Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (87)

Search Parameters:
Keywords = regenerated cellulose fiber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2401 KiB  
Article
Structural Analysis of Regenerated Cellulose Textile Covered with Cellulose Nano Fibers
by Ayaka Yamaji, Yui Okuda, Chikaho Kobayashi, Rikako Kurahashi, Kyoko Kazuma, Kazuki Chiba, Mitsuhiro Hirata, Yuka Ikemoto, Keiichi Osaka, Jiacheng Gao, Harumi Sato and Go Matsuba
Polymers 2025, 17(15), 2015; https://doi.org/10.3390/polym17152015 - 23 Jul 2025
Viewed by 584
Abstract
Cellulose nanofiber (CNF) treatments can enhance the structure and performance of regenerated cellulose fibers. This study investigates the effects of CNF treatment on the mechanical properties, water absorption behavior, and humidity dependence of regenerated cellulose fibers. Tensile testing demonstrated that CNF-treated fibers exhibit [...] Read more.
Cellulose nanofiber (CNF) treatments can enhance the structure and performance of regenerated cellulose fibers. This study investigates the effects of CNF treatment on the mechanical properties, water absorption behavior, and humidity dependence of regenerated cellulose fibers. Tensile testing demonstrated that CNF-treated fibers exhibit improved elasticity and reduced swelling in aqueous environments. Scanning electron microscopy revealed the adsorption of CNF components onto the fiber surfaces. Microbeam X-ray diffraction indicated structural differences between untreated and CNF-treated fibers, with the latter containing cellulose I crystals. Small-angle X-ray scattering revealed alterations in the internal fibrillar structure due to CNF treatment. FT-IR spectroscopy highlighted humidity-dependent variations in molecular vibrations, with peak intensities increasing under higher humidity conditions. Additionally, CNF treatment inhibited water absorption in high-humidity conditions, contributing to reduced expansion rates and increased elastic modulus during water absorption. Overall, CNF treatment enhanced both the mechanical strength and water resistance of regenerated cellulose fibers, making them suitable for advanced textile applications. This study provides valuable insights into the role of CNF-treated fibers in improving the durability and functional performance of regenerated cellulose-based textile. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Graphical abstract

20 pages, 1723 KiB  
Review
Cellulose-Based Nanofibers in Wound Dressing
by Abdul Razak Masoud, Zeinab Jabbari Velisdeh, Mohammad Jabed Perves Bappy, Gaurav Pandey, Elham Saberian and David K. Mills
Biomimetics 2025, 10(6), 344; https://doi.org/10.3390/biomimetics10060344 - 23 May 2025
Viewed by 1102
Abstract
Wound dressings have a significant role in managing trauma-related injuries, chronic lacerations, as well as post-operative complications, by preventing infections and promoting tissue regeneration. Conventional methods using sutures and gauze often pose constraints in healing effectiveness and cost. Emerging materials, particularly cellulose-based nanofibers, [...] Read more.
Wound dressings have a significant role in managing trauma-related injuries, chronic lacerations, as well as post-operative complications, by preventing infections and promoting tissue regeneration. Conventional methods using sutures and gauze often pose constraints in healing effectiveness and cost. Emerging materials, particularly cellulose-based nanofibers, offer a favorable choice due to their biodegradability, biocompatibility, and structural similarity to the extracellular matrix. Cellulose, being an abundant, naturally available biopolymer, forms the basis for modern materials for wound dressing. It is a very resourceful material due to its capability to be processed into films, fibers, and membranes with tailored properties. Surface modification of cellulose membranes with nanoparticles or bioactive compounds assists in enhancing the antimicrobial properties and supports sustained drug release, essential in chronic wound infections. Electrospinning and other modern fabrication techniques allow for controlling the fiber morphology and drug-delivery characteristics. This review highlights the properties, fabrication techniques, surface functionalization, and biomedical applications of cellulose-based materials in wound care. With increasing demand for effective and cost-effective wound treatments, cellulose nanofibers stand out as a sustainable, multifunctional platform for cutting-edge wound dressings, offering improved healing, reduced scarring, and potential for amalgamation with several drug delivery and tissue engineering approaches. Full article
(This article belongs to the Special Issue Advances in Biomaterials, Biocomposites and Biopolymers 2025)
Show Figures

