Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,456)

Search Parameters:
Keywords = reflecting substrate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 61965 KB  
Article
The Cercal Sensilla of the Praying Mantis Hierodula patellifera and Statilia maculata: A New Partition Based on the Cerci Ultrastructure
by Yang Wang, Xiaoqun Ding, Huan Li and Yang Liu
Insects 2025, 16(11), 1093; https://doi.org/10.3390/insects16111093 (registering DOI) - 24 Oct 2025
Abstract
Cerci function as crucial sensory organs in insects, featuring a diverse array of sensilla on their surface, analogous to those found on antennae. Using scanning electron microscopy (SEM), we characterized the ultrastructure and distribution of cercal sensilla in Hierodula patellifera (H. patellifera [...] Read more.
Cerci function as crucial sensory organs in insects, featuring a diverse array of sensilla on their surface, analogous to those found on antennae. Using scanning electron microscopy (SEM), we characterized the ultrastructure and distribution of cercal sensilla in Hierodula patellifera (H. patellifera) and Statilia maculata (S. maculata). Results show that the cerci of H. patellifera and S. maculata are highly similar, with main differences observed in the number of cercal articles and the length of cerci. The cerci of both species and sexes are composed of multiple cylindrical articles, and there is variation in the number of types of sensilla on their surface articles within sex and individuals. Females possess more cercal articles than males, and their cerci are generally longer than those of males. In both sexes of these praying mantises, four types of cercal sensilla were identified: sensilla filiformia (Sf), sensilla chaetica (Sc), sensilla campaniformia (Sca) and cuticular pore (CP), with sensilla chaetica further classified into two subtypes (ScI, ScII). Sc are widely distributed over the entire cerci, while Sf are distributed in a circular pattern on the cercal articles. While the overall distribution patterns of cercal sensilla were conserved between the sexes, significant sexual dimorphism was observed in the morphological parameters of the sensory hairs, including their quantity, length, and basal diameter. Based on distinct sensilla arrangements on the cerci, we propose a novel zoning of the cerci into four parts (I–IV), which reflects a functional gradient specialized for reproductive roles: the proximal region is enriched with robust mechanoreceptors likely involved in mating and oviposition, the central region serves as a multimodal hub for integrating courtship and mating cues, and the distal region is simplified for close-range substrate assessment. These findings highlight the adaptive evolution of cercal sensilla in relation to reproductive behaviors and provide a morphological basis for future studies on mantis phylogeny and sensory ecology. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

18 pages, 7364 KB  
Article
Enhanced Moisture Management in Textiles via Spray-Coated Water-Based Polyhydroxyalkanoate Dispersions
by Marta A. Teixeira, Wael Almustafa, Joana Castro, Catarina Guise, Helena Vilaça and Carla J. Silva
Coatings 2025, 15(11), 1237; https://doi.org/10.3390/coatings15111237 - 23 Oct 2025
Abstract
Developing sustainable textile finishes that enhance moisture management and breathability remains a significant challenge in designing high-performance apparel. In this study, we propose an eco-friendly coating strategy utilizing an aqueous dispersion of poly(3-hydroxybutyrate)-diol (PHB.E.0), a member of the polyhydroxyalkanoate (PHA) family. This coating [...] Read more.
Developing sustainable textile finishes that enhance moisture management and breathability remains a significant challenge in designing high-performance apparel. In this study, we propose an eco-friendly coating strategy utilizing an aqueous dispersion of poly(3-hydroxybutyrate)-diol (PHB.E.0), a member of the polyhydroxyalkanoate (PHA) family. This coating was applied to woven polyester (PES) and cotton (CO) fabrics using a low-impact spray-coating technique, aiming to improve functional properties while maintaining environmental sustainability. This solvent-free process significantly reduces chemical usage and energy demand, aligning with sustainable manufacturing goals. Successful deposition of the coating was confirmed by scanning electron microscopy (SEM), attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), elemental (C/O) analysis, and thermogravimetric analysis (TGA), which also revealed substrate-dependent thermal behaviour. Wettability, water absorption, and permeability tests showed that the coated fabrics retained their hydrophilic character. PHB.E.0 coatings led to a significant reduction in air permeability, particularly after hot pressing at 180 °C, from ≈670 to ≈171 L·m−2 s−1 for PES and from ≈50 to ≈30 L·m−2·s−1 for CO, without compromising water vapor permeability. All coated samples maintained high breathability, essential for wearer comfort. These results demonstrate that PHB.E.0 coatings enhance wind resistance while preserving moisture vapor transport, offering a sustainable and effective solution for functional sportswear. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

