Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = refractory metal carbide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 3341 KiB  
Article
Carburization of Tantalum Metal Powder Using Activated Carbon
by Seonmin Hwang and Dongwon Lee
Materials 2025, 18(12), 2710; https://doi.org/10.3390/ma18122710 - 9 Jun 2025
Viewed by 325
Abstract
Tantalum carbide (TaC) is a highly refractory material with a melting point of 4153 K, making it attractive for applications requiring excellent hardness and thermal stability. In this study, we investigated the carburization behavior of high-purity tantalum metal powder synthesized by magnesium thermal [...] Read more.
Tantalum carbide (TaC) is a highly refractory material with a melting point of 4153 K, making it attractive for applications requiring excellent hardness and thermal stability. In this study, we investigated the carburization behavior of high-purity tantalum metal powder synthesized by magnesium thermal reduction of Ta2O5, using activated carbon and graphite as carbon sources under high vacuum. Carburization was conducted at 1100–1400 °C for durations of 5–20 h. Carbon contents were analyzed via combustion analysis, and activation energies were calculated based on Arrhenius plots. The results showed that the activated carbon significantly enhanced carbon uptake compared to graphite due to its higher porosity and surface reactivity. The formation and transformation of carbide phases were confirmed via X-ray diffraction, revealing a progression from Ta to Ta2C and eventually to single-phase TaC with increasing carbon content. Scanning electron microscopy (SEM) analysis showed that fine particles formed on the surface as carbon content increased, indicating local nucleation of TaC. Although the theoretical carbon content of stoichiometric TaC (6.22 wt.%) was not fully achieved, the near-theoretical lattice parameter (4.4547 Å) was approached. These findings suggest that activated carbon can serve as an effective carburizing agent for the synthesis of TaC under vacuum conditions. Full article
(This article belongs to the Special Issue Low-Carbon Technology and Green Development Forum)
Show Figures

Figure 1

32 pages, 41844 KiB  
Article
Surface Resistivity Correlation to Nano-Defects in Laser Powder Bed Fused Molybdenum (Mo)-Silicon Carbide (SiC) Alloys
by Andrew Mason, Larry Burggraf, Ryan Kemnitz and Nate Ellsworth
J. Manuf. Mater. Process. 2025, 9(6), 174; https://doi.org/10.3390/jmmp9060174 - 26 May 2025
Viewed by 595
Abstract
The integration of Silicon Carbide (SiC) nanoparticles into Laser Powder Bed Fusion (LB-PBF) Molybdenum (Mo) printing represents a significant advancement in refractory metal additive manufacturing. Our investigation examined how varying SiC nanoparticle sizes affect the microstructural and electrical properties of LB-PBF-printed molybdenum components [...] Read more.
The integration of Silicon Carbide (SiC) nanoparticles into Laser Powder Bed Fusion (LB-PBF) Molybdenum (Mo) printing represents a significant advancement in refractory metal additive manufacturing. Our investigation examined how varying SiC nanoparticle sizes affect the microstructural and electrical properties of LB-PBF-printed molybdenum components while maintaining a 0.01 mass fraction of Mo. At an Linear Energy Densities (LED) of 1.8 J/mm, the addition of 80 nm SiC particles achieved a 46% reduction in porosity, while sheet resistance decreased by 6% at LED of 2.0 J/mm with 80 nm SiC particles. These performance improvements stem from several mechanisms: SiC particles serve as oxygen scavengers, facilitate secondary phase formation, and enhance laser absorption efficiency. Their dual role as sacrificial oxidizing agents and Mo disilicide phase promoters represents a novel approach to addressing microcracking and porosity in LB-PBF-printed Mo components. Through systematic investigation of particle size effects on both microscale and nanoscale properties, our findings suggest that optimized nanoparticle addition could become a universal strategy for enhancing LB-PBF processing of refractory metals, particularly in applications requiring enhanced mechanical and electrical performance. Full article
Show Figures