Graphical abstract

35 pages, 30622 KiB  
Review
Nanotopographical Features of Polymeric Nanocomposite Scaffolds for Tissue Engineering and Regenerative Medicine: A Review
by Kannan Badri Narayanan
Biomimetics 2025, 10(5), 317; https://doi.org/10.3390/biomimetics10050317 - 15 May 2025
Viewed by 1112
Abstract
Nanotopography refers to the intricate surface characteristics of materials at the sub-micron (<1000 nm) and nanometer (<100 nm) scales. These topographical surface features significantly influence the physical, chemical, and biological properties of biomaterials, affecting their interactions with cells and surrounding tissues. The development [...] Read more.
Nanotopography refers to the intricate surface characteristics of materials at the sub-micron (<1000 nm) and nanometer (<100 nm) scales. These topographical surface features significantly influence the physical, chemical, and biological properties of biomaterials, affecting their interactions with cells and surrounding tissues. The development of nanostructured surfaces of polymeric nanocomposites has garnered increasing attention in the fields of tissue engineering and regenerative medicine due to their ability to modulate cellular responses and enhance tissue regeneration. Various top-down and bottom-up techniques, including nanolithography, etching, deposition, laser ablation, template-assisted synthesis, and nanografting techniques, are employed to create structured surfaces on biomaterials. Additionally, nanotopographies can be fabricated using polymeric nanocomposites, with or without the integration of organic and inorganic nanomaterials, through advanced methods such as using electrospinning, layer-by-layer (LbL) assembly, sol–gel processing, in situ polymerization, 3D printing, template-assisted methods, and spin coating. The surface topography of polymeric nanocomposite scaffolds can be tailored through the incorporation of organic nanomaterials (e.g., chitosan, dextran, alginate, collagen, polydopamine, cellulose, polypyrrole) and inorganic nanomaterials (e.g., silver, gold, titania, silica, zirconia, iron oxide). The choice of fabrication technique depends on the desired surface features, material properties, and specific biomedical applications. Nanotopographical modifications on biomaterials’ surface play a crucial role in regulating cell behavior, including adhesion, proliferation, differentiation, and migration, which are critical for tissue engineering and repair. For effective tissue regeneration, it is imperative that scaffolds closely mimic the native extracellular matrix (ECM), providing a mechanical framework and topographical cues that replicate matrix elasticity and nanoscale surface features. This ECM biomimicry is vital for responding to biochemical signaling cues, orchestrating cellular functions, metabolic processes, and subsequent tissue organization. The integration of nanotopography within scaffold matrices has emerged as a pivotal regulator in the development of next-generation biomaterials designed to regulate cellular responses for enhanced tissue repair and organization. Additionally, these scaffolds with specific surface topographies, such as grooves (linear channels that guide cell alignment), pillars (protrusions), holes/pits/dots (depressions), fibrous structures (mimicking ECM fibers), and tubular arrays (array of tubular structures), are crucial for regulating cell behavior and promoting tissue repair. This review presents recent advances in the fabrication methodologies used to engineer nanotopographical microenvironments in polymeric nanocomposite tissue scaffolds through the incorporation of nanomaterials and biomolecular functionalization. Furthermore, it discusses how these modifications influence cellular interactions and tissue regeneration. Finally, the review highlights the challenges and future perspectives in nanomaterial-mediated fabrication of nanotopographical polymeric scaffolds for tissue engineering and regenerative medicine. Full article
(This article belongs to the Special Issue Advances in Biomaterials, Biocomposites and Biopolymers 2025)
Show Figures