14 pages, 2092 KB  
Article
Community Structure of Labyrinthulomycetes Protists in Zostera marina Seagrass Beds of Northern China
by Yibo Fu, Tianle Chu, Xinlong An, Yike He, Chen Dai, Shibo Li, Yining Gu, Zhaoge Guo, Yingbo Duan and Qiuzhen Wang
Microorganisms 2025, 13(11), 2420; https://doi.org/10.3390/microorganisms13112420 - 22 Oct 2025
Abstract
Labyrinthulomycetes protists play important roles in organic matter decomposition and nutrient cycling in marine ecosystems. To better understand their distribution and potential ecological functions in Caofeidian seagrass beds of the Bohai Sea, we conducted high-throughput sequencing of samples collected from multiple habitats, including [...] Read more.
Labyrinthulomycetes protists play important roles in organic matter decomposition and nutrient cycling in marine ecosystems. To better understand their distribution and potential ecological functions in Caofeidian seagrass beds of the Bohai Sea, we conducted high-throughput sequencing of samples collected from multiple habitats, including leaves (L), rhizosphere (R), sediments (S), and seawater (W). Our results revealed distinct habitat-specific patterns of community composition. Oblongichytrium and Stellarchytrium were dominant in certain samples, exhibiting clear differences across stations. Oblongichytrium showed particularly high abundance in leaf and seawater samples, likely reflecting the availability of particulate and dissolved substrates enriched by seagrass beds. In the rhizosphere, Sicyoidochytrium, Stellarchytrium and Labyrinthula were enriched, whereas unclassified Labyrinthulomycetes and Thraustochytriaceae lineages prevailed in seawater and specific leaf samples. Notably, a substantial proportion of sequences corresponded to unclassified lineages, potentially representing uncultured “seagrass-associated” taxa. Compared with previous reports, our study revealed both a significantly higher abundance of Stellarchytrium and a remarkably greater proportion of unclassified lineages, suggesting unique features of Labyrinthulomycetes communities in the Caofeidian seagrass ecosystem. These findings provide new insights into the ecological roles of Labyrinthulomycetes in seagrass beds and offer an important reference for future taxonomic and functional studies of this group. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

10 pages, 3074 KB  
Article
A Method for Preparing Diamond Films with High Thermal Stability
by Xia Zhao, Chao Han, Xin Jia and Zifeng Fan
Nanomaterials 2025, 15(21), 1606; https://doi.org/10.3390/nano15211606 - 22 Oct 2025
Viewed by 32
Abstract
Due to the outstanding thermal stability of diamond film, diamond films have extensive application prospects in fields such as electronics, optics, biomedicine, and aerospace, and are one of the important materials driving the development of modern science and technology. Moreover, the cost of [...] Read more.
Due to the outstanding thermal stability of diamond film, diamond films have extensive application prospects in fields such as electronics, optics, biomedicine, and aerospace, and are one of the important materials driving the development of modern science and technology. Moreover, the cost of single-crystal diamond substrates is high, and it is difficult to achieve large-scale batch production. A direct current arc plasma jet chemical vapor deposition method, combined with post-treatment steps such as nano-diamond seed crystal implantation, surface modification, and high-temperature annealing, is used to prepare high-quality diamond films. The relationship between the thermal conductivity and optical properties of diamond films is analyzed in detail. The experimental results showed that diamond film has a relatively smooth surface, with a surface roughness that can reach 3 nm. As the temperature rises, diamond films exhibit good crystal orientation and thermal stability, the FWHM of reflection peaks become smaller, and thermal conductivity can reach 1734 W/(m·K). The infrared testing analysis also confirmed that the diamond film has excellent thermal diffusion properties. When the diamond film is applied to power device chips, it can effectively reduce the junction temperature of 30 °C. The preparation method proposed in this paper is expected to break through the cost and scale limitations of high-performance diamond films, thereby promoting the wide application of diamond films in industries. Full article
Show Figures