Figure 1

16 pages, 7223 KiB  
Article
Experimental and Numerical Study of the Plasma Arc Melting of Titanium Alloys: Application to the Removal of High Density Inclusions (HDIs)
by Jean-Pierre Bellot, Widad Ayadh, Jean-Sébastien Kroll-Rabotin, Raphaël Marin, Jérôme Delfosse, Amandine Cardon, Alessia Biagi and Stéphane Hans
Materials 2025, 18(9), 2051; https://doi.org/10.3390/ma18092051 - 30 Apr 2025
Viewed by 492
Abstract
Titanium alloys are increasingly used in aeronautical applications, a sector that requires highly controlled materials. In particular, inclusion cleanliness is a necessary and mandatory condition for safe use in aeronautical components. During the production and processing of titanium alloys, inclusions are likely to [...] Read more.
Titanium alloys are increasingly used in aeronautical applications, a sector that requires highly controlled materials. In particular, inclusion cleanliness is a necessary and mandatory condition for safe use in aeronautical components. During the production and processing of titanium alloys, inclusions are likely to appear, in particular high-density inclusions (HDIs) originate from refractory metals such as molybdenum or tungsten carbide. Plasma Arc Melting–Cold Hearth Remelting (PAMCHR) is one of the most effective recycling and refining process for titanium alloys. Firstly, this work reports the thermal modeling of the melting of raw materials in the melting crucible and a complete 3D numerical simulation of the thermo-hydrodynamic behavior of the metal flow in the PAMCHR furnace, based on the software Ansys-Fluent CFD V21.1. Simulation results are presented for a 100 kg/h melting test performed in a pilot furnace with a comparison between the measured and calculated pool profiles and residence time distributions that show satisfactory agreements. Additionally, a Lagrangian calculation of particle trajectories in the liquid metal pool is also performed and insemination of HDIs in the pilot furnace has been tested. Both numerical and experimental tests demonstrate the inclusion removal in the melting crucible. Full article
(This article belongs to the Special Issue Advances in Modelling and Simulation of Materials in Applied Sciences)
Show Figures

Figure 1

28 pages, 8489 KiB  
Article
Microstructural, Electrical, and Tribomechanical Properties of Mo-W-C Nanocomposite Films
by Kateryna Smyrnova, Volodymyr I. Ivashchenko, Martin Sahul, Ľubomír Čaplovič, Petro Skrynskyi, Andrii Kozak, Piotr Konarski, Tomasz N. Koltunowicz, Piotr Galaszkiewicz, Vitalii Bondariev, Pawel Zukowski, Piotr Budzynski, Svitlana Borba-Pogrebnjak, Mariusz Kamiński, Lucia Bónová, Vyacheslav Beresnev and Alexander Pogrebnjak
Nanomaterials 2024, 14(12), 1061; https://doi.org/10.3390/nano14121061 - 20 Jun 2024
Cited by 2 | Viewed by 1771
Abstract
This study investigates the phase composition, microstructure, and their influence on the properties of Mo-W-C nanocomposite films deposited by dual-source magnetron sputtering. The synthesised films consist of metal carbide nanograins embedded in an amorphous carbon matrix. It has been found that nanograins are [...] Read more.
This study investigates the phase composition, microstructure, and their influence on the properties of Mo-W-C nanocomposite films deposited by dual-source magnetron sputtering. The synthesised films consist of metal carbide nanograins embedded in an amorphous carbon matrix. It has been found that nanograins are composed of the hexagonal β-(Mo2 + W2)C phase at a low carbon source power. An increase in the power results in the change in the structure of the carbide nanoparticles from a single-phase to a mixture of the β-(Mo2 + W2)C and NaCl-type α-(Mo + W)C(0.65≤k≤1) solid-solution phases. The analysis of electrical properties demonstrates that the nanograin structure of the films favours the occurrence of hopping conductivity. The double-phase structure leads to a twofold increase in the relaxation time compared to the single-phase one. Films with both types of nanograin structures exhibit tunnelling conductance without the need for thermal activation. The average distance between the potential wells produced by the carbide nanograins in nanocomposite films is approximately 3.4 ± 0.2 nm. A study of tribomechanical properties showed that Mo-W-C films composed of a mixture of the β-(Mo2 + W2)C and α-(Mo + W)C(0.65≤k≤1) phases have the highest hardness (19–22 GPa) and the lowest friction coefficient (0.15–0.24) and wear volume (0.00302–0.00381 mm2). Such a combination of electrical and tribomechanical properties demonstrates the suitability of Mo-W-C nanocomposite films for various micromechanical devices and power electronics. Full article
Show Figures

