Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = rebar corrosion expansion crack

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 11003 KiB  
Article
An Integrated Model for Mass Transport, Corrosion Propagation, and Cracking in Offshore Reinforced Concrete Structures
by Wenchao Li, Huaikuan Wang, Jiangshun Wu, Bo Zhang, Yuming Lai, Feifei Huang and Ying Jin
Coatings 2025, 15(2), 172; https://doi.org/10.3390/coatings15020172 - 3 Feb 2025
Viewed by 780
Abstract
The corrosion of steel reinforcements substantially degrades the longevity of reinforced concrete structures, particularly in marine settings. This investigation introduces a comprehensive model that simulates the processes involved in moisture and chloride ion transport, rebar corrosion, and the consequent cracking of concrete. The [...] Read more.
The corrosion of steel reinforcements substantially degrades the longevity of reinforced concrete structures, particularly in marine settings. This investigation introduces a comprehensive model that simulates the processes involved in moisture and chloride ion transport, rebar corrosion, and the consequent cracking of concrete. The model reveals that the transport dynamics of chloride ions are primarily dictated by their penetration rates through the solution. The sensitivity of the steel to corrosion is a function of the concentrations of water and chloride ions, whereas the rate of corrosion predominantly depends on the availability of oxygen at the corrosive site. Oxygen diffusion is the rate-limiting step in the entire process of the electrochemical reactions of the rebar. And the peak corrosion rates are observed at the interface between the solution and the gas phase. The model calculates the stress and strain in the concrete resulting from volumetric expansion due to oxidization of the steel bars. By accurately reproducing the progression of corrosion-related damage, this model provides crucial insights for predicting the service life of offshore concrete structures and enhancing durability against aggressive environmental conditions. Full article
(This article belongs to the Special Issue Alloy/Metal/Steel Surface: Fabrication, Structure, and Corrosion)
Show Figures

Graphical abstract

14 pages, 4923 KiB  
Article
Safety Analysis of Rebar Corrosion Depth at the Moment of Corrosion-Induced Cover Cracking
by Hui Jiang, Shengcheng Wang, Yaqun Ren, Yan Li, Shaolei Song and Yanting Qin
Sustainability 2023, 15(3), 2491; https://doi.org/10.3390/su15032491 - 30 Jan 2023
Cited by 1 | Viewed by 2289
Abstract
Concrete cover cracking induced by reinforcement corrosion is an important indication of the durability limit state for reinforced concrete (RC) structures and can be used to determine the structural service life. The process of rebar corrosion from the beginning of rusting to the [...] Read more.
Concrete cover cracking induced by reinforcement corrosion is an important indication of the durability limit state for reinforced concrete (RC) structures and can be used to determine the structural service life. The process of rebar corrosion from the beginning of rusting to the occurrence of cover cracking due to corrosion expansion can be divided into two phases: the phase of the free expansion of the corrosion product and the phase of cover cracking. Based on the assumption of the uniform corrosion of the reinforcement, one model for predicting the reinforcement corrosion depth from corrosion initiation to cover cracking was established according to the cylindrical cavity expansion theory. The main factors affecting the reinforcement corrosion depth were analyzed. The main factors affecting the corrosion depth of reinforcement were analyzed. The quantitative sensitivity analysis of the factors influencing the calculation formula shows that the depth of reinforcement corrosion and the thickness of the concrete protective layer are approximately linearly increasing, with a growth rate of 0.2366 μm/mm; the diameter of the reinforcement is approximately linearly decreasing, with a decrease rate of 0.2122 μm/mm; the volume expansion rate of rust is approximately power function decreasing; the overall influence range of the yield criterion selection parameter is 0.15 μm; for the concrete strength grade, the overall influence range is 0.1 μm. The coefficient of determination R2 is 0.87, and the overall accuracy of the calculated formula is high, which can be used to predict the service life of reinforced concrete structures and guide the durability design in combination with the research results on the corrosion rate of reinforcement under different environments. Full article
Show Figures