Figure 1

22 pages, 5262 KB  
Article
An SWIR-MIR Spectral Database of Organic Coatings Used on Historic Metals
by Elizabeth Provost and Aaron Shugar
Coatings 2025, 15(10), 1226; https://doi.org/10.3390/coatings15101226 - 20 Oct 2025
Viewed by 470
Abstract
Surface organic coatings (SOCs) composed of drying oils, resins, and bitumen were commonly applied to small Renaissance bronze sculptures to enhance their visual and physical properties, producing dark, lustrous surfaces that were both esthetic and protective. Yet, the identification of these coatings remains [...] Read more.
Surface organic coatings (SOCs) composed of drying oils, resins, and bitumen were commonly applied to small Renaissance bronze sculptures to enhance their visual and physical properties, producing dark, lustrous surfaces that were both esthetic and protective. Yet, the identification of these coatings remains challenging due to aging, conservation interventions, and the damage caused by physical sampling. This study presents a reproducible, non-destructive protocol for characterizing SOCs on metal substrates using external reflection Fourier transform infrared spectroscopy (ER-FTIR) and fiber optic reflectance spectroscopy (FORS). Twenty-seven reference coating mock-ups of linseed oil, walnut oil, mastic resin, pine resin, and bitumen were stoved onto bronze coupons and artificially aged. Spectra were analyzed across the visible/near-infrared (VIS-NIR) (~400–1000 nm), short-wave-infrared (SWIR) (~1000–2500 nm), and mid-infrared (MIR) (~2.5–25 µm) ranges, with key diagnostic features identified for each component and blend, including primary absorptions, combination bands, and overtones. ER-FTIR proved highly effective in detecting oil–resin mixtures and later wax coatings through characteristic bands in the MIR, while FORS, enhanced by first-derivative processing, successfully differentiated triterpenoid and diterpenoid resins and identified multi-component SOCs in the SWIR region. The reference spectral database generated in this study is intended to serve as a comparative tool for future non-invasive analysis of organic coatings on metal surfaces and to demonstrate that ER-FTIR and FORS, used in tandem, offer a practical and scalable framework for the non-destructive identification of SOCs. Full article
Show Figures

Graphical abstract

13 pages, 3779 KB  
Article
In Situ Optical Monitoring and Morphological Evolution of Si Nanowires Grown on Faceted Al2O3(0001) Substrates
by Olzat Toktarbaiuly, Mergen Zhazitov, Muhammad Abdullah, Yerbolat Tezekbay, Nazerke Kydyrbay, Nurxat Nuraje and Tolagay Duisebayev
Nanomaterials 2025, 15(20), 1589; https://doi.org/10.3390/nano15201589 - 17 Oct 2025
Viewed by 334
Abstract
This paper presents the growth and in situ optical characterization of silicon nanowires (Si NWs) on Al2O3(0001) substrates that are thermally faceted using the atomic low angle shadowing technique (ATLAS) method. Annealing Al2O3 substrates in air [...] Read more.
This paper presents the growth and in situ optical characterization of silicon nanowires (Si NWs) on Al2O3(0001) substrates that are thermally faceted using the atomic low angle shadowing technique (ATLAS) method. Annealing Al2O3 substrates in air before surface faceting was used for the first time, as identified by atomic force microscopy (AFM). Planar Si NW arrays were subsequently deposited and characterized in real-time by reflectance anisotropy spectroscopy (RAS). RAS measurements detected irreversible spectral changes during growth, e.g., red-shift in peak energy for marking amorphous Si NW formation. Blue-shifts in RAS spectra following annealing post-growth at varied temperatures were found to be associated with structural nanowire development. AFM analysis following annealing detected dramatic changes in morphology, e.g., quantifiable differences in NW height and thickness and complete disappearance of nanowire structures at high temperatures. These results confirm the validity of in situ RAS as a monitoring tool for nanowire growth and illustrate Si NW morphology’s sensitivity to thermal processing. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