Figure 1

22 pages, 9323 KiB  
Article
Enhanced Photothermal Based-Heat Retention in Regenerated Cellulose Fibers via Ceramic Particles and Polyelectrolyte Binders-Based Surface Functionalization
by Özkan Yapar, Ajra Hadela, Alenka Ojstršek and Aleksandra Lobnik
Polymers 2025, 17(7), 961; https://doi.org/10.3390/polym17070961 - 1 Apr 2025
Cited by 1 | Viewed by 704
Abstract
There has been growing interest and increasing attention in the field of functional clothing textiles, particularly in product and process development, as well as innovations in heat-generating, retaining, and releasing fibers to maintain a healthy body temperature without relying on unsustainable energy sources. [...] Read more.
There has been growing interest and increasing attention in the field of functional clothing textiles, particularly in product and process development, as well as innovations in heat-generating, retaining, and releasing fibers to maintain a healthy body temperature without relying on unsustainable energy sources. This study, for the first time, reports the various physio-mechanical properties of surface-functionalized regenerated cellulose fibers (RCFs) coated with ceramic particles. The coating imparts photothermal conversion-based heat generation and retention properties with the aid of polyelectrolyte binders. In this design, ZrC enables the conversion of light energy into thermal energy, providing heat for the human body. A feasible coating process was employed, utilizing industrially feasible exhaustion methods to deposit the ZrC particles onto the RCF surface in conjunction with two distinctive polymeric binders, specifically polyethyleneimine (PEI) and polydiallyldimethylammonium chloride (polyDADMAC). The morphological characteristics and tensile properties of the coated RCFs were analyzed via scanning electron microscopy (SEM) and single-fiber tensile testing. Heat retention and release behaviors of a bundle of fiber samples were assessed using infrared (IR) imaging and an IR emission lamp setup. The SEM results confirmed the successful coating of the ZrC particles on the surface of the RCF samples, influencing negligible on their physical–mechanical properties. The heat retention of the coated RCFs with ZrC and both binders was higher than that of reference regenerated cellulose fibers (RCFs), demonstrating their effective heat generation, retention, and heat release properties. Based on the highlighted prominent results for the coated RCFs, these findings highlight the suitability of the developed functional clothing textiles for targeted applications in non-extreme thermal conditions, ensuring thermo-physiological comfort by maintaining body temperature within a tolerable thermal range (36.5–37.5 °C), in contrast to studies reporting significantly higher temperatures (50–78 °C) for extreme thermal conditions. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

19 pages, 6639 KiB  
Article
Efficient Recovery of Waste Cotton Fabrics Using Ionic Liquid Methods
by Xiaozheng Zhang, Wenhao Zhou, Wenhao Xing, Yingjun Xu and Gangqiang Zhang
Polymers 2025, 17(7), 900; https://doi.org/10.3390/polym17070900 - 27 Mar 2025
Viewed by 832
Abstract
Cotton fiber, renewable natural cellulose, make up the largest portion of textile waste. The ionic liquid method has been successfully employed to regenerate waste colored cotton fabric in this study, offering a comprehensive approach to the recycling of waste cotton. The chemical recovery [...] Read more.
Cotton fiber, renewable natural cellulose, make up the largest portion of textile waste. The ionic liquid method has been successfully employed to regenerate waste colored cotton fabric in this study, offering a comprehensive approach to the recycling of waste cotton. The chemical recovery process for reclaimed cellulose materials is crucial for high-value recycling of waste cotton fabrics. In this study, waste and new, colored and white cotton fabrics were used as experimental subjects. The breaking strength, degree of polymerization, iodine adsorption equilibrium value, and crystallinity between old and new fabrics were investigated. Ionic liquid 1-allyl-3-methylimidazole chloride ([AMIM]Cl) and zinc chloride (ZnCl2) were selected to dissolve decolorized waste cotton fabric. Optimal conditions for dissolving the fabric using [AMIM]Cl were investigated. The best dissolution conditions identified were DMSO at a ratio of 1:1 with a dissolution temperature of 110 °C over a duration of 120 min. Additionally, the optimal film formation parameters included a solution concentration of 6%, solidification time of 3 min, and solidification bath temperature of 0 °C. Regenerated cellulose films from both the ionic liquid system (A-film) and zinc chloride system (Z-film) were prepared. The characteristics of the film produced using the most advanced technology were systematically investigated and evaluated. The results of this study provide a crucial theoretical foundation for the recovery and regeneration of waste cotton fabrics. Full article
(This article belongs to the Special Issue Preparation and Application of Functionalized Polymer Fabrics)
Show Figures