Figure 1

21 pages, 12310 KiB  
Review
Impact of Corrosion on the Bond Strength between Concrete and Rebar: A Systematic Review
by Amadou Sakhir Syll and Toshiyuki Kanakubo
Materials 2022, 15(19), 7016; https://doi.org/10.3390/ma15197016 - 10 Oct 2022
Cited by 26 | Viewed by 4283
Abstract
Corrosion of the reinforcement affects more than the cross-sectional area of the rebar. The volume of steel also increases due to expansive corrosion products, leading to the cracking, delamination, and spalling of concrete. As a result, the bond capacity between concrete and rebar [...] Read more.
Corrosion of the reinforcement affects more than the cross-sectional area of the rebar. The volume of steel also increases due to expansive corrosion products, leading to the cracking, delamination, and spalling of concrete. As a result, the bond capacity between concrete and rebar is affected. Researchers have extensively examined the impact of corrosion on the bond strength between concrete and rebar to propose empirical, theoretical, or numerical predictive models. Therefore, research programs on this topic have increased rapidly in recent years. This article presents a systematic literature review to explore experimental methods, outcomes, and trends on this topic. The Web of Science search collected 84 relevant research articles through a rigorous selection. Key factors that affect bond strength degradation, including concrete cover, concrete strength, and stirrups, have been documented. However, a general model is still unavailable due to discrepancies caused by differences in testing methods to evaluate the effect of corrosion on bond strength. Furthermore, researchers attempted to clarify the degradation mechanism of bond strength affected by corrosion. As a result, new alternatives have been proposed to build a practical model to assess the bond strength deterioration of corroded structures. Full article
Show Figures

Figure 1

17 pages, 8087 KiB  
Article
Research on the Mechanical Behavior of a Steel–Concrete Composite Link Slab on a Simply Supported Girder Bridge
by Chengquan Wang, Jun Xie, Yonggang Shen and Jiqing Jiang
Metals 2022, 12(9), 1410; https://doi.org/10.3390/met12091410 - 26 Aug 2022
Cited by 3 | Viewed by 2595
Abstract
Water leakage and debris accumulation caused by the expansion joints in a bridge superstructure reduce the service life of the bridge and increase the maintenance costs. A link slab is an effective means to eliminate the expansion joints, providing a continuous deck system. [...] Read more.
Water leakage and debris accumulation caused by the expansion joints in a bridge superstructure reduce the service life of the bridge and increase the maintenance costs. A link slab is an effective means to eliminate the expansion joints, providing a continuous deck system. However, the load-caused concrete cracking of the link slab also leads to problems associated with water leakage and rebar corrosion. In order to solve these problems, a new type of steel–concrete composite link slab (SCC-LS) was designed to continuously subject the bridge deck to a positive bending moment and surface concrete compression, which reduced the cracking damage in the link slab. This paper presents the mechanical performance results of the SCC-LS obtained using full-scale model tests. Furthermore, theoretical calculations and finite element (FE) models of the jointless bridge validated the performance based on the experimental results. The results of this study show that the SCC-LS can effectively solve the problem of concrete cracking on the surface of the bridge deck, which has theoretical reference significance and engineering application value for the structural design, maintenance and transformation of continuous simply supported bridge decks and the promotion of seamless bridges. Full article
Show Figures

Figure 1

20 pages, 1974 KiB  
Review
Carbonation and Corrosion Problems in Reinforced Concrete Structures
by Abdulrahman Fahad Al Fuhaid and Akbar Niaz
Buildings 2022, 12(5), 586; https://doi.org/10.3390/buildings12050586 - 2 May 2022
Cited by 89 | Viewed by 21598
Abstract
Reinforced concrete (RC) has been commonly used as a construction material for decades due to its high compressive strength and moderate tensile strength. However, these two properties of RC are frequently hampered by degradation. The main degradation processes in RC structures are carbonation [...] Read more.
Reinforced concrete (RC) has been commonly used as a construction material for decades due to its high compressive strength and moderate tensile strength. However, these two properties of RC are frequently hampered by degradation. The main degradation processes in RC structures are carbonation and the corrosion of rebars. The scientific community is divided regarding the process by which carbonation causes structural damage. Some researchers suggest that carbonation weakens a structure and makes it prone to rebar corrosion, while others suggest that carbonation does not damage structures enough to cause rebar corrosion. This paper is a review of the research work carried out by different researchers on the carbonation and corrosion of RC structures. The process of carbonation and the factors that contribute to this process will be discussed, alongside recommendations for improving structures to decrease the carbonation process. The corrosion of rebars, damage to passive layers, volume expansion due to steel oxidation, and crack growth will also be discussed. Available protection methods for reducing carbonation, such as rebar structure coating, cathodic protection, and modifier implementation, will also be reviewed. The paper concludes by describing the most significant types of damage caused by carbonation, testing protocols, and mitigation against corrosion damage. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