19 pages, 3671 KB  
Article
Close Relatives, Different Niches: Urban Ecology of Two Range-Expanding Thrushes Recently Meeting in the Argentinian Pampas
by Miriam Soledad Vazquez, Alberto L. Scorolli and Sergio M. Zalba
Birds 2025, 6(4), 55; https://doi.org/10.3390/birds6040055 - 17 Oct 2025
Viewed by 233
Abstract
Urbanization reshapes bird communities by filtering species according to their ecological traits, often reducing richness, altering relative abundances, and favoring a subset of functionally tolerant species that dominate urban assemblages. Some native taxa are able to inhabit cities, even using them as stepping [...] Read more.
Urbanization reshapes bird communities by filtering species according to their ecological traits, often reducing richness, altering relative abundances, and favoring a subset of functionally tolerant species that dominate urban assemblages. Some native taxa are able to inhabit cities, even using them as stepping stones for range expansion. We examined urban habitat use, microhabitat selection, and potential niche partitioning between two range-expanding thrushes (Austral Thrush [Turdus falcklandii] and Rufous-bellied Thrush [Turdus rufiventris]) in two urban settlements in the Pampas region, Argentina. Using 131 transects across green areas and urbanized zones, we related abundance patterns to habitat features at the transect scale and evaluated microhabitat selection at the individual level. Austral Thrush abundance increased with herbaceous cover, tree cover, and even concrete surfaces, suggesting a relatively high tolerance to fragmented green spaces within dense urban matrices. In contrast, Rufous-bellied Thrush showed a positive association with tree cover, avoided tall buildings, and reached higher abundance in the smaller city, consistent with its recent arrival in the region and preference for less intensively urbanized environments. Microhabitat data revealed marked vertical stratification: Austral Thrush foraged almost exclusively at ground level on grassy or bare substrates, while Rufous-bellied Thrush used trees, shrubs, and vines more frequently. These differences reflect fine-scale resource partitioning that may contribute to reducing niche overlap and favor the coexistence of both species in recently colonized urban areas, while recognizing that such dynamics occur within broader bird assemblages where multiple species interact and compete for space and resources. Our findings highlight that even closely related species can respond divergently to urban structure, and that maintaining structural and substrate heterogeneity within cities may help support native bird diversity. Full article
Show Figures

Figure 1

29 pages, 22311 KB  
Article
Comprehensive Optoelectronic Study of Copper Nitride: Dielectric Function and Bandgap Energies
by Manuel Ballester, Almudena P. Marquez, Eduardo Blanco, Jose M. Manuel, Maria I. Rodriguez-Tapiador, Susana M. Fernandez, Florian Willomitzer, Aggelos K. Katsaggelos and Emilio Marquez
Nanomaterials 2025, 15(20), 1577; https://doi.org/10.3390/nano15201577 - 16 Oct 2025
Viewed by 195
Abstract
Copper nitride (Cu3N) is gaining attention as an eco-friendly thin-film semiconductor in a myriad of applications, including storage devices, microelectronic components, photodetectors, and photovoltaic cells. This work presents a detailed optoelectronic study of Cu3N thin films grown by reactive [...] Read more.
Copper nitride (Cu3N) is gaining attention as an eco-friendly thin-film semiconductor in a myriad of applications, including storage devices, microelectronic components, photodetectors, and photovoltaic cells. This work presents a detailed optoelectronic study of Cu3N thin films grown by reactive RF-magnetron sputtering under pure N2. An overview of the state-of-the-art literature on this material and its potential applications is also provided. The studied films consist of Cu3N polycrystals with a cubic anti-ReO3 type structure exhibiting a preferential (100) orientation. Their optical properties across the UV-Vis-NIR spectral range were investigated using a combination of multi-angle spectroscopic ellipsometry, broadband transmission, and reflection measurements. Our model employs a stratified geometrical approach, primarily to capture the depth-dependent compositional variations of the Cu3N film while also accounting for surface roughness and the underlying glass substrate. The complex dielectric function of the film material is precisely determined through an advanced dispersion model that combines multiple oscillators. By integrating the Tauc–Lorentz, Gaussian, and Drude models, this approach captures the distinct electronic transitions of this polycrystal. This customized optical model allowed us to accurate extract both the indirect (1.83–1.85 eV) and direct (2.38–2.39 eV) bandgaps. Our multifaceted characterization provides one of the most extensive studies of Cu3N thin films to date, paving the way for optimized device applications and broader utilization of this promising binary semiconductor, and showing its particular potential for photovoltaic given its adequate bandgap energies for solar applications. Full article
Show Figures