Graphical abstract

12 pages, 3389 KiB  
Article
Fabrication of Layered SiC/C/Si/MeSi2/Me Ceramic–Metal Composites via Liquid Silicon Infiltration of Metal–Carbon Matrices
by Alexei Kaledin, Sergey Shikunov, Julia Zubareva, Ivan Shmytko, Boris Straumal and Vladimir Kurlov
Materials 2024, 17(3), 650; https://doi.org/10.3390/ma17030650 - 29 Jan 2024
Cited by 6 | Viewed by 1750
Abstract
The growing demand for composite materials capable of enduring prolonged loads in high-temperature and aggressive environments presents pressing challenges for materials scientists. Ceramic materials composed of silicon carbide largely possess high mechanical strength at a relatively low density, even at elevated temperatures. However, [...] Read more.
The growing demand for composite materials capable of enduring prolonged loads in high-temperature and aggressive environments presents pressing challenges for materials scientists. Ceramic materials composed of silicon carbide largely possess high mechanical strength at a relatively low density, even at elevated temperatures. However, they are inherently brittle in nature, leading to concerns about their ability to fracture. The primary objective of this study was to develop a novel technique for fabricating layered composite materials by incorporating SiC-based ceramics, refractory metals, and their silicides as integral constituents. These layered composites were produced through the liquid-phase siliconization method applied to metal–carbon blanks. Analysis of the microstructure of the resultant materials revealed that when a metal element interacts with molten silicon, it leads to the formation of a layer of metal silicide on the metal’s surface. Furthermore, three-point bending tests exhibited an enhancement in the bending strength of the layered composite in comparison to the base silicon carbide ceramics. Additionally, the samples demonstrated a quasi-plastic nature during the process of destruction. Full article
Show Figures

Figure 1

19 pages, 8772 KiB  
Review
Preparation, Mechanical Properties and Strengthening Mechanism of W-Re Alloys: A Review
by Zhenghui Zheng, Chen Lai, Wenyuan Zhou, Ying Wang, Yingxiao Zhang and Jinshu Wang
Materials 2024, 17(1), 102; https://doi.org/10.3390/ma17010102 - 24 Dec 2023
Cited by 10 | Viewed by 3327
Abstract
W-Re alloys are one of the most important refractory materials with excellent high-temperature performance that were developed to improve the brittleness of tungsten. In the present work, we firstly summarized the research progress on the preparation and strengthening methods of a W-Re alloy. [...] Read more.
W-Re alloys are one of the most important refractory materials with excellent high-temperature performance that were developed to improve the brittleness of tungsten. In the present work, we firstly summarized the research progress on the preparation and strengthening methods of a W-Re alloy. Then, the strengthening mechanisms of the W-Re alloy were discussed, including the influence of Re, solid solution strengthening, second-phase reinforcement and fine-grain strengthening. The results showed that the softening effect of Re was mainly related to the transformation of the preferred slip plane and the introduction of additional d-valence electrons. Some transition elements and refractory metal elements effectively strengthened the W-Re alloy. Carbides can significantly enhance the high-temperature mechanical properties of W-Re alloys, and the reasons are twofold: one is the interaction between carbides and dislocations, and the other is the synergistic strengthening effect between carbides and Re. The objective of this work was to enhance the comprehension on W-Re alloys and provide future research directions for W-Re alloys. Full article
(This article belongs to the Special Issue Environmentally Friendly Materials)
Show Figures

