climate impacts of structural frames, paying particular attention to the design and prefabrication of different structural materials. The study considers an existing single-story office building with a composite concrete–steel structure and compares it with two functionally equivalent structures, i.e., a conventional reinforced concrete structure and a conventional steel structure. The existing building is located in San Felice sul Panaro, Italy. This study integrates dynamic structural analysis and life-cycle assessment (LCA). The study finds that the use of different materials can reduce the life-cycle primary energy use and CO2-eq emissions by up to 12%. Furthermore, the benefits derived from the recovery and recycling of materials can reduce the primary energy use and CO2-eq emissions by up to 47% and 36%, respectively. The prefabrication of structural elements can also reduce the primary energy use and CO2-eq emissions in the construction stage. A sensitivity analysis considers changes in the electricity supply system and shows that the primary energy and CO2-eq emissions due to prefabrication decrease when assuming marginal electricity based on renewable energies. This analysis supports the development of sustainable structural design to meet the standards concerning the whole-life-cycle carbon emissions of buildings. Full article
Show Figures

Figure 1

18 pages, 7074 KiB  
Article
Numerical Investigation on the Seismic Behavior of Novel Precast Beam–Column Joints with Mechanical Connections
by Mei-Ling Zhuang, Chuanzhi Sun, Zhen Yang, Ran An, Liutao Bai, Yixiang Han and Guangdong Bao
Buildings 2024, 14(5), 1199; https://doi.org/10.3390/buildings14051199 - 23 Apr 2024
Cited by 3 | Viewed by 1686
Abstract
Traditional cast-in-place beam–column joints have the defects of high complexity and high construction difficulty, which seriously affect the efficiency and safety of the building construction line, and precast beam–column joints (PBCJs) can greatly improve the construction efficiency and quality. At present, the investigations [...] Read more.
Traditional cast-in-place beam–column joints have the defects of high complexity and high construction difficulty, which seriously affect the efficiency and safety of the building construction line, and precast beam–column joints (PBCJs) can greatly improve the construction efficiency and quality. At present, the investigations on the seismic behavior of precast reinforced concrete structures are still mainly focused on experiments, while the numerical simulations for their own characteristics are still relatively lacking. In the present study, the seismic behavior of novel precast beam–column joints with mechanical connections (PBCJs-MCs) is investigated numerically. Based on the available experimental data, fiber models for four PBCJs-MCs are developed. Then, the simulated and experimental seismic behaviors of the prefabricated BCJs are compared and discussed. Finally, the factors influencing the seismic behavior of the PBCJs-MCs are further investigated numerically. The numerical results indicate that the fiber models can consider the effect of the bond–slip relationship of concrete and reinforcement under reciprocating loads. The relative errors of the simulated seismic behavior indexes are about 15%. The bearing capacity and displacement ductility coefficients of the PBCJs-MCs decrease rapidly as the shear-to-span ratio (λ) increases. It is recommended that the optimum λ for PBCJs-MCs is 2.0–2.5. The effect of the axial load ratio on the seismic behavior of PBCJs-MCs can be negligible in the case of the PBCJs-MCs with a moderate value of λ. Full article
Show Figures

Figure 1

21 pages, 15827 KiB  
Article
Static Bending Mechanical Properties of Prestressed Concrete Composite Slab with Removable Rectangular Steel-Tube Lattice Girders
by Guangsheng Bian, Haoran Jin, Jiaqi Li, Shuxin Shi and Xuanting Lu
Buildings 2024, 14(5), 1187; https://doi.org/10.3390/buildings14051187 - 23 Apr 2024
Viewed by 1608
Abstract
In recent years, with the development of building technology, the Chinese construction industry has begun to gradually promote the prefabricated buildings to save on construction costs. Among them, composite slabs, as essential components of prefabricated buildings, have been widely used by designers mainly [...] Read more.
In recent years, with the development of building technology, the Chinese construction industry has begun to gradually promote the prefabricated buildings to save on construction costs. Among them, composite slabs, as essential components of prefabricated buildings, have been widely used by designers mainly in favor of their low cost. However, is it possible to further reduce the cost without affecting the quality? Researchers think so if the operation cycle of support from the bottom of composite slabs can accelerate and the mechanical properties of their bottom plate can be optimized. To prove this hypothesis, researchers proposed a new type of prestressed concrete composite slab with removable rectangular steel-tube lattice girders (referred to as CDB composite slabs), whose bottom plate consists of a temporary structure composed of a prestressed concrete prefabricated plate and removable rectangular steel-tube lattice girders. Through static bending performance tests on three prefabricated bottom plates and one composite slab, researchers measured corresponding load-displacement curves, load-strain curves, crack development, and distribution, etc. The test results show that the top chord rectangular steel tubes connected to the bottom plate concrete through web reinforcement bars significantly improve the rigidity, crack resistance, and load-bearing capacity of the bottom plate and possess better ductility and out-of-plane stability. The number of supports at the bottom of the bottom plate is effectively reduced, with the maximum unsupported span reaching 4.8 m. Beyond 4.8 m, only one additional support is needed, and the maximum support span can be up to 9.0 m, which provides space for cost reduction. The cooperative load-bearing performance of the prefabricated bottom plate and the post-cast composite layer concrete is good. The top chord rectangular steel tubes are easy to dismantle and can be reused, which reduces the steel consumption by about 24% compared to that used for the same size of ordinary steel-tube lattice-girder concrete composite slabs. It can greatly decrease the cost. In conclusion, the results have shown that the new method researchers proposed here is practically applicable and also provides great space to save on financial costs. Full article
(This article belongs to the Topic Resilient Civil Infrastructure)
Show Figures

Figure 1

27 pages, 3647 KiB  
Article
Selected Aspects of Sustainable Construction—Contemporary Opportunities for the Use of Timber in High and High-Rise Buildings
by Hanna Michalak and Karolina Michalak
Energies 2024, 17(8), 1961; https://doi.org/10.3390/en17081961 - 20 Apr 2024
Cited by 4 | Viewed by 2499
Abstract
Due to the favourable pro-environmental properties of timber, including the origin of the raw material from renewable sources, ease of reuse, negative carbon footprint, low specific weight, possibility of prefabrication, etc., there is increasing interest in the use of timber in construction. This [...] Read more.
Due to the favourable pro-environmental properties of timber, including the origin of the raw material from renewable sources, ease of reuse, negative carbon footprint, low specific weight, possibility of prefabrication, etc., there is increasing interest in the use of timber in construction. This paper takes a closer look at the new uses of timber as a load-bearing structure for high and high-rise buildings. Cases described in the literature concerning this type of building with residential and public functions erected worldwide were analysed. The first buildings of this type were put into use in 2009. The aim of this paper is to show new possibilities and to extend the use of timber as a load-bearing structure of high and high-rise buildings previously made of reinforced concrete or steel. The scope of the analysis includes two postulates of sustainable construction, directly related to the above-mentioned goals: limiting interference in the natural areas of cities through efficient use of building plots for high or high-rise buildings and the use of renewable materials—timber—for the load-bearing structure of buildings. A research method based on a case study was used. Conclusions were made on the pro-environmental spatial–functional and material–structural design of these high and high-rise buildings. Full article
(This article belongs to the Special Issue Research on Low-Carbon Energy Buildings)
Show Figures

Figure 1

Back to TopTop