Figure 1

13 pages, 1433 KB  
Article
L-Arginine Supplementation Improves Endurance Under Chronic Fatigue: Inducing In Vivo Paradigms with In Vitro Support
by Somin Lee, Woo Nam, Kyu Sup An, Eun-Ji Cho, Yong-Min Choi and Hyeon Yeol Ryu
Nutrients 2025, 17(20), 3239; https://doi.org/10.3390/nu17203239 - 15 Oct 2025
Viewed by 418
Abstract
Background: L-arginine is a conditionally essential amino acid that serves as a substrate for nitric oxide synthase and regulates energy metabolism. While its ergogenic effects have been proposed, the mechanisms underlying its anti-fatigue properties are not fully understood. Methods: Male ICR mice were [...] Read more.
Background: L-arginine is a conditionally essential amino acid that serves as a substrate for nitric oxide synthase and regulates energy metabolism. While its ergogenic effects have been proposed, the mechanisms underlying its anti-fatigue properties are not fully understood. Methods: Male ICR mice were orally administered L-arginine (300, 600, or 1200 mg/kg bw/day) for 28 days. Fatigue was chronically induced using twice-weekly forced swimming or treadmill running, and fatigue resistance was then assessed under these paradigms. Blood, skeletal muscle, and liver were analyzed for biomarkers including glucose, lactate, LDH, CPK, NEFA, ammonia, glycogen, nitric oxide, cortisol, and antioxidant enzymes. In parallel, C2C12 myoblasts were treated with L-arginine under proliferative and differentiated conditions to assess hexokinase (HK) activity, myogenin expression, and ROS generation. Results: In vivo, L-arginine decreased serum LDH, CPK, NEFA, ammonia, nitric oxide, and cortisol, while enhancing blood glucose and glycogen storage in both muscle and liver. Forced swimming reduced serum lactate, whereas treadmill exercise elevated intramuscular lactate, suggesting context-dependent lactate regulation. Importantly, L-arginine did not significantly improve forced-swimming immobility time, whereas treadmill time-to-exhaustion increased at the highest dose. Antioxidant responses were improved, as reflected by normalized hepatic catalase activity. In vitro, L-arginine increased HK activity, promoted myogenin expression, and reduced ROS levels, supporting improved glucose utilization, muscle differentiation, and oxidative stress resistance. Conclusions: These findings demonstrate that L-arginine supplementation under chronic fatigue-inducing paradigms improves endurance and alleviates fatigue by enhancing energy metabolism, preserving glycogen, reducing muscle injury, and attenuating oxidative stress. L-arginine shows potential as a functional ingredient for promoting exercise performance and recovery. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

18 pages, 732 KB  
Article
Comparative Assessment of Fermented and Non-Fermented Berry Seeds as Sources of Functional Oils
by Audrone Ispiryan and Elvyra Jarienė
Foods 2025, 14(20), 3494; https://doi.org/10.3390/foods14203494 - 14 Oct 2025
Viewed by 209
Abstract
Berry seeds represent an underexploited byproduct of juice and wine production, and are increasingly valued sources of high-quality cold-pressed oils. In this study, eight berry species, including blackcurrant (Ribes nigrum), red currant (Ribes rubrum), raspberry (Rubus idaeus), [...] Read more.
Berry seeds represent an underexploited byproduct of juice and wine production, and are increasingly valued sources of high-quality cold-pressed oils. In this study, eight berry species, including blackcurrant (Ribes nigrum), red currant (Ribes rubrum), raspberry (Rubus idaeus), strawberry (Fragaria), sea buckthorn (Hippophae rhamnoides), honeysuckle (Lonicera caerulea), viburnum (Viburnum opulus), and rowanberry (Sorbus aucuparia), were investigated to determine the impact of primary fermentation on seed composition and oil quality. Seeds obtained from juice production were compared with those obtained after fermentation. Fermentation consistently reduced seed sugars and carbohydrates by more than 50% while increasing relative protein levels, demonstrating microbial utilization of fermentable substrates. Oil yields showed species-specific responses, with blackcurrant and honeysuckle seeds increasing from ~14 to 15% and ~7 to 8%, respectively, while raspberry decreased from ~9 to 8%, and viburnum decreased from ~6 to 5%. Importantly, fatty acid profiles remained unchanged across all treatments, confirming that fermentation does not alter the natural dominance of linoleic and α-linolenic acids. Tocopherol and total phenolic contents decreased modestly in fermented oils (typically 5–10%), which was reflected in small reductions of DPPH scavenging activity (2–4%) and oxidative stability (0.2–0.5 h). A multivariate heatmap and PCA analyses revealed that berry species identity was the primary driver of biochemical variation, while fermentation introduced only minor within-species shifts. The results indicate that berry pomace remaining after fermentation can still be valorized for cold-pressed oil production with minimal compromise in quality. Full article
Show Figures