Figure 1

46 pages, 7489 KiB  
Review
Environmental Impact of Textile Materials: Challenges in Fiber–Dye Chemistry and Implication of Microbial Biodegradation
by Arvind Negi
Polymers 2025, 17(7), 871; https://doi.org/10.3390/polym17070871 - 24 Mar 2025
Cited by 3 | Viewed by 3348
Abstract
Synthetic and natural fibers are widely used in the textile industry. Natural fibers include cellulose-based materials like cotton, and regenerated fibers like viscose as well as protein-based fibers such as silk and wool. Synthetic fibers, on the other hand, include PET and polyamides [...] Read more.
Synthetic and natural fibers are widely used in the textile industry. Natural fibers include cellulose-based materials like cotton, and regenerated fibers like viscose as well as protein-based fibers such as silk and wool. Synthetic fibers, on the other hand, include PET and polyamides (like nylon). Due to significant differences in their chemistry, distinct dyeing processes are required, each generating specific waste. For example, cellulose fibers exhibit chemical inertness toward dyes, necessitating chemical auxiliaries that contribute to wastewater contamination, whereas synthetic fibers are a major source of non-biodegradable microplastic emissions. Addressing the environmental impact of fiber processing requires a deep molecular-level understanding to enable informed decision-making. This manuscript emphasizes potential solutions, particularly through the biodegradation of textile materials and related chemical waste, aligning with the United Nations Sustainable Development Goal 6, which promotes clean water and sanitation. For instance, cost-effective methods using enzymes or microbes can aid in processing the fibers and their associated dyeing solutions while also addressing textile wastewater, which contains high concentrations of unreacted dyes, salts, and other highly water-soluble pollutants. This paper covers different aspects of fiber chemistry, dyeing, degradation mechanisms, and the chemical waste produced by the textile industry, while highlighting microbial-based strategies for waste mitigation. The integration of microbes not only offers a solution for managing large volumes of textile waste but also paves the way for sustainable technologies. Full article
(This article belongs to the Special Issue Reactive and Functional Biopolymers)
Show Figures

Figure 1

18 pages, 5002 KiB  
Article
Research on the Preparation of Supercapacitor Separators with High Wettability and Excellent Temperature Adaptability Through In Situ Deposition of Nano-Barium Sulfate on Regenerated Cellulose
by Hui Li, Jiehua Li, Chuanshan Zhao and Fenfen Zhao
Polymers 2025, 17(7), 842; https://doi.org/10.3390/polym17070842 - 21 Mar 2025
Viewed by 528
Abstract
In this paper, environmentally friendly separator materials with high mechanical and electrochemical properties were prepared from regenerated cellulose. This was achieved by studying the drawbacks of existing supercapacitor separators and then preparing protofibrillated fibers and nanofibrillated cellulose. The process involved the in situ [...] Read more.
In this paper, environmentally friendly separator materials with high mechanical and electrochemical properties were prepared from regenerated cellulose. This was achieved by studying the drawbacks of existing supercapacitor separators and then preparing protofibrillated fibers and nanofibrillated cellulose. The process involved the in situ deposition of nano-BaSO4 using paper milling and papermaking techniques. The separators were tested for a tensile strength of 47.25 MPa, puncture strength of 156 gf, and tear strength of 8.9 KPa-m2/g; uniform pore size (0.6–2 μm) and abundant porosity (81.3%); good wettability (9.2°) and water absorption; and excellent temperature resistance (no deformation at 180 °C), as well as good temperature adaptability from −40 °C to 100 °C. This simple process, suitable for mass production, enables the development of a new separator material with great application potential. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