Figure 1

36 pages, 16448 KiB  
Review
Recent Advances in MXene-Based Nanocomposites for Wastewater Purification and Water Treatment: A Review
by Zahra Pouramini, Seyyed Mojtaba Mousavi, Aziz Babapoor, Seyyed Alireza Hashemi, Nelson Pynadathu Rumjit, Shivani Garg, Shakeel Ahmed and Wei-Hung Chiang
Water 2023, 15(7), 1267; https://doi.org/10.3390/w15071267 - 23 Mar 2023
Cited by 40 | Viewed by 8272
Abstract
The increase in pollutants such as hazardous refractory contaminants, organic dyes, pharmaceuticals, and pesticides entering water resources on a large scale due to global population growth and industrialization has become a significant health concern worldwide. The two-dimensional (2D) MXene material is a new [...] Read more.
The increase in pollutants such as hazardous refractory contaminants, organic dyes, pharmaceuticals, and pesticides entering water resources on a large scale due to global population growth and industrialization has become a significant health concern worldwide. The two-dimensional (2D) MXene material is a new type of transition metal carbide or carbonitride material, which has demonstrated the capability to adsorb various heavy contaminants, particularly metals such as chromium, copper, lead, and mercury. In addition, MXenes have a tunable band gap (0.92–1.75 eV) and exhibit good thermal stability and considerable damage resistance, which means that they are well suited as adsorbents for waste removal. In this review article, MXene nanocomposites are introduced for the removal of pollutants from water. The idea of water remediation, the applications of MXene-based nanocomposites, and the effects on the degradation of water and wastewater contaminants are reviewed. Future trends in MXene-based nanocomposites for water treatment and environmental applications will also be discussed. Full article
Show Figures

Figure 1

11 pages, 4287 KiB  
Article
Hot Isostatic Pressing Control of Tungsten-Based Composites
by Ryan Schoell, Aspen Reyes, Guddi Suman, Mila Nhu Lam, Justin Hamil, Samantha G. Rosenberg, LaRico Treadwell, Khalid Hattar and Eric Lang
Inorganics 2023, 11(2), 82; https://doi.org/10.3390/inorganics11020082 - 16 Feb 2023
Cited by 1 | Viewed by 2955
Abstract
Metal-oxide composites are commonly used in high temperature environments for their thermal stability and high melting points. Commonly employed with refractory oxides or carbides such as ZrC and HfC, these materials may be improved with the use of a low density, high melting [...] Read more.
Metal-oxide composites are commonly used in high temperature environments for their thermal stability and high melting points. Commonly employed with refractory oxides or carbides such as ZrC and HfC, these materials may be improved with the use of a low density, high melting point ceramic such as CeO2. In this work, the consolidation of W-CeO2 metal matrix composites in the high CeO2 concentration regime is explored. The CeO2 concentrations of 50, 33, and 25 wt.%, the CeO2 particle size from nanometer to micrometer, and various hot isostatic pressing temperatures are investigated. Decreasing the CeO2 concentration is observed to increase the composite density and increase the Vickers hardness. The CeO2 oxidation state is observed to be a combination of Ce3+ and Ce4+, which is hypothesized to contribute to the porosity of the composites. The hardness of the metal-oxide composite can be improved more than 2.5 times compared to pure W processed by the same route. This work offers processing guidelines for further consolation of oxide-doped W composites. Full article
Show Figures