Graphical abstract

22 pages, 3492 KB  
Article
Minimum Dietary Fat Threshold for Effective Ketogenesis and Obesity Control in Mice
by Jiawen Shou, Xingchen Dong, Fei Sun, Jia Li, Huiren Wang, Qing Ai, Michael Pellizzon and Ting Fu
Nutrients 2025, 17(20), 3203; https://doi.org/10.3390/nu17203203 - 12 Oct 2025
Viewed by 376
Abstract
Background/Objectives: Ketogenic diets (KDs), defined by very low carbohydrate and high fat content, are widely studied for obesity and metabolic disease. However, KD formulations vary from 60–95% fat, leading to inconsistent induction of ketogenesis and variable outcomes. The fat threshold required for [...] Read more.
Background/Objectives: Ketogenic diets (KDs), defined by very low carbohydrate and high fat content, are widely studied for obesity and metabolic disease. However, KD formulations vary from 60–95% fat, leading to inconsistent induction of ketogenesis and variable outcomes. The fat threshold required for sustained ketosis, and the tissue-specific programs that mediate KD efficacy, remain unclear. Methods: We evaluated multiple KD formulations (80–95% fat) in C57BL/6J wild-type (WT) and diet-induced obese (DIO) mice. Plasma, hepatic, and intestinal β-hydroxybutyrate (BHB) were measured together with expression of ketogenesis and fatty acid oxidation genes. Body weight, adipose distribution, and liver morphology were assessed under both direct feeding and therapeutic settings. Results: In WT mice, only diets exceeding 85% fat induced robust ketogenesis, reflected by elevated BHB and hepatic upregulation of Cd36, Cpt1a, Acat1, and Hmgcs2. Moderate KDs (80–85%) failed to trigger ketosis and resembled high-fat feeding. In obese mice, an 80% KD lowered fasting glucose without reducing body weight, whereas a 90% KD promoted systemic ketosis, weight loss, and adipose reduction. Interestingly, hepatic transcriptional programs for fatty acid oxidation and ketogenesis were suppressed under 90% KD despite elevated BHB, suggesting reliance on substrate availability and peripheral utilization. In contrast, intestinal Hmgcs2 was strongly induced in both WT and DIO mice, with Oxct1 upregulated only in obesity, indicating local ketone production and consumption. Conclusions: These findings identify > 85% dietary fat as a threshold for sustained ketosis and highlight distinct liver–intestine contributions, underscoring ketogenesis as the central driver of KD’s anti-obesity benefits. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