21 pages, 28470 KiB  
Article
Preparation and Characterization of Submicrometer and Nanometer Cellulose Fiber with Biogenic SiO2
by Yakoub Touati, Dora Kroisová, Rawaa Yahya and Štěpánka Dvořáčková
Polymers 2025, 17(6), 761; https://doi.org/10.3390/polym17060761 - 13 Mar 2025
Viewed by 796
Abstract
This study aims to explore the feasibility of producing submicrometer and nanometer cellulose fibers derived from rice husk treated with a novel method which selectively eliminate hemicellulose and lignin, while maintaining the integrity of the cellulosic and silica constituents. Three distinct processing methods [...] Read more.
This study aims to explore the feasibility of producing submicrometer and nanometer cellulose fibers derived from rice husk treated with a novel method which selectively eliminate hemicellulose and lignin, while maintaining the integrity of the cellulosic and silica constituents. Three distinct processing methods are tested to extract the nanocellulose, namely hand milling, ball milling, and wet milling using a high-shear wet media mill from Masuko Sangyo Co., Ltd., Kawaguchi-city, Japan. A range of analytical methods, including Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDX), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA), are utilized to characterize the morphology, elemental composition, thermal stability, and chemical properties of the samples. The study revealed that among the tested methods, only wet milling successfully produced cellulose nanofibrils and silica nanoparticles, forming a biogenic organic–inorganic nanohybrid system. The nanofibers had lengths in the range of 120 nm and below, while the nanoparticles were in the tens of nanometers. The silica nanoparticles were found to adhere to the cellulose nanofibrils, forming a biogenic organic–inorganic nanohybrid system, with potential applications across diverse fields, including biomedical (drug delivery, biosensing, bone regeneration, and wound healing), cosmetic (skin and dental care), technical (insulating aerogels, flame retardants, and UV-absorbing pigments), and food applications (dietary supplements, thickeners). Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

15 pages, 2373 KiB  
Article
Characterization of Structure and Morphology of Cellulose Lyocell Microfibers Extracted from PAN Matrix
by Igor Makarov, Ekaterina Palchikova, Markel Vinogradov, Yaroslav Golubev, Sergey Legkov, Petr Gromovykh, Georgy Makarov, Natalia Arkharova, Denis Karimov and Radmir Gainutdinov
Polysaccharides 2025, 6(1), 10; https://doi.org/10.3390/polysaccharides6010010 - 3 Feb 2025
Cited by 5 | Viewed by 1279
Abstract
Polymer matrices can be reinforced with cellulose fillers in a variety of geometric shapes. Depending on the morphology of the particles, the volume fraction of the composite additive may decrease, while the values of the elastic modulus may increase. Increasing the length while [...] Read more.
Polymer matrices can be reinforced with cellulose fillers in a variety of geometric shapes. Depending on the morphology of the particles, the volume fraction of the composite additive may decrease, while the values of the elastic modulus may increase. Increasing the length while decreasing the width of the cellulose filler is an intriguing path in the development of composite additives and materials based on it. It is difficult to form thin continuous cellulose fibers, but this can be accomplished via the sea-island composite fiber manufacturing process. The creation of cellulose fibrils in polyacrylonitrile (PAN)/cellulose based systems happens during the spinning of the mixed solution. A selective solvent facilitates the isolation of cellulose fibrils. The structure of the isolated microfibers was investigated using X-ray diffraction, IR spectroscopy, SEM, and AFM. The structure of the resulting cellulose microfibers was compared to bacterial cellulose. It has been shown that composite fibers have a superposition pattern, while cellulose fibrils have a structure different from native cellulose and similar to Lyocell fibers (polymorph II). The crystallite sizes and crystallinity of regenerated cellulose were determined. The identified structural parameters for cellulose fibrils provide strength at the level of industrial hydrated cellulose fibers. Full article
Show Figures

