Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = realization of Hamiltonian systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 912 KB  
Article
A Guiding Principle for Quantum State Discrimination in the Real-Spectrum Phase of P-Pseudo-Hermitian Systems
by Qinliang Dong, Xueer Gao, Zhihang Liu, Hui Li, Jingwei Wen and Chao Zheng
Entropy 2025, 27(8), 836; https://doi.org/10.3390/e27080836 - 6 Aug 2025
Viewed by 675
Abstract
Quantum state discrimination (QSD) is a fundamental task in quantum information processing, improving the computation efficiency and communication security. Non-Hermitian (NH) PT-symmetric systems were found to be able to discriminate two quantum states better than the Hermitian strategy. In this work, we propose [...] Read more.
Quantum state discrimination (QSD) is a fundamental task in quantum information processing, improving the computation efficiency and communication security. Non-Hermitian (NH) PT-symmetric systems were found to be able to discriminate two quantum states better than the Hermitian strategy. In this work, we propose a QSD approach based on P-pseudo-Hermitian systems with real spectra. We theoretically prove the feasibility of realizing QSD in the real-spectrum phase of a P-pseudo-Hermitian system, i.e., two arbitrary non-orthogonal quantum states can be discriminated by a suitable P-pseudo-Hermitian Hamiltonian. In detail, we decide the minimal angular separation between two non-orthogonal quantum states for a fixed P-pseudo-Hermitian Hamiltonian, and we find the orthogonal evolution time is able to approach zero under suitable conditions, while both the trace distance and the quantum relative entropy are employed to judge their orthogonality. We give a criterion to choose the parameters of a P-pseudo-Hermitian Hamiltonian that evolves the two initial orthogonal states faster than a fixed arbitrary PT-symmetric one with an identical energy difference. Our work expands the NH family for QSD, and can be used to explore real quantum systems in the future. Full article
(This article belongs to the Topic Quantum Systems and Their Applications)
Show Figures

Figure 1

21 pages, 926 KB  
Article
Qutrit Control for Bucket Brigade RAM Using Transmon Systems
by Lazaros Spyridopoulos, Dimitris Ntalaperas and Nikos Konofaos
Appl. Sci. 2025, 15(7), 3950; https://doi.org/10.3390/app15073950 - 3 Apr 2025
Viewed by 764
Abstract
Qudits allow the encoding and manipulation of additional quantum information compared to that stored to a two-level qubit system. Although manipulations of qudit states are generally more complex and can introduce extra sources of noise, qudits can still be used in a number [...] Read more.
Qudits allow the encoding and manipulation of additional quantum information compared to that stored to a two-level qubit system. Although manipulations of qudit states are generally more complex and can introduce extra sources of noise, qudits can still be used in a number of applications when this error can be kept sufficiently low. One such application is the case of the Bucket Brigade Algorithm for realizing a Quantum RAM (QRAM), which inherently uses qutrits for encoding the state of address switches. In this paper, we study a methodology for qutrit manipulation that leverages efficient encoding techniques and pulse calibration methods for the case of transmon systems. The methodology employs an encoding scheme that allows the execution of controlled operations, using the subspace spanned by the two lowest levels of the transmon; we show how this scheme can be used for generating one- and two-qutrit gates by leveraging the Qiskit and Boulder Opal frameworks to compute the parameters of pulses that implement the quantum gates that are used by the BBA. For this type of gate, simulations show that the pulses perform the required operations with a low infidelity when errors introduced by the qutrit Hamiltonian dynamics are considered. Full article
Show Figures