13 pages, 3080 KB  
Article
Immersed-Prism TIRF Microscopy for Visualizing Intraflagellar Transport in Live Cells
by Maya Chauhan, Jun-Hyun Kim, Dibyendu K. Sasmal, Martin F. Engelke and Uttam Manna
Photonics 2025, 12(10), 994; https://doi.org/10.3390/photonics12100994 - 9 Oct 2025
Viewed by 346
Abstract
Total internal reflection fluorescence (TIRF) microscopy excites fluorophores within a few hundred nanometers of the sample–substrate interface, enabling high-contrast imaging near the cell membrane. When cultured cells differentiate, the membrane in contact with the coverslip generally acquires basal characteristics, while the opposite membrane [...] Read more.
Total internal reflection fluorescence (TIRF) microscopy excites fluorophores within a few hundred nanometers of the sample–substrate interface, enabling high-contrast imaging near the cell membrane. When cultured cells differentiate, the membrane in contact with the coverslip generally acquires basal characteristics, while the opposite membrane develops apical features. Consequently, conventional TIRF microscopy is limited to imaging the basal surface. We developed an immersed-prism TIRF (IP-TIRF) microscope, in which a prism immersed in the culture medium generates TIR at the cell/medium–prism interface, illuminating the apical membrane and reducing cytosolic background. In proof-of-principle experiments, we imaged fluorescent beads and 3xmNeonGreen-tagged intraflagellar transport (IFT) particles in cilia, and compared the performance with confocal microscopy. In cellular regions where both methods can be applied (such as the IFT base pool), on average, IP-TIRF achieved approximately 1.8 times the contrast-to-noise ratio (CNR~31) compared to confocal microscopy. Furthermore, IFT-particle motion was detected in IP-TIRF image sequences and Kymographs of cilia, with adequate spatial resolution. Kymograph analysis revealed an average anterograde IFT velocity of 0.156 ± 0.071 µm/s and an average retrograde velocity of 0.020 ± 0.007 µm/s, approximately one-quarter and one-twentieth, respectively, of the values reported for mammalian primary cilia, which we attribute to acquisition at room temperature rather than physiological conditions. Therefore, these velocity measurements should be regarded as proof-of-principle demonstrations obtained at room temperature, not as validated physiological transport rates. Our IP-TIRF method provides a high-resolution, cost-effective, and broadly accessible approach for imaging the apical membrane in live cells. Full article
(This article belongs to the Section Biophotonics and Biomedical Optics)
Show Figures

Figure 1

26 pages, 12809 KB  
Article
Coating Thickness Estimation Using a CNN-Enhanced Ultrasound Echo-Based Deconvolution
by Marina Perez-Diego, Upeksha Chathurani Thibbotuwa, Ainhoa Cortés and Andoni Irizar
Sensors 2025, 25(19), 6234; https://doi.org/10.3390/s25196234 - 8 Oct 2025
Viewed by 440
Abstract
Coating degradation monitoring is increasingly important in offshore industries, where protective layers ensure corrosion prevention and structural integrity. In this context, coating thickness estimation provides critical information. The ultrasound pulse-echo technique is widely used for non-destructive testing (NDT), but closely spaced acoustic interfaces [...] Read more.
Coating degradation monitoring is increasingly important in offshore industries, where protective layers ensure corrosion prevention and structural integrity. In this context, coating thickness estimation provides critical information. The ultrasound pulse-echo technique is widely used for non-destructive testing (NDT), but closely spaced acoustic interfaces often produce overlapping echoes, which complicates detection and accurate isolation of each layer’s thickness. In this study, analysis of the pulse-echo signal from a coated sample has shown that the front-coating reflection affects each main backwall echo differently; by comparing two consecutive backwall echoes, we can cancel the acquisition system’s impulse response and isolate the propagation path-related information between the echoes. This work introduces an ultrasound echo-based methodology for estimating coating thickness by first obtaining the impulse response of the test medium (reflectivity sequence) through a deconvolution model, developed using two consecutive backwall echoes. This is followed by an enhanced detection of coating layer thickness in the reflectivity function using a 1D convolutional neural network (1D-CNN) trained with synthetic signals obtained from finite-difference time-domain (FDTD) simulations with k-Wave MATLAB toolbox (v1.4.0). The proposed approach estimates the front-side coating thickness in steel samples coated on both sides, with coating layers ranging from 60μm to 740μm applied over 5 mm substrates and under varying coating and steel properties. The minimum detectable thickness corresponds to approximately λ/5 for an 8 MHz ultrasonic transducer. On synthetic signals, where the true coating thickness and speed of sound are known, the model achieves an accuracy of approximately 8μm. These findings highlight the strong potential of the model for reliably monitoring relative thickness changes across a wide range of coatings in real samples. Full article
(This article belongs to the Special Issue Nondestructive Sensing and Imaging in Ultrasound—Second Edition)
Show Figures