16 pages, 6314 KiB  
Article
Effect of Stirrup on Bond Strength Degradation in Concrete Cracked by Expansion Agent Filled Pipes
by Amadou Sakhir Syll, Hiroki Shimokobe and Toshiyuki Kanakubo
Appl. Sci. 2021, 11(19), 8874; https://doi.org/10.3390/app11198874 - 24 Sep 2021
Cited by 6 | Viewed by 2934
Abstract
The corrosion of rebars in reinforced concrete structures cracks the concrete, which leads to the degradation of the bond strength between the rebar and concrete. Since bond deterioration can menace structural safety, bond strength evaluation is essential for proper maintenance. In this study, [...] Read more.
The corrosion of rebars in reinforced concrete structures cracks the concrete, which leads to the degradation of the bond strength between the rebar and concrete. Since bond deterioration can menace structural safety, bond strength evaluation is essential for proper maintenance. In this study, the authors investigated bond strength degradation by conducting pull-out tests on concrete specimens, with induced crack width and stirrups ratio being the principal parameters. An expansion agent-filled pipe (EAFP) simulates cracks due to the volumetric expansion of the corroded rebar. One advantage of this method is that it allows one to focus on the single effect of an induced crack. The pull-out tests on 36 specimens show that stirrups’ confinement significantly influences the bond degradation due to induced cracks. The authors proposed an empirical model for the degradation of bond strength, considering the impact of induced crack width. The result shows that the induced crack by EAFP can quantify the exclusive consequence of corrosion on bonds. Furthermore, the coefficient of variation is 12% for specimens without stirrup from Law et al. For specimen without and with stirrup from Lin et al., the coefficients of variation are 14% and 17%. The proposed model can predict the corroded specimen from the literature with reasonable accuracy. Full article
Show Figures

Figure 1

20 pages, 1341 KiB  
Article
Numerical Simulation of Non-Uniformly Distributed Corrosion in Reinforced Concrete Cross-Section
by Magdalena German and Jerzy Pamin
Materials 2021, 14(14), 3975; https://doi.org/10.3390/ma14143975 - 16 Jul 2021
Cited by 10 | Viewed by 2381
Abstract
Reinforced concrete structures can be strongly damaged by chloride corrosion of reinforcement. Rust accumulated around rebars involves a volumetric expansion, causing cracking of the surrounding concrete. To simulate the corrosion progress, the initiation phase of the corrosion process is first examined, taking into [...] Read more.
Reinforced concrete structures can be strongly damaged by chloride corrosion of reinforcement. Rust accumulated around rebars involves a volumetric expansion, causing cracking of the surrounding concrete. To simulate the corrosion progress, the initiation phase of the corrosion process is first examined, taking into account the phenomena of oxygen and chloride transport as well as the corrosion current flow. This makes it possible to estimate the mass of produced rust, whereby a corrosion level is defined. A combination of three numerical methods is used to solve the coupled problem. The example object of the research is a beam cross-section with four reinforcement bars. The proposed methodology allows one to predict evolving chloride concentration and time to reinforcement depassivation, depending on the reinforcement position and on the location of a point on the bar surface. Moreover, the dependence of the corrosion initiation time on the chloride diffusion coefficient, chloride threshold, and reinforcement cover thickness is examined. Full article
(This article belongs to the Special Issue Advanced Construction Materials and Processes in Poland)
Show Figures