Figure 1

62 pages, 523 KB  
Article
Existence and Mass Gap in Quantum Yang–Mills Theory
by Logan Nye
Int. J. Topol. 2025, 2(1), 2; https://doi.org/10.3390/ijt2010002 - 25 Feb 2025
Viewed by 7666
Abstract
This paper presents a novel approach to solving the Yang–Mills existence and mass gap problem using quantum information theory. We develop a rigorous mathematical framework that reformulates the Yang–Mills theory in terms of quantum circuits and entanglement structures. Our method provides a concrete [...] Read more.
This paper presents a novel approach to solving the Yang–Mills existence and mass gap problem using quantum information theory. We develop a rigorous mathematical framework that reformulates the Yang–Mills theory in terms of quantum circuits and entanglement structures. Our method provides a concrete realization of the Yang–Mills theory that is manifestly gauge-invariant and satisfies the Wightman axioms. We demonstrate the existence of a mass gap by analyzing the entanglement spectrum of the vacuum state, establishing a direct connection between the mass gap and the minimum non-zero eigenvalue of the entanglement Hamiltonian. Our approach also offers new insights into non-perturbative phenomena such as confinement and asymptotic freedom. We introduce new mathematical tools, including entanglement renormalization for gauge theories and quantum circuit complexity measures for quantum fields. The implications of our work extend beyond the Yang–Mills theory, suggesting new approaches to quantum gravity, strongly coupled systems, and cosmological problems. This quantum information perspective on gauge theories opens up exciting new directions for research at the intersection of quantum field theory, quantum gravity, and quantum computation. Full article
20 pages, 657 KB  
Article
General Inverse Problem Solution for Two-Level Systems and Its Application to Charge Transfer
by Agostino Migliore, Hiromichi Nakazato, Alessandro Sergi and Antonino Messina
Physics 2024, 6(3), 1171-1190; https://doi.org/10.3390/physics6030072 - 23 Sep 2024
Viewed by 2327
Abstract
Two-level quantum systems are building blocks of quantum technologies, where the qubit is the basic unit of quantum information. The ability to design driving fields that produce prespecified evolutions of relevant physical observables is crucial to the development of such technologies. Using vector [...] Read more.
Two-level quantum systems are building blocks of quantum technologies, where the qubit is the basic unit of quantum information. The ability to design driving fields that produce prespecified evolutions of relevant physical observables is crucial to the development of such technologies. Using vector algebra and recently developed strategies for generating solvable two-level Hamiltonians, we construct the general solution to the inverse problem for a spin in a time-dependent magnetic field and its extension to any two-level system associated with fictitious spin and field. We provide a general expression for the field that drives the dynamics of the system so as to realize prescribed time evolutions of the expectation values of the Pauli operators and the autocorrelation of the Pauli vector. The analysis is applied to two-state charge transfer systems, showing that the charge transfer process can be seen as a motion of the state of the associated fictitious qubit on the Bloch sphere, and that the expectation values of the related Pauli operators describe the interference between the two differently localized electronic states and their population difference. Our formulation is proposed as a basic step towards potential uses of charge transfer in quantum computing and quantum information transfer. Full article
Show Figures

Figure 1

17 pages, 631 KB  
Article
Trajectory Tracking via Interconnection and Damping Assignment Passivity-Based Control for a Permanent Magnet Synchronous Motor
by Daniel Sting Martinez-Padron, San Jose de la Rosa-Mendoza, Ricardo Alvarez-Salas, Gerardo Espinosa-Perez and Mario Arturo Gonzalez-Garcia
Appl. Sci. 2024, 14(17), 7977; https://doi.org/10.3390/app14177977 - 6 Sep 2024
Cited by 2 | Viewed by 1166
Abstract
This paper presents a controller design to track speed, position, and torque trajectories for a permanent magnet synchronous motor (PMSM). This scheme is based on the interconnection and damping assignment passivity-based control (IDA-PBC) technique recently proposed to solve the tracking control problem for [...] Read more.
This paper presents a controller design to track speed, position, and torque trajectories for a permanent magnet synchronous motor (PMSM). This scheme is based on the interconnection and damping assignment passivity-based control (IDA-PBC) technique recently proposed to solve the tracking control problem for mechanical underactuated systems. The proposed approach regulates the dynamics of the tracking system error at the origin, assuming the realizable trajectories preserve the motor’s port-controlled Hamiltonian structure. The importance of the contribution is two-fold: First, from the theoretical perspective, the trajectory tracking control problem is solved with proved stability properties, a topic that has not been deeply studied with the IDA-PBC methodology design. Second, from the practical point of view, the proposed control scheme exhibits a simple structure for practical implementation and strong robustness properties with respect to parametric uncertainties. The contribution is evaluated under both numerical and experimental environments considering a speed profile that demands the achievement of high dynamic performances. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