Figure 1

15 pages, 2060 KB  
Article
High Density of Microplastics in the Caddisfly Larvae Cases
by Eliana Barra, Francesco Cicero, Irene Magliocchetti, Patrizia Menegoni, Maria Sighicelli, Alberto Di Ludovico, Marco Le Foche and Loris Pietrelli
Environments 2025, 12(10), 368; https://doi.org/10.3390/environments12100368 - 8 Oct 2025
Viewed by 600
Abstract
This study aimed to assess the presence of microplastics (MPs) in an urban river (Gari, Lazio, Italy) using case-building caddisfly larvae as potential bioindicators. Results from the benthic faunal assemblage (STAR_ICMi = 0.797) revealed the presence of a rich and well-diversified macroinvertebrate community, [...] Read more.
This study aimed to assess the presence of microplastics (MPs) in an urban river (Gari, Lazio, Italy) using case-building caddisfly larvae as potential bioindicators. Results from the benthic faunal assemblage (STAR_ICMi = 0.797) revealed the presence of a rich and well-diversified macroinvertebrate community, thus reflecting a suitable ecological status. Of 279 caddisfly cases collected, 26% contained small plastic particles of various shapes and colours, while 542 MP items per m2 were found in their substrate. Polyvinyl chloride (PVC) and Polyethylene terephthalate (PET) were the most abundant polymers identified by FT-IR analysis found in the Gari River, while the co-presence of lower-density polymers such as polystyrene (PS) and polyethylene (PE) or polypropylene (PP) reflects the contribution of multiple factors controlling MP deposition. The most abundant MPs were of secondary origin, as evidenced by the Carbonyl Index and the predominant shape. Despite the amounts of MPs found in the Gari River, their ecological and chemical status has been classified as “good” during the monitoring campaigns. These results highlight the need to further investigate the environmental impacts of MPs to implement water quality classification indices. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Plastic Contamination)
Show Figures

Figure 1

27 pages, 4754 KB  
Article
Microwave-Assisted Acid Hydrolysis of PA6 Wastes in PA6 Process: Kinetics, Activation Energies, and Monomer Recovery
by Mega Pristiani, Damayanti Damayanti and Ho-Shing Wu
Processes 2025, 13(10), 3175; https://doi.org/10.3390/pr13103175 - 6 Oct 2025
Viewed by 455
Abstract
Efficient recycling of polyamide 6 (PA6) requires selective depolymerization routes that recover monomers under moderate conditions. This study investigates microwave-assisted acid hydrolysis of four PA6 waste streams, two oligomer-rich residues (WS-13, WS-24), an industrial fiber (C-fiber), and a commercial resin (C-resin) to elucidate [...] Read more.
Efficient recycling of polyamide 6 (PA6) requires selective depolymerization routes that recover monomers under moderate conditions. This study investigates microwave-assisted acid hydrolysis of four PA6 waste streams, two oligomer-rich residues (WS-13, WS-24), an industrial fiber (C-fiber), and a commercial resin (C-resin) to elucidate degradation kinetics, activation energies, and product yields. Thermogravimetric analysis revealed multi-step solid-state decomposition, while microwave hydrolysis (125–200 °C, 15–60 min, 400 W) demonstrated strong dependence on acid type. HCl achieved complete conversion, whereas phosphoric and formic acids exceeded 95%. Kinetic analysis under H3PO4 followed pseudo-first-order behavior, with rate constants (0.015–0.141 min−1 at 200 °C) and activation energies reflecting feedstock structure: 53.1 kJ mol−1 (WS-13), 56.5 kJ mol−1 (WS-24), 87.1 kJ mol−1 (C-resin), and 99.9 kJ mol−1 (C-fiber). Monomer yields varied by substrate: WS-13 achieved 62.4% at 200 °C and 45 min (ACA 46%, CPL 16%), WS-24 yielded 62.0% (primarily ACA), C-fiber reached 69.7% (ACA-dominant), and C-resin produced 53.8%. These results show that oligomer-rich wastes are kinetically favored for rapid hydrolysis at lower energy cost, while C-fiber maximizes aminocaproic acid recovery. Overall, microwave-assisted hydrolysis provides a selective, energy-efficient pathway for PA6 circularity, offering design parameters for reactor operation and process optimization. Full article
(This article belongs to the Special Issue 1st SUSTENS Meeting: Advances in Sustainable Engineering Systems)
Show Figures

Figure 1

Back to TopTop