Figure 1

27 pages, 7533 KiB  
Article
Impact of Laboratory-Accelerated Aging Methods to Study Alkali–Silica Reaction and Reinforcement Corrosion on the Properties of Concrete
by Arezou Attar, Bora Gencturk, Hadi Aryan and Jianqiang Wei
Materials 2020, 13(15), 3273; https://doi.org/10.3390/ma13153273 - 23 Jul 2020
Cited by 13 | Viewed by 3573
Abstract
This study focuses on two separate investigations of the main aging mechanisms: alkali–silica reactivity (ASR) and the corrosion of reinforcing steel (rebar) concrete, both of which may result in a premature failure to meet the serviceability or strength requirements of a concrete structure. [...] Read more.
This study focuses on two separate investigations of the main aging mechanisms: alkali–silica reactivity (ASR) and the corrosion of reinforcing steel (rebar) concrete, both of which may result in a premature failure to meet the serviceability or strength requirements of a concrete structure. However, these processes occur very slowly, spanning decades. The impact of direct chemical additives to fresh concrete to accelerate ASR and the corrosion of reinforcing steel on the fresh and hardened properties of the ensuing material are investigated to inform the potential use of chemicals in large-scale studies. The deterioration of reinforced concrete (RC) is determined by means of expansion, cracking, bulk diffusivity and surface resistivity measurements, and compressive, split tensile and flexural strength tests. The results indicate that the addition of sodium hydroxide and calcium chloride can effectively accelerate the crack formation and propagation in concrete due to ASR and the corrosion of rebar, respectively. The ASR-induced cracks maintained a constant crack width from 0.05 mm to 0.1 mm over the measurement period regardless of the intensity of aging acceleration. Adding 4% chloride by weight of cement for accelerating rebar corrosion resulted in an average crack that was 82% larger than in the case of ASR accelerated with the addition of sodium hydroxide. The addition of alkali resulted in an increase in early-age (7-day) strength. At a total alkali loading of 2.98 kg/m3, 3.84 kg/m3 and 5.57 kg/m3, the 28-day compressive strength of concrete decreased by 3%, 10% and 24%, respectively. Similarly, a higher early-age strength and a lower later-age strength was observed for the concrete in the presence of corrosive calcium chloride. The results from this research are expected to inform future studies on the long-term performance of RC structures under accelerated ASR and corrosion. Full article
(This article belongs to the Special Issue Advances in Construction and Building Materials)
Show Figures

Figure 1

20 pages, 10822 KiB  
Article
Concrete Protective Layer Cracking Caused by Non-Uniform Corrosion of Reinforcements
by Lu Zhang, Ditao Niu, Bo Wen and Daming Luo
Materials 2019, 12(24), 4245; https://doi.org/10.3390/ma12244245 - 17 Dec 2019
Cited by 21 | Viewed by 3827
Abstract
The volume expansion of reinforcement corrosion products resulting from the corrosion of steel reinforcement embedded into concrete causes the concrete’s protective layer to crack or spall, reducing the durability of the concrete structure. Thus, it is necessary to analyze concrete cracking caused by [...] Read more.
The volume expansion of reinforcement corrosion products resulting from the corrosion of steel reinforcement embedded into concrete causes the concrete’s protective layer to crack or spall, reducing the durability of the concrete structure. Thus, it is necessary to analyze concrete cracking caused by reinforcement corrosion. This study focused on the occurrence of non-uniform reinforcement corrosion in a natural environment. The characteristics of the rust layer were used to deduce the unequal radial displacement distribution function of concrete around both angular and non-angular bars. Additionally, the relationship between the corrosion ratio and the radial displacement of the concrete around the bar was established quantitatively. Concrete cracking due to the non-uniform corrosion of reinforcements was simulated using steel bars embedded in concrete that were of uneven displacement because of rust expansion. The distribution of the principal tensile stress around the bar was examined. A formula for calculating the critical radial displacement at the point when cracking began was obtained and used to predict the corrosion ratio of the concrete cover. The determined analytical corrosion ratio agreed well with the test result. The effect factor analysis based on the finite element method indicated that increasing the concrete strength and concrete cover thickness delays concrete cracking and that the adjacent rebar causes the stress superposition phenomenon. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop