Nanostructured Affinity Membrane to Isolate Extracellular Vesicles from Body Fluids for Diagnostics and Regenerative Medicine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Membrane Preparation and Functionalization
2.2.1. Preparation of Regenerated Cellulose Electrospun Nanofiber Membranes
2.2.2. Epoxidation of Regenerated Cellulose Nanofiber Membranes
2.2.3. Ligand Immobilization
2.3. EV Isolation from Human Platelet Lysate (PL)
2.4. EVs Adsorption onto Affinity Membranes
2.5. Characterization Techniques
3. Results and Discussion
3.1. Preparation and Characterization of Electrospun Cellulose Nanofibers
3.1.1. Electrospinning of Cellulose Acetate Solutions
3.1.2. Morphological Characterization of the Membranes
3.1.3. Verification of the Effectiveness of Cellulose Regeneration
3.2. Functionalization and Bioconjugation of Regenerated Cellulose Nanofiber Membranes
3.2.1. Membrane Activation with Epoxy Groups
3.2.2. Ligand Bioconjugation
3.3. Adsorption of EVs on Affinity Membranes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alqurashi, H.; Alsharief, M.; Perciato, M.L.; Raven, B.; Ren, K.; Lambert, D.W. Message in a Bubble: The Translational Potential of Extracellular Vesicles. J. Physiol. 2023, 601, 4895–4905. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, M.; Martin-Jaular, L.; Lavieu, G.; Théry, C. Specificities of Secretion and Uptake of Exosomes and Other Extracellular Vesicles for Cell-to-Cell Communication. Nat. Cell Biol. 2019, 21, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Raposo, G.; Stoorvogel, W. Extracellular Vesicles: Exosomes, Microvesicles, and Friends. J. Cell Biol. 2013, 200, 373–383. [Google Scholar] [CrossRef]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. J. Extracell. Vesicle 2018, 7, 1535750. [Google Scholar] [CrossRef]
- Mathivanan, S.; Ji, H.; Simpson, R.J. Exosomes: Extracellular Organelles Important in Intercellular Communication. J. Proteom. 2010, 73, 1907–1920. [Google Scholar] [CrossRef]
- Andjus, P.; Kosanović, M.; Milićević, K.; Gautam, M.; Vainio, S.J.; Jagečić, D.; Kozlova, E.N.; Pivoriūnas, A.; Chachques, J.-C.; Sakaj, M.; et al. Extracellular Vesicles as Innovative Tool for Diagnosis, Regeneration and Protection against Neurological Damage. Int. J. Mol. Sci. 2020, 21, 6859. [Google Scholar] [CrossRef]
- Hong, C.S.; Muller, L.; Boyiadzis, M.; Whiteside, T.L. Isolation and Characterization of CD34+ Blast-Derived Exosomes in Acute Myeloid Leukemia. PLoS ONE 2014, 9, e103310. [Google Scholar] [CrossRef]
- Ailuno, G.; Baldassari, S.; Lai, F.; Florio, T.; Caviglioli, G. Exosomes and Extracellular Vesicles as Emerging Theranostic Platforms in Cancer Research. Cells 2020, 9, 2569. [Google Scholar] [CrossRef]
- Shehzad, A.; Islam, S.U.; Shahzad, R.; Khan, S.; Lee, Y.S. Extracellular Vesicles in Cancer Diagnostics and Therapeutics. Pharmacol. Ther. 2021, 223, 107806. [Google Scholar] [CrossRef]
- Pontecorvi, G.; Bellenghi, M.; Puglisi, R.; Carè, A.; Mattia, G. Tumor-Derived Extracellular Vesicles and microRNAs: Functional Roles, Diagnostic, Prognostic and Therapeutic Options. Cytokine Growth Factor. Rev. 2020, 51, 75–83. [Google Scholar] [CrossRef]
- Ucci, A.; Rucci, N.; Ponzetti, M. Liquid biopsies in primary and secondary bone cancers. Cancer Drug Resist. 2022, 5, 541–559. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.E.; Today, B.A.; Salazar, M.; Kuo, J.; Ransom, J.T.; Lightner, A.L.; Chen, G.; Wong, A. Safety of Bone Marrow Derived Mesenchymal Stem Cell Extracellular Vesicle Injection for Lumbar Facet Joint Pain. Regen. Med. 2024, 19, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Torrecillas-Baena, B.; Pulido-Escribano, V.; Dorado, G.; Gálvez-Moreno, M.Á.; Camacho-Cardenosa, M.; Casado-Díaz, A. Clinical Potential of Mesenchymal Stem Cell-Derived Exosomes in Bone Regeneration. J. Clin. Med. 2023, 12, 4385. [Google Scholar] [CrossRef]
- Kalluri, R.; LeBleu, V.S. The Biology, Function, and Biomedical Applications of Exosomes. Science 2020, 367, eaau6977. [Google Scholar] [CrossRef]
- Martins, T.S.; Vaz, M.; Henriques, A.G. A Review on Comparative Studies Addressing Exosome Isolation Methods from Body Fluids. Anal. Bioanal. Chem. 2023, 415, 1239–1263. [Google Scholar] [CrossRef]
- Moghadasi, S.; Elveny, M.; Rahman, H.S.; Suksatan, W.; Jalil, A.T.; Abdelbasset, W.K.; Yumashev, A.V.; Shariatzadeh, S.; Motavalli, R.; Behzad, F.; et al. A Paradigm Shift in Cell-Free Approach: The Emerging Role of MSCs-Derived Exosomes in Regenerative Medicine. J. Transl. Med. 2021, 19, 302. [Google Scholar] [CrossRef]
- Welsh, J.A.; Goberdhan, D.C.I.; O’Driscoll, L.; Buzas, E.I.; Blenkiron, C.; Bussolati, B.; Cai, H.; Di Vizio, D.; Driedonks, T.A.P.; Erdbrügger, U.; et al. Minimal Information for Studies of Extracellular Vesicles (MISEV2023): From Basic to Advanced Approaches. J. Extracell. Vesicles 2024, 13, e12404. [Google Scholar] [CrossRef]
- Royo, F.; Théry, C.; Falcón-Pérez, J.M.; Nieuwland, R.; Witwer, K.W. Methods for Separation and Characterization of Extracellular Vesicles: Results of a Worldwide Survey Performed by the ISEV Rigor and Standardization Subcommittee. Cells 2020, 9, 1955. [Google Scholar] [CrossRef]
- Zhang, Y.; Bi, J.; Huang, J.; Tang, Y.; Du, S.; Li, P. Exosome: A Review of Its Classification, Isolation Techniques, Storage, Diagnostic and Targeted Therapy Applications. Int. J. Nanomed. 2020, 15, 6917–6934. [Google Scholar] [CrossRef]
- Gardiner, C.; Di Vizio, D.; Sahoo, S.; Théry, C.; Witwer, K.W.; Wauben, M.; Hill, A.F. Techniques Used for the Isolation and Characterization of Extracellular Vesicles: Results of a Worldwide Survey. J. Extracell. Vesicle 2016, 5, 32945. [Google Scholar] [CrossRef]
- Konoshenko, M.Y.; Lekchnov, E.A.; Vlassov, A.V.; Laktionov, P.P. Isolation of Extracellular Vesicles: General Methodologies and Latest Trends. BioMed Res. Int. 2018, 2018, 8545347. [Google Scholar] [CrossRef]
- Eguchi, T.; Okusha, Y.; Lu, Y.; Ono, K.; Taha, E.A.; Fukuoka, S. Comprehensive Method for Exosome Isolation and Proteome Analysis for Detection of CCN Factors in/on Exosomes. In CCN Proteins; Takigawa, M., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2023; Volume 2582, pp. 59–76. [Google Scholar]
- Theel, E.K.; Schwaminger, S.P. Microfluidic Approaches for Affinity-Based Exosome Separation. Int. J. Mol. Sci. 2022, 23, 9004. [Google Scholar] [CrossRef] [PubMed]
- Poupardin, R.; Wolf, M.; Maeding, N.; Paniushkina, L.; Geissler, S.; Bergese, P.; Witwer, K.W.; Schallmoser, K.; Fuhrmann, G.; Strunk, D. Advances in Extracellular Vesicle Research Over the Past Decade: Source and Isolation Method Are Connected with Cargo and Function. Adv. Healthc. Mater. 2024, 13, e2303941. [Google Scholar] [CrossRef] [PubMed]
- Altıntaş, Ö.; Saylan, Y. Exploring the Versatility of Exosomes: A Review on Isolation, Characterization, Detection Methods, and Diverse Applications. Anal. Chem. 2023, 95, 16029–16048. [Google Scholar] [CrossRef] [PubMed]
- Hendrix, A.; Lippens, L.; Pinheiro, C.; Théry, C.; Martin-Jaular, L.; Lötvall, J.; Lässer, C.; Hill, A.F.; Witwer, K.W. Extracellular Vesicle Analysis. Nat. Rev. Methods Primers 2023, 3, 56. [Google Scholar] [CrossRef]
- Serrano-Pertierra, E.; Oliveira-Rodríguez, M.; Rivas, M.; Oliva, P.; Villafani, J.; Navarro, A.; Blanco-López, M.C.; Cernuda-Morollón, E. Characterization of Plasma-Derived Extracellular Vesicles Isolated by Different Methods: A Comparison Study. Bioengineering 2019, 6, 8. [Google Scholar] [CrossRef]
- Zarovni, N.; Corrado, A.; Guazzi, P.; Zocco, D.; Lari, E.; Radano, G.; Muhhina, J.; Fondelli, C.; Gavrilova, J.; Chiesi, A. Integrated Isolation and Quantitative Analysis of Exosome Shuttled Proteins and Nucleic Acids Using Immunocapture Approaches. Methods 2015, 87, 46–58. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Q.; Deng, Y.; Chen, M.; Yang, C. Improving Isolation of Extracellular Vesicles by Utilizing Nanomaterials. Membranes 2021, 12, 55. [Google Scholar] [CrossRef]
- Boi, C. Membrane chromatography for biomolecule purification. In Current Trends and Future Developments on (Bio-) Membranes: Membrane Processes in the Pharmaceutical and Biotechnological Field; Basile, A., Charcosset, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 151–166. [Google Scholar]
- Barati, F.; Farsani, A.M.; Mahmoudifard, M. A Promising Approach toward Efficient Isolation of the Exosomes by Core-Shell PCL-Gelatin Electrospun Nanofibers. Bioprocess Biosyst. Eng. 2020, 43, 1961–1971. [Google Scholar] [CrossRef]
- Wongkaew, N. Nanofiber-Integrated Miniaturized Systems: An Intelligent Platform for Cancer Diagnosis. Anal. Bioanal. Chem. 2019, 411, 4251–4264. [Google Scholar] [CrossRef]
- Akbarinejad, A.; Hisey, C.L.; Brewster, D.; Ashraf, J.; Chang, V.; Sabet, S.; Nursalim, Y.; Lucarelli, V.; Blenkiron, C.; Chamley, L.; et al. Novel Electrochemically Switchable, Flexible, Microporous Cloth That Selectively Captures, Releases, and Concentrates Intact Extracellular Vesicles. ACS Appl. Mater. Interfaces 2020, 12, 39005–39013. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, E.L.; Poddar, S.; Iftekhar, S.; Suh, K.; Woolfork, A.G.; Ovbude, S.; Pekarek, A.; Walters, M.; Lott, S.; Hage, D.S. Affinity Chromatography: A Review of Trends and Developments over the Past 50 Years. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2020, 1157, 122332. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yu, B.; Cong, H.; Shen, Y. Recent Development and Application of Membrane Chromatography. Anal. Bioanal. Chem. 2023, 415, 45–65. [Google Scholar] [CrossRef]
- Lavoie, J.; Fan, J.; Pourdeyhimi, B.; Boi, C.; Carbonell, R.G. Advances in high-throughput, high-capacity nonwoven membranes for chromatography in downstream processing: A review. Biotechnol. Bioeng. 2024, 121, 2300–2317. [Google Scholar] [CrossRef]
- Fu, Q.; Duan, C.; Yan, Z.; Si, Y.; Liu, L.; Yu, J.; Ding, B. Electrospun Nanofibrous Composite Materials: A Versatile Platform for High Efficiency Protein Adsorption and Separation. Compos. Commun. 2018, 8, 92–100. [Google Scholar] [CrossRef]
- Raj, R.; Agrawal, P.; Bhutani, U.; Bhowmick, T.; Chandru, A. Spinning with Exosomes: Electrospun Nanofibers for Efficient Targeting of Stem Cell-Derived Exosomes in Tissue Regeneration. Biomed. Mater. 2024, 19, 032004. [Google Scholar] [CrossRef]
- Kramar, A.; González-Benito, F.J. Cellulose-Based Nanofibers Processing Techniques and Methods Based on Bottom-Up Approach-A Review. Polymers 2022, 14, 286. [Google Scholar] [CrossRef]
- Rodríguez, K.; Sundberg, J.; Gatenholm, P.; Renneckar, S. Electrospun Nanofibrous Cellulose Scaffolds with Controlled Microarchitecture. Carbohydr. Polym. 2014, 100, 143–149. [Google Scholar] [CrossRef]
- Ma, Z.; Kotaki, M.; Ramakrishna, S. Electrospun Cellulose Nanofiber as Affinity Membrane. J. Membr. Sci. 2005, 265, 115–123. [Google Scholar] [CrossRef]
- Fernandez-Rebollo, E.; Mentrup, B.; Ebert, R.; Franzen, J.; Abagnale, G.; Sieben, T.; Ostrowska, A.; Hoffmann, P.; Roux, P.-F.; Rath, B.; et al. Human Platelet Lysate versus Fetal Calf Serum: These Supplements Do Not Select for Different Mesenchymal Stromal Cells. Sci. Rep. 2017, 7, 5132. [Google Scholar] [CrossRef]
- Torreggiani, E.; Perut, F.; Roncuzzi, L.; Zini, N.; Baglìo, S.R.; Baldini, N. EVs: Novel effectors of human platelet lysate activity. Eur. Cell. Mater. 2014, 28, 137–151. [Google Scholar] [CrossRef] [PubMed]
- Boi, C.; Algeri, C.; Sarti, G.C. Preparation and Characterization of Polysulfone Affinity Membranes Bearing a Synthetic Peptide Ligand for the Separation of Murine Immunoglobulins. Biotechnol. Progress. 2008, 24, 1304–1313. [Google Scholar] [CrossRef] [PubMed]
- Han, S.O.; Son, W.K.; Youk, J.H.; Lee, T.S.; Park, W.H. Ultrafine Porous Fibers Electrospun from Cellulose Triacetate. Mater. Lett. 2005, 59, 2998–3001. [Google Scholar] [CrossRef]
- Clark, D.T.; Thomas, H.R. Application of ESCA to polymer chemistry. XVI. Electron mean free paths as a function of kinetic energy in polymeric films determined by means of ESCA†. J. Polym. Sci. Polym. Chem. 1977, 15, 2843–2867. [Google Scholar] [CrossRef]
- Chen, J.; Xu, J.; Wang, K.; Cao, X.; Sun, R. Cellulose Acetate Fibers Prepared from Different Raw Materials with Rapid Synthesis Method. Carbohydr. Polym. 2016, 137, 685–692. [Google Scholar] [CrossRef]
- Das, A.M.; Ali, A.A.; Hazarika, M.P. Synthesis and Characterization of Cellulose Acetate from Rice Husk: Eco-Friendly Condition. Carbohydr. Polym. 2014, 112, 342–349. [Google Scholar] [CrossRef]
- Klein, E. ; Affinity Membranes: Their Chemistry and Performance in Adsorptive Separation Processes; Wiley: New York, NY, USA, 1991. [Google Scholar]
- Sundberg, L.; Porath, J. Preparation of adsorbent for biospecific affinity chromatography. I. Attachment of group-containing ligands to insoluble polymers by means of bifunctional oxiranes. J. Chromatogr. 1974, 90, 87–98. [Google Scholar] [CrossRef]
- Boi, C.; Cattoli, F.; Facchini, R.; Sorci, M.; Sarti, G.C. Adsorption of lectins on affinity membranes. J. Membr. Sci. 2006, 273, 12–19. [Google Scholar] [CrossRef]
- Neumair, J.; D’Ercole, C.; De March, M.; Elsner, M.; Seidel, M.; de Marco, A. Macroporous epoxy-based monoliths functionalized with anti-CD63 nanobodies for effective isolation of extracellular vesicles in urine. Int. J. Mol. Sci. 2023, 24, 6131. [Google Scholar] [CrossRef]
Electrospinning Parameters | ||||||
---|---|---|---|---|---|---|
Solvent Ratio DCM/EtOH | Cellulose Acetate | CA conc. (w/v) | Voltage (kV) | Distance (cm) | Rate (mL/h) | Observations * |
90/10 | CA ds 2.4 | 10% | 10 | 15 | 1.0 | Fibers, few beads |
5% | 15 | 15 | 1.5 | Few fibers, many beads | ||
CA ds 3.0 | 10% | 15 | 20 | 1.0 | Fibers, few beads | |
8% | 10 | 15 | 2.0 | Few fibers, many beads | ||
80/20 | CA ds 2.4 | 10% | 10 | 15 | 1.5 | Fibers, few beads |
CA ds 3.0 | 10% | 10 | 15 | 2.0 | Fibers, NO beads | |
8% | 15 | 15 | 2.0 | Fibers, NO beads | ||
6% | 15 | 15 | 2.0 | Fibers, NO beads | ||
70/30 | CA ds 3.0 | 10% | 15 | 15 | 2.0 | Fibers, NO beads |
8% | 15 | 17 | 2.0 | Fibers, NO beads | ||
6% | 15 | 15 | 2.0 | Fibers, NO beads |
Indirect Quantification | Direct Quantification | |||
---|---|---|---|---|
Sample | mads (mg) | qads (mg/mL) | mads (mg) | qads (mg/mL) |
Epoxydized membrane bioconjugated in MES buffer | 0.0478 | 9.91 | 0.0332 | 6.88 |
Epoxydized membrane bioconjugated in carbonated buffer | 0.0572 | 11.9 | 0.0632 | 13.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torsello, M.; Animini, M.; Gualandi, C.; Perut, F.; Pollicino, A.; Boi, C.; Focarete, M.L. Nanostructured Affinity Membrane to Isolate Extracellular Vesicles from Body Fluids for Diagnostics and Regenerative Medicine. Membranes 2024, 14, 206. https://doi.org/10.3390/membranes14100206
Torsello M, Animini M, Gualandi C, Perut F, Pollicino A, Boi C, Focarete ML. Nanostructured Affinity Membrane to Isolate Extracellular Vesicles from Body Fluids for Diagnostics and Regenerative Medicine. Membranes. 2024; 14(10):206. https://doi.org/10.3390/membranes14100206
Chicago/Turabian StyleTorsello, Monica, Margherita Animini, Chiara Gualandi, Francesca Perut, Antonino Pollicino, Cristiana Boi, and Maria Letizia Focarete. 2024. "Nanostructured Affinity Membrane to Isolate Extracellular Vesicles from Body Fluids for Diagnostics and Regenerative Medicine" Membranes 14, no. 10: 206. https://doi.org/10.3390/membranes14100206
APA StyleTorsello, M., Animini, M., Gualandi, C., Perut, F., Pollicino, A., Boi, C., & Focarete, M. L. (2024). Nanostructured Affinity Membrane to Isolate Extracellular Vesicles from Body Fluids for Diagnostics and Regenerative Medicine. Membranes, 14(10), 206. https://doi.org/10.3390/membranes14100206