7 pages, 242 KB  
Article
Limit Cycles of Discontinuous Piecewise Differential Hamiltonian Systems Separated by a Straight Line
by Joyce A. Casimiro and Jaume Llibre
Axioms 2024, 13(3), 161; https://doi.org/10.3390/axioms13030161 - 29 Feb 2024
Cited by 2 | Viewed by 1845
Abstract
In this article, we study the maximum number of limit cycles of discontinuous piecewise differential systems, formed by two Hamiltonians systems separated by a straight line. We consider three cases, when both Hamiltonians systems in each side of the discontinuity line have simultaneously [...] Read more.
In this article, we study the maximum number of limit cycles of discontinuous piecewise differential systems, formed by two Hamiltonians systems separated by a straight line. We consider three cases, when both Hamiltonians systems in each side of the discontinuity line have simultaneously degree one, two or three. We obtain that in these three cases, this maximum number is zero, one and three, respectively. Moreover, we prove that there are discontinuous piecewise differential systems realizing these maximum number of limit cycles. Note that we have solved the extension of the 16th Hilbert problem about the maximum number of limit cycles that these three classes of discontinuous piecewise differential systems separated by one straight line and formed by two Hamiltonian systems with a degree either one, two, or three, which such systems can exhibit. Full article
(This article belongs to the Topic Advances in Nonlinear Dynamics: Methods and Applications)
Show Figures

Figure 1

31 pages, 1248 KB  
Article
A Loop Quantum-Corrected Family of Chiral Cosmology Models
by Luis Rey Díaz-Barrón, Abraham Espinoza-García, Sinuhé Alejandro Pérez-Payán and J. Socorro
Universe 2024, 10(2), 88; https://doi.org/10.3390/universe10020088 - 12 Feb 2024
Viewed by 1814
Abstract
We construct and examine a holonomy-corrected chiral fields model of cosmological relevance. Specifically, we holonomize the Hamiltonian corresponding to a quintom field scenario with additional kinetic interaction (governed by the constant chiral metric, mab) on a flat FLRW background and [...] Read more.
We construct and examine a holonomy-corrected chiral fields model of cosmological relevance. Specifically, we holonomize the Hamiltonian corresponding to a quintom field scenario with additional kinetic interaction (governed by the constant chiral metric, mab) on a flat FLRW background and contrast the resulting model with the corresponding purely classical system. In particular, it is shown that the single LQC bouncing stage is ensured to be realized, provided the full chiral kinetic energy function does not change sign during evolution. (As preparation, a particularly simple k-essence field is examined within the effective LQC scheme; some exact solutions are obtained in the process.) Additionally, under the said assumption, it is established that the landmark bouncing mechanism of standard (effective) LQC is still guaranteed to be featured even when taking any finite number of fields ϕ1,ϕm and mab to be dependent on such fields (the particular zero-potential case corresponding to a family of simple purely kinetic k-essence multi-field cosmology models). Full article
(This article belongs to the Special Issue Recent Advances in Quantum Cosmology)
Show Figures

Figure 1

15 pages, 3250 KB  
Article
Quantum Spin Hall Effect in Two-Monolayer-Thick InN/InGaN Coupled Multiple Quantum Wells
by Sławomir P. Łepkowski
Nanomaterials 2023, 13(15), 2212; https://doi.org/10.3390/nano13152212 - 30 Jul 2023
Cited by 1 | Viewed by 1992
Abstract
In this study, we present a theoretical study of the quantum spin Hall effect in InN/InGaN coupled multiple quantum wells with the individual well widths equal to two atomic monolayers. We consider triple and quadruple quantum wells in which the In content in [...] Read more.
In this study, we present a theoretical study of the quantum spin Hall effect in InN/InGaN coupled multiple quantum wells with the individual well widths equal to two atomic monolayers. We consider triple and quadruple quantum wells in which the In content in the interwell barriers is greater than or equal to the In content in the external barriers. To calculate the electronic subbands in these nanostructures, we use the eight-band k∙p Hamiltonian, assuming that the effective spin–orbit interaction in InN is negative, which represents the worst-case scenario for achieving a two-dimensional topological insulator. For triple quantum wells, we find that when the In contents of the external and interwell barriers are the same and the widths of the internal barriers are equal to two monolayers, a topological insulator with a bulk energy gap of 0.25 meV can appear. Increasing the In content in the interwell barriers leads to a significant increase in the bulk energy gap of the topological insulator, reaching about 0.8 meV. In these structures, the topological insulator can be achieved when the In content in the external barriers is about 0.64, causing relatively low strain in quantum wells and making the epitaxial growth of these structures within the range of current technology. Using the effective 2D Hamiltonian, we study the edge states in strip structures containing topological triple quantum wells. We demonstrate that the opening of the gap in the spectrum of the edge states caused by decreasing the width of the strip has an oscillatory character regardless of whether the pseudospin-mixing elements of the effective Hamiltonian are omitted or taken into account. The strength of the finite size effect in these structures is several times smaller than that in HgTe/HgCdTe and InAs/GaSb/AlSb topological insulators. Therefore, its influence on the quantum spin Hall effect is negligible in strips with a width larger than 150 nm, unless the temperature at which electron transport is measured is less than 1 mK. In the case of quadruple quantum wells, we find the topological insulator phase only when the In content in the interwell barriers is larger than in the external barriers. We show that in these structures, a topological insulator with a bulk energy gap of 0.038 meV can be achieved when the In content in the external barriers is about 0.75. Since this value of the bulk energy gap is very small, quadruple quantum wells are less useful for realizing a measurable quantum spin Hall system, but they are still attractive for achieving a topological phase transition and a nonlocal topological semimetal phase. Full article
Show Figures

Figure 1

27 pages, 6338 KB  
Article
Dynamic Modeling and Attitude–Vibration Cooperative Control for a Large-Scale Flexible Spacecraft
by Guiqin He and Dengqing Cao
Actuators 2023, 12(4), 167; https://doi.org/10.3390/act12040167 - 6 Apr 2023
Cited by 14 | Viewed by 4805
Abstract
Modern spacecraft usually have larger and more flexible appendages whose vibration becomes more and more prominent, and it has a great influence on the precision of spacecraft attitude. Therefore, the cooperative control of attitude maneuvering and structural vibration of the system has become [...] Read more.
Modern spacecraft usually have larger and more flexible appendages whose vibration becomes more and more prominent, and it has a great influence on the precision of spacecraft attitude. Therefore, the cooperative control of attitude maneuvering and structural vibration of the system has become a significant issue in the spacecraft design process. We developed a low-dimensional and high-precision mathematical model for a large-scale flexible spacecraft (LSFS) equipped with a pair of hinged solar arrays in this paper. The analytic global modes are used to obtain the rigid–flexible coupling discrete dynamic model, and the governing equations with multiple DOFs for the system are derived by using the Hamiltonian principle. The rigid–flexible coupled oscillating responses of LSFS under the three-axis attitude-driving torque pulse during the in-orbit attitude maneuvering process are investigated. A study on the flexibility of the hinge was also conducted. Based on the simplified and accurate dynamic model of the system, we can obtain a state-space model for LSFS conveniently, and the cooperative control schemes for rigid motion and flexible oscillation control are designed by using the LQR, PD, and PD + IS algorithms. The simulation results show that three cooperative controllers can realize spacecraft attitude adjustment and synchronously eliminate flexible oscillation successfully. By comparison, the PD + IS controller is simpler so that it is suitable for the real-time attitude–vibration cooperative control of spacecraft. Full article
(This article belongs to the Special Issue Advanced Spacecraft Structural Dynamics and Actuation Control)
Show Figures

Figure 1

14 pages, 687 KB  
Article
Quantum Multi-Round Resonant Transition Algorithm
by Fan Yang, Xinyu Chen, Dafa Zhao, Shijie Wei, Jingwei Wen, Hefeng Wang, Tao Xin and Guilu Long
Entropy 2023, 25(1), 61; https://doi.org/10.3390/e25010061 - 28 Dec 2022
Cited by 2 | Viewed by 2656
Abstract
Solving the eigenproblems of Hermitian matrices is a significant problem in many fields. The quantum resonant transition (QRT) algorithm has been proposed and demonstrated to solve this problem using quantum devices. To better realize the capabilities of the QRT with recent quantum devices, [...] Read more.
Solving the eigenproblems of Hermitian matrices is a significant problem in many fields. The quantum resonant transition (QRT) algorithm has been proposed and demonstrated to solve this problem using quantum devices. To better realize the capabilities of the QRT with recent quantum devices, we improve this algorithm and develop a new procedure to reduce the time complexity. Compared with the original algorithm, it saves one qubit and reduces the complexity with error ϵ from O(1/ϵ2) to O(1/ϵ). Thanks to these optimizations, we can obtain the energy spectrum and ground state of the effective Hamiltonian of the water molecule more accurately and in only 20 percent of the time in a four-qubit processor compared to previous work. More generally, for non-Hermitian matrices, a singular-value decomposition has essential applications in more areas, such as recommendation systems and principal component analysis. The QRT has also been used to prepare singular vectors corresponding to the largest singular values, demonstrating its potential for applications in quantum machine learning. Full article
(This article belongs to the Section Quantum Information)
Show Figures