Graphical abstract

34 pages, 2191 KiB  
Review
Properties, Production, and Recycling of Regenerated Cellulose Fibers: Special Medical Applications
by Sandra Varnaitė-Žuravliova and Julija Baltušnikaitė-Guzaitienė
J. Funct. Biomater. 2024, 15(11), 348; https://doi.org/10.3390/jfb15110348 - 16 Nov 2024
Cited by 11 | Viewed by 4488
Abstract
Regenerated cellulose fibers are a highly adaptable biomaterial with numerous medical applications owing to their inherent biocompatibility, biodegradability, and robust mechanical properties. In the domain of wound care, regenerated cellulose fibers facilitate a moist environment conducive to healing, minimize infection risk, and adapt [...] Read more.
Regenerated cellulose fibers are a highly adaptable biomaterial with numerous medical applications owing to their inherent biocompatibility, biodegradability, and robust mechanical properties. In the domain of wound care, regenerated cellulose fibers facilitate a moist environment conducive to healing, minimize infection risk, and adapt to wound topographies, making it ideal for different types of dressings. In tissue engineering, cellulose scaffolds provide a matrix for cell attachment and proliferation, supporting the development of artificial skin, cartilage, and other tissues. Furthermore, regenerated cellulose fibers, used as absorbable sutures, degrade within the body, eliminating the need for removal and proving advantageous for internal suturing. The medical textile industry relies heavily on regenerated cellulose fibers because of their unique properties that make them suitable for various applications, including wound care, surgical garments, and diagnostic materials. Regenerated cellulose fibers are produced by dissolving cellulose from natural sources and reconstituting it into fiber form, which can be customized for specific medical uses. This paper will explore the various types, properties, and applications of regenerated cellulose fibers in medical contexts, alongside an examination of its manufacturing processes and technologies, as well as associated challenges. Full article
(This article belongs to the Special Issue Biodegradable Polymers and Textiles)
Show Figures

Figure 1

32 pages, 1378 KiB  
Review
Investigating the Routes to Produce Cellulose Fibers from Agro-Waste: An Upcycling Process
by Sofia Plakantonaki, Kyriaki Kiskira, Nikolaos Zacharopoulos, Vassiliki Belessi, Emmanouela Sfyroera, Georgios Priniotakis and Chrysoula Athanasekou
ChemEngineering 2024, 8(6), 112; https://doi.org/10.3390/chemengineering8060112 - 4 Nov 2024
Cited by 6 | Viewed by 5007
Abstract
The agriculture and agri-food sectors produce substantial amounts of plant-based waste. This waste presents an identifiable research opportunity to develop methods for effectively eliminating and managing it in order to promote zero-waste and circular economies. Plant-based waste and by-products are acknowledged as valuable [...] Read more.
The agriculture and agri-food sectors produce substantial amounts of plant-based waste. This waste presents an identifiable research opportunity to develop methods for effectively eliminating and managing it in order to promote zero-waste and circular economies. Plant-based waste and by-products are acknowledged as valuable sources of bioactive compounds, including cellulose fibers. Direct application of these fibers in non-food sectors such as textiles can reduce the environmental impact of secondary raw materials. This review aims to provide an overview of novel concepts and modern technologies for efficiently utilizing plant-based waste and by-products from the agricultural and agro-industrial sectors to extract fibers for a variety of final applications, including the fashion industry. Two major routes are identified to produce cellulose fibers: the extraction and purification of natural cellulose fibers and the extraction and purification of cellulose pulp that is further processed into manmade cellulosic fibers. Scalability of experimental results at the laboratory or pilot level is a major barrier, so it is critical to develop closed-loop processes, apply standardization protocols, and conduct life cycle assessments and techno-economic analyses to facilitate large-scale implementation. Full article
(This article belongs to the Special Issue Innovative Approaches for the Environmental Chemical Engineering)
Show Figures