Figure 1

15 pages, 15694 KiB  
Article
Novel Method for Deposition of Gas-Tight SiC Coatings
by Sergey Shikunov, Alexei Kaledin, Irina Shikunova, Boris Straumal and Vladimir Kurlov
Coatings 2023, 13(2), 354; https://doi.org/10.3390/coatings13020354 - 3 Feb 2023
Cited by 6 | Viewed by 3222
Abstract
A new high-temperature method for the deposition of gas-tight silicon carbide protective coatings with low gas permeability has been developed. The free carbon atoms form during the high-temperature pyrolysis of hydrocarbon molecules. In turn, carbon reacts with molten silicon contained in the subsurface [...] Read more.
A new high-temperature method for the deposition of gas-tight silicon carbide protective coatings with low gas permeability has been developed. The free carbon atoms form during the high-temperature pyrolysis of hydrocarbon molecules. In turn, carbon reacts with molten silicon contained in the subsurface substrate layers and/or with silicon vapor. The source of silicon vapor serves the molten silicon in the heated zone of a reactor furnace. Such coatings effectively protect SiC-C-Si and SiC-C-MoSi2 ceramics, carbon–carbon composite materials, structural graphite, and refractory metals and alloys from oxidation. The conducted tests show the high thermal oxidation and thermal shock stability of deposited protective coatings, as well as their good adhesion to the substrates. Full article
(This article belongs to the Special Issue Ceramic Films and Coatings: Properties and Applications)
Show Figures

Figure 1

26 pages, 5112 KiB  
Review
Electrochemical Synthesis of Functional Coatings and Nanomaterials in Molten Salts and Their Application
by Yuriy Stulov, Vladimir Dolmatov, Anton Dubrovskiy and Sergey Kuznetsov
Coatings 2023, 13(2), 352; https://doi.org/10.3390/coatings13020352 - 3 Feb 2023
Cited by 9 | Viewed by 3278
Abstract
Nanomaterials are widely used in modern technologies due to their unique properties. Developing methods for their production is one of the most important scientific problems. In this review, the advantages of electrochemical methods for synthesis in molten salts of nanostructured coatings and nanomaterials [...] Read more.
Nanomaterials are widely used in modern technologies due to their unique properties. Developing methods for their production is one of the most important scientific problems. In this review, the advantages of electrochemical methods for synthesis in molten salts of nanostructured coatings and nanomaterials for different applications were discussed. It was determined that the nanostructured Mo2C coatings on a molybdenum substrate obtained by galvanostatic electrolysis have a superior catalytic activity for the water-gas shift reaction. The corrosion-resistant and wear-resistant coatings of refractory metal carbides on steels were synthesized by the method of currentless transfer. This method also was used for the production of composite carbon fiber/refractory metal carbide materials, which are efficient electrocatalysts for the decomposition of hydrogen peroxide. The possibility to synthesize GdB6 nanorods and Si and TaO nanoneedles by potentiostatic electrolysis was shown. Full article
Show Figures

Figure 1

12 pages, 22700 KiB  
Article
Decrease in the Starting Temperature of the Reaction for Fabricating Carbides of Refractory Metals When Using Carbon Nanoparticles as Precursors
by Vladimir Popov, Anna Borunova, Evgeny Shelekhov, Oksana Koplak, Elizaveta Dvoretskaya, Danila Matveev, Alexey Prosviryakov, Ekaterina Vershinina and Vladimir Cheverikin
Inventions 2022, 7(4), 120; https://doi.org/10.3390/inventions7040120 - 12 Dec 2022
Cited by 1 | Viewed by 2247
Abstract
Metal matrix composites with a matrix of refractory metals (niobium, tungsten) and reinforcing nanodiamond particles were prepared for studying the possibility of decreasing the starting temperature of carbide synthesis. The size of primary nanodiamond particles was 4–6 nm, but they were combined in [...] Read more.
Metal matrix composites with a matrix of refractory metals (niobium, tungsten) and reinforcing nanodiamond particles were prepared for studying the possibility of decreasing the starting temperature of carbide synthesis. The size of primary nanodiamond particles was 4–6 nm, but they were combined in large-sized agglomerates. Mechanical alloying was used for producing the composites by crushing agglomerates and distributing nanodiamonds evenly in the metal matrix. The initial and fabricated materials were investigated by X-ray diffraction, differential scanning calorimetry, and transmission and scanning electron microscopy. Thermal processing leads to the reaction for carbide synthesis. Studies have found that the usage of carbon nanoparticles (nanodiamonds) as precursors for fabricating carbides of refractory metals leads to a dramatic decrease in the synthesis temperature in comparison with macro-precursors: lower than 200 °C for tungsten and lower than 350 °C for niobium. Full article
(This article belongs to the Collection Feature Innovation Papers)
Show Figures

Figure 1

18 pages, 7120 KiB  
Article
Fe–Al–Si-Type Iron Aluminides: On the Strengthening by Refractory Metals Borides
by Věra Vodičková, Martin Švec, Pavel Hanus, Šárka Bukovská and Petra Pazourková Prokopčáková
Materials 2022, 15(20), 7189; https://doi.org/10.3390/ma15207189 - 15 Oct 2022
Cited by 5 | Viewed by 1636
Abstract
The effect of boron addition into Fe–28Al–5Si–X (X = -, 2Mo, or 2Ti) on the structure and high-temperature yield stress was investigated. Generally, the alloying of binary Fe3Al-type iron aluminides by silicon significantly improves high-temperature mechanical properties by solid-solution strengthening. On [...] Read more.
The effect of boron addition into Fe–28Al–5Si–X (X = -, 2Mo, or 2Ti) on the structure and high-temperature yield stress was investigated. Generally, the alloying of binary Fe3Al-type iron aluminides by silicon significantly improves high-temperature mechanical properties by solid-solution strengthening. On the other hand, the workability and ductile properties at room or slightly elevated temperatures get worse with the increasing silicon content. Boron alloying together with titanium or molybdenum alloying is one of the ways to improve the workability of this type of alloy and, at the same time, ensure the formation of a sufficient amount of secondary phase particles required for effective strengthening. In this paper, the influence of 1 at. % of boron on high-temperature yield stress is evaluated in response to structural changes and compared with results obtained previously on the same type of alloy (Fe–28Al–5Si–2X, X= -, Mo, or Ti) but without boron alloying. It can be concluded that the network structure of borides of refractory metals formed due to boron alloying works more effectively for alloy hardening at higher temperatures than a mixture of silicides and carbides present in the boron-free alloy of the same composition. Full article
(This article belongs to the Special Issue Application, Processing, and Testing of New Progressive Materials)
Show Figures

Figure 1

14 pages, 2593 KiB  
Article
Combination of Autoclave Treatment and NDIR Process Analytics for Quantification of Aluminum Carbide in Powdery Samples
by Stefan Niedermayer and Markus Ellersdorfer
Analytica 2022, 3(1), 106-119; https://doi.org/10.3390/analytica3010008 - 25 Feb 2022
Cited by 1 | Viewed by 3378
Abstract
Aluminum Carbide (Al4C3) is a main source of corrosion problems in metal matrix composites as well as refractory products. Hydrolysis to methane happening at room temperature leads to various structural problems. As methods to quantify Al4C3 [...] Read more.
Aluminum Carbide (Al4C3) is a main source of corrosion problems in metal matrix composites as well as refractory products. Hydrolysis to methane happening at room temperature leads to various structural problems. As methods to quantify Al4C3 are scarce, this paper proposes a method to measure Al4C3 containing analyte powders in mg areas by combining a robust autoclave system with non-dispersive infrared (NDIR) process analytics. The method uses only water as reagent, making it easy and safe to handle. The used materials were characterized by thermogravimetric analysis coupled with fourier-transformation infrared detection (TGA-IR), LECO-C analysis, and X-ray diffraction (XRD) before and after autoclave treatment. 90–90.8% recovery of 100 mg Al4C3 with small standard deviations (<1% at n = 3) in 240, 205, and 165 min at 60, 70, and 80 °C, respectively, were achieved. XRD analysis showed the total conversion of Al4C3 to Bayerite (Al(OH)3) and Boehmite (AlO(OH)) at 70 °C. Comparison with shrinking core models showed that the reaction is neither purely reaction nor purely ash diffusion controlled. The findings indicate possibilities for further acceleration of reaction speeds by increasing temperature. The 200 mL reactor volume of the autoclave enables the analysis of bigger sample sizes at temperatures above 100 °C by separating reaction and analysis procedure. This provides an extension to gas chromatographic methods for industrial quality control of bulk materials in rougher environments. Full article
Show Figures