Figure 1

29 pages, 1448 KB  
Article
Geometrization for Energy Levels of Isotropic Hyperfine Hamiltonian Block and Related Central Spin Problems for an Arbitrarily Complex Set of Spin-1/2 Nuclei
by Dmitri V. Stass
Int. J. Mol. Sci. 2022, 23(23), 15199; https://doi.org/10.3390/ijms232315199 - 2 Dec 2022
Viewed by 2183
Abstract
Description of interacting spin systems relies on understanding the spectral properties of the corresponding spin Hamiltonians. However, the eigenvalue problems arising here lead to algebraic problems too complex to be analytically tractable. This is already the case for the simplest nontrivial [...] Read more.
Description of interacting spin systems relies on understanding the spectral properties of the corresponding spin Hamiltonians. However, the eigenvalue problems arising here lead to algebraic problems too complex to be analytically tractable. This is already the case for the simplest nontrivial (Kmax1) block for an isotropic hyperfine Hamiltonian for a radical with spin-12 nuclei, where n nuclei produce an n-th order algebraic equation with n independent parameters. Systems described by such blocks are now physically realizable, e.g., as radicals or radical pairs with polarized nuclear spins, appear as closed subensembles in more general radical settings, and have numerous counterparts in related central spin problems. We provide a simple geometrization of energy levels in this case: given n spin-12 nuclei with arbitrary positive couplings ai, take an n-dimensional hyper-ellipsoid with semiaxes ai, stretch it by a factor of n+1 along the spatial diagonal (1, 1, , 1), read off the semiaxes of thus produced new hyper-ellipsoid qi, augment the set {qi} with q0=0, and obtain the sought n+1 energies as Ek=12qk2+14iai. This procedure provides a way of seeing things that can only be solved numerically, giving a useful tool to gain insights that complement the numeric simulations usually inevitable here, and shows an intriguing connection to discrete Fourier transform and spectral properties of standard graphs. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

9 pages, 642 KB  
Article
Comparison of Lumped Oscillator Model and Energy Participation Ratio Methods in Designing Two-Dimensional Superconducting Quantum Chips
by Benzheng Yuan, Weilong Wang, Fudong Liu, Haoran He and Zheng Shan
Entropy 2022, 24(6), 792; https://doi.org/10.3390/e24060792 - 7 Jun 2022
Cited by 7 | Viewed by 4348
Abstract
Over the past two decades, superconducting quantum circuits have become one of the essential platforms for realizing quantum computers. The Hamiltonian of a superconducting quantum circuit system is the key to describing the dynamic evolution of the system. For this reason, various methods [...] Read more.
Over the past two decades, superconducting quantum circuits have become one of the essential platforms for realizing quantum computers. The Hamiltonian of a superconducting quantum circuit system is the key to describing the dynamic evolution of the system. For this reason, various methods for analyzing the Hamiltonian of a superconducting quantum circuit system have been proposed, among which the LOM (Lumped Oscillator Model) and the EPR (Energy Participation Ratio) methods are the most popular ones. To analyze and improve the design methods of superconducting quantum chips, this paper compares the similarities and differences of the LOM and the EPR quantification methods. We verify the applicability of these two theoretical approaches to the design of 2D transmon quantum chips. By comparing the theoretically simulated results and the experimentally measured data at extremely low temperature, the errors between the theoretical calculation and observed measurement values of the two methods were summarized. Results show that the LOM method has more parameter outputs in data diversity and the qubit frequency calculation in LOM is more accurate. The reason is that in LOM more coupling between different systems are taken into consideration. These analyses would have reference significance for the design of superconducting quantum chips. Full article
(This article belongs to the Topic Quantum Information and Quantum Computing)
Show Figures

Figure 1

12 pages, 16034 KB  
Article
Metastable Kitaev Magnets
by Faranak Bahrami, Mykola Abramchuk, Oleg Lebedev and Fazel Tafti
Molecules 2022, 27(3), 871; https://doi.org/10.3390/molecules27030871 - 27 Jan 2022
Cited by 11 | Viewed by 3420
Abstract
Nearly two decades ago, Alexei Kitaev proposed a model for spin-1/2 particles with bond-directional interactions on a two-dimensional honeycomb lattice which had the potential to host a quantum spin-liquid ground state. This work initiated numerous investigations to design and synthesize [...] Read more.
Nearly two decades ago, Alexei Kitaev proposed a model for spin-1/2 particles with bond-directional interactions on a two-dimensional honeycomb lattice which had the potential to host a quantum spin-liquid ground state. This work initiated numerous investigations to design and synthesize materials that would physically realize the Kitaev Hamiltonian. The first generation of such materials, such as Na2IrO3, α-Li2IrO3, and α-RuCl3, revealed the presence of non-Kitaev interactions such as the Heisenberg and off-diagonal exchange. Both physical pressure and chemical doping were used to tune the relative strength of the Kitaev and competing interactions; however, little progress was made towards achieving a purely Kitaev system. Here, we review the recent breakthrough in modifying Kitaev magnets via topochemical methods that has led to the second generation of Kitaev materials. We show how structural modifications due to the topotactic exchange reactions can alter the magnetic interactions in favor of a quantum spin-liquid phase. Full article
(This article belongs to the Special Issue Emerging Frontiers in Metastable Crystalline Solids)
Show Figures

Figure 1

14 pages, 5072 KB  
Article
TOLOMEO, a Novel Machine Learning Algorithm to Measure Information and Order in Correlated Networks and Predict Their State
by Mattia Miotto and Lorenzo Monacelli
Entropy 2021, 23(9), 1138; https://doi.org/10.3390/e23091138 - 31 Aug 2021
Cited by 6 | Viewed by 2710
Abstract
We present ToloMEo (TOpoLogical netwOrk Maximum Entropy Optimization), a program implemented in C and Python that exploits a maximum entropy algorithm to evaluate network topological information. ToloMEo can study any system defined on a connected network where nodes can assume N discrete values [...] Read more.
We present ToloMEo (TOpoLogical netwOrk Maximum Entropy Optimization), a program implemented in C and Python that exploits a maximum entropy algorithm to evaluate network topological information. ToloMEo can study any system defined on a connected network where nodes can assume N discrete values by approximating the system probability distribution with a Pottz Hamiltonian on a graph. The software computes entropy through a thermodynamic integration from the mean-field solution to the final distribution. The nature of the algorithm guarantees that the evaluated entropy is variational (i.e., it always provides an upper bound to the exact entropy). The program also performs machine learning, inferring the system’s behavior providing the probability of unknown states of the network. These features make our method very general and applicable to a broad class of problems. Here, we focus on three different cases of study: (i) an agent-based model of a minimal ecosystem defined on a square lattice, where we show how topological entropy captures a crossover between hunting behaviors; (ii) an example of image processing, where starting from discretized pictures of cell populations we extract information about the ordering and interactions between cell types and reconstruct the most likely positions of cells when data are missing; and (iii) an application to recurrent neural networks, in which we measure the information stored in different realizations of the Hopfield model, extending our method to describe dynamical out-of-equilibrium processes. Full article
(This article belongs to the Special Issue Memory Storage Capacity in Recurrent Neural Networks)
Show Figures

Figure 1

13 pages, 9871 KB  
Article
Strong Dipole-Quadrupole-Exciton Coupling Realized in a Gold Nanorod Dimer Placed on a Two-Dimensional Material
by Huajian Pang, Hongxin Huang, Lidan Zhou, Yuheng Mao, Fu Deng and Sheng Lan
Nanomaterials 2021, 11(6), 1619; https://doi.org/10.3390/nano11061619 - 20 Jun 2021
Cited by 7 | Viewed by 4040
Abstract
Simple systems in which strong coupling of different excitations can be easily realized are highly important, not only for fundamental research but also for practical applications. Here, we proposed a T-shaped gold nanorod (GNR) dimer composed of a long GNR and a short [...] Read more.
Simple systems in which strong coupling of different excitations can be easily realized are highly important, not only for fundamental research but also for practical applications. Here, we proposed a T-shaped gold nanorod (GNR) dimer composed of a long GNR and a short GNR perpendicular to each other and revealed that the dark quadrupole mode of the long GNR can be activated by utilizing the dipole mode excited in the short GNR. It was found that the strong coupling between the dipole and quadrupole modes can be achieved by exciting the T-shaped GNR dimer with a plane wave. Then, we demonstrated the realization of strong dipole–quadrupole–exciton coupling by placing a T-shaped GNR on a tungsten disulfide (WS2) monolayer, which leads to a Rabi splitting as large as ~299 meV. It was confirmed that the simulation results can be well fitted by using a Hamiltonian based on the coupled harmonic oscillator model and the coupling strengths for dipole–quadrupole, dipole–exciton and quadrupole–exciton can be extracted from the fitting results. Our findings open new horizons for realizing strong plasmon–exciton coupling in simple systems and pave the way for constructing novel plasmonic devices for practical applications. Full article
Show Figures

Figure 1

Back to TopTop