Figure 1

10 pages, 3002 KiB  
Article
Forensic Discrimination of Various Subtypes of Regenerated Cellulose Fibers in Clothing Available on the Consumer Market
by Jolanta Wąs-Gubała, Mateusz Migdał and Zuzanna Brożek-Mucha
Fibers 2024, 12(10), 85; https://doi.org/10.3390/fib12100085 - 8 Oct 2024
Viewed by 1656
Abstract
The discrimination of five subtypes of regenerated cellulose fibers, i.e., viscose, bamboo, lyocell, modal, and cupro, from both men’s and women’s clothing available on the prevalent apparel market was described. The examinations were conducted using optical microscopy (in transmitted white light and polarized [...] Read more.
The discrimination of five subtypes of regenerated cellulose fibers, i.e., viscose, bamboo, lyocell, modal, and cupro, from both men’s and women’s clothing available on the prevalent apparel market was described. The examinations were conducted using optical microscopy (in transmitted white light and polarized light), scanning electron microscopy coupled with energy dispersive X-ray spectrometry (SEM–EDX), and Fourier Transform Infrared Spectroscopy (FTIR). The microscopic methods revealed characteristic features of the morphological structure of the examined fibers, enabling the identification of differences between the subtypes. As a result, the microscopic methods were found to be the most effective for identifying and distinguishing between the types of examined fibers. Although the FTIR technique did not allow for distinguishing between the fiber subcategories, it contributed to the enlargement of the IR spectra databases for regenerated cellulose fibers. Based on the findings, a general scheme of the procedure for identifying the tested fibers was proposed. Full article
Show Figures

Figure 1

12 pages, 11130 KiB  
Article
Enhancing the Mechanical Properties of Regenerated Cellulose through High-Temperature Pre-Gelation
by Yuxiu Yu, Weiku Wang and Yaodong Liu
Materials 2024, 17(19), 4886; https://doi.org/10.3390/ma17194886 - 5 Oct 2024
Viewed by 1311
Abstract
This paper investigates the effects of pre-gelation on cellulose dissolved in LiCl/DMAc solutions to enhance the properties of regenerated cellulose materials. This study focuses on characterizing the crystallinity, molecular orientation, and mechanical performance of cellulose fibers and hydrogels prepared with and without pre-gelation [...] Read more.
This paper investigates the effects of pre-gelation on cellulose dissolved in LiCl/DMAc solutions to enhance the properties of regenerated cellulose materials. This study focuses on characterizing the crystallinity, molecular orientation, and mechanical performance of cellulose fibers and hydrogels prepared with and without pre-gelation treatment. X-ray diffraction (XRD) analysis reveals that crystallinity improvement from 55% in untreated fibers to 59% in fibers pre-gelled for 3 and 7 days, indicating a more ordered arrangement of cellulose chains post-regeneration. Additionally, XRD patterns show improved chain alignment in pre-gelled fibers, as indicated by reduced full width at half the maximum of Azimuthal scans. Mechanical testing demonstrates a 30% increase in tensile strength and a doubling of the compression modulus for pre-gelled fibers compared to untreated fibers. These findings underscore the role of pre-gelation in optimizing cellulose material properties for applications ranging from advanced textiles to biomaterials and sustainable packaging. Future research directions include further exploration of the structural and functional benefits of pre-gelation in cellulose processing and its broader implications in material science and engineering. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

19 pages, 6320 KiB  
Article
Nanostructured Affinity Membrane to Isolate Extracellular Vesicles from Body Fluids for Diagnostics and Regenerative Medicine
by Monica Torsello, Margherita Animini, Chiara Gualandi, Francesca Perut, Antonino Pollicino, Cristiana Boi and Maria Letizia Focarete
Membranes 2024, 14(10), 206; https://doi.org/10.3390/membranes14100206 - 26 Sep 2024
Viewed by 1520
Abstract
Electrospun regenerated cellulose (RC) nanofiber membranes were prepared starting from cellulose acetate (CA) with different degrees of substitution. The process was optimized to obtain continuous and uniformly sized CA fibers. After electrospinning, the CA membranes were heat-treated to increase their tensile strength before [...] Read more.
Electrospun regenerated cellulose (RC) nanofiber membranes were prepared starting from cellulose acetate (CA) with different degrees of substitution. The process was optimized to obtain continuous and uniformly sized CA fibers. After electrospinning, the CA membranes were heat-treated to increase their tensile strength before deacetylation to obtain regenerated cellulose (RC). Affinity membranes were obtained by functionalization, exploiting the hydroxyl groups on the cellulose backbone. 1,4-Butanediol-diglycidyl ether was used to introduce epoxy groups onto the membrane, which was further bioconjugated with the anti-CD63 antibody targeting the tetraspanin CD63 on the extracellular vesicle membrane surface. The highest ligand density was obtained with an anti-CD63 antibody concentration of 6.4 µg/mL when bioconjugation was performed in carbonate buffer. The resulting affinity membrane was tested for the adsorption of extracellular vesicles (EVs) from human platelet lysate, yielding a very promising binding capacity above 10 mg/mL and demonstrating the suitability of this approach. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Membrane Materials and Applications)
Show Figures

Figure 1

11 pages, 3471 KiB  
Article
Cellulose Fiber with Enhanced Mechanical Properties: The Role of Co-Solvents in Gel-like NMMO System
by Suhnue Kim, Darae Lee and Hyungsup Kim
Gels 2024, 10(9), 607; https://doi.org/10.3390/gels10090607 - 23 Sep 2024
Cited by 2 | Viewed by 1682
Abstract
Cellulose has garnered attention in the textile industry, but it exhibits limitations in applications that require high strength and modulus. In this study, regenerated cellulose fiber with enhanced mechanical properties was fabricated from a gel-like N-methylmorpholine N-oxide (NMMO)–cellulose solution by modulating the intermolecular [...] Read more.
Cellulose has garnered attention in the textile industry, but it exhibits limitations in applications that require high strength and modulus. In this study, regenerated cellulose fiber with enhanced mechanical properties was fabricated from a gel-like N-methylmorpholine N-oxide (NMMO)–cellulose solution by modulating the intermolecular interaction and conformation of the cellulose chains. To control the interaction, two types of co-solvents (dimethyl acetamide (DMAc) and dimethyl formamide (DMF)) were added to the cellulose solutions at varying concentrations (10, 20, and 30 wt%). Rheological analysis showed that the co-solvents reduced the solution viscosity by weakening intermolecular interactions. The calculated distance parameter (Ra) in Hansen space confirmed that the co-solvent disrupted intermolecular hydrogen bonding within cellulose chains. The solutions were spun into fiber via a simple wet spinning process and were characterized by X-ray diffraction (XRD) and universal testing machine (UTM). The addition of co-solvent led to an increased crystallinity index (C.I.) owing to the extended cellulose chains. The modulus of the resulting fiber was increased when the co-solvent concentration was 10 wt%, regardless of the co-solvent type. This study demonstrates the potential for enhancing the mechanical properties of cellulose-based products by modulating the conformation and interaction of cellulose chains through the addition of co-solvent. Full article
(This article belongs to the Special Issue Rheological Properties and Applications of Gel-Based Materials)
Show Figures

Figure 1

Back to TopTop