Figure 1

57 pages, 16270 KiB  
Review
MXenes—A New Class of Two-Dimensional Materials: Structure, Properties and Potential Applications
by Maksym Pogorielov, Kateryna Smyrnova, Sergiy Kyrylenko, Oleksiy Gogotsi, Veronika Zahorodna and Alexander Pogrebnjak
Nanomaterials 2021, 11(12), 3412; https://doi.org/10.3390/nano11123412 - 16 Dec 2021
Cited by 133 | Viewed by 12581
Abstract
A new class of two-dimensional nanomaterials, MXenes, which are carbides/nitrides/carbonitrides of transition and refractory metals, has been critically analyzed. Since the synthesis of the first family member in 2011 by Yury Gogotsi and colleagues, MXenes have quickly become attractive for a variety of [...] Read more.
A new class of two-dimensional nanomaterials, MXenes, which are carbides/nitrides/carbonitrides of transition and refractory metals, has been critically analyzed. Since the synthesis of the first family member in 2011 by Yury Gogotsi and colleagues, MXenes have quickly become attractive for a variety of research fields due to their exceptional properties. Despite the fact that this new family of 2D materials was discovered only about ten years ago, the number of scientific publications related to MXene almost doubles every year. Thus, in 2021 alone, more than 2000 papers are expected to be published, which indicates the relevance and prospects of MXenes. The current paper critically analyzes the structural features, properties, and methods of synthesis of MXenes based on recent available research data. We demonstrate the recent trends of MXene applications in various fields, such as environmental pollution removal and water desalination, energy storage and harvesting, quantum dots, sensors, electrodes, and optical devices. We focus on the most important medical applications: photo-thermal cancer therapy, diagnostics, and antibacterial treatment. The first results on obtaining and studying the structure of high-entropy MXenes are also presented. Full article
(This article belongs to the Special Issue Nanoengineering of 2D MXene-Based Materials)
Show Figures

Graphical abstract

11 pages, 3930 KiB  
Article
Synthesis of Vanadium Carbide by Mechanical Activation Assisted Carbothermic Reduction
by Zaki I. Zaki, Mohamed H. El-Sadek, Heba H. Ali and Hesham Ahmed
Materials 2020, 13(19), 4408; https://doi.org/10.3390/ma13194408 - 2 Oct 2020
Cited by 14 | Viewed by 3146
Abstract
Vanadium carbide is known, for its hardness and other unique properties, as a refractory material. The synthesis of vanadium carbide is always associated with the utilization of expensive active metals, such as aluminum, calcium and magnesium, as a reducing agent to extract the [...] Read more.
Vanadium carbide is known, for its hardness and other unique properties, as a refractory material. The synthesis of vanadium carbide is always associated with the utilization of expensive active metals, such as aluminum, calcium and magnesium, as a reducing agent to extract the vanadium metal from its corresponding oxide, followed by carbidization. The carbidization of reduced vanadium requires a complicated process and elevated temperature. Mechanical activation to synthesize vanadium carbide from its corresponding oxide and carbon source represents a promising, straightforward and less energy-intensive route. In the present study, vanadium carbide is synthesized by the carbothermic reduction of a mechanically activated mixture of V2O5 and carbon black as reducing agents without any additives. The reduction process is monitored by means of thermogravimetric analysis. The reduction products are characterized by X-ray diffraction and field emission scanning electron microscope. It is found that V8C7 with an average crystallite size of 88 nm can be synthesized from a V2O5-C mixture after milling for 15 h and further heating at 1050 °C for 1 h in an inert atmosphere. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

Back to TopTop