A Guiding Principle for Quantum State Discrimination in the Real-Spectrum Phase of P-Pseudo-Hermitian Systems
Abstract
1. Introduction
2. Two-State Discrimination in P-Pseudo-Hermitian and PT-Symmetric Systems
2.1. QSD Using a P-Pseudo-Hermitian Hamiltonian
2.2. QSD Using a PT-Symmetric Hamiltonian
3. The Time Required for the Two Systems to Evolve and into Orthogonal Ones
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
QSD | quantum state discrimination |
NH | non-Hermitian |
NISQ | noisy intermediate-scale quantum |
Appendix A. Details About QSD in P-Pseudo-Hermitian Systems
Appendix B. Proof of the Comparison of Evolution Times Between the Two Systems
Appendix C. Further Numerical Simulations
References
- Barnett, S.M.; Croke, S. Quantum state discrimination. Adv. Opt. Photonics 2009, 1, 238–278. [Google Scholar] [CrossRef]
- Bae, J.; Kwek, L.C. Quantum state discrimination and its applications. J. Phys. A Math. Theor. 2015, 48, 083001. [Google Scholar] [CrossRef]
- Pusey, M.F.; Barrett, J.; Rudolph, T. On the reality of the quantum state. Nat. Phys. 2012, 8, 475–478. [Google Scholar] [CrossRef]
- Bennett, C.H. Quantum cryptography: Public key distribution and coin tossing. In Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 10–12 December 1984. [Google Scholar]
- Abrams, D.S.; Lloyd, S. Nonlinear quantum mechanics implies polynomial-time solution for NP-complete and P problems. Phys. Rev. Lett. 1998, 81, 3992. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G. An update on quantum cryptography. In Advances in Cryptology; Workshop on the Theory and Application of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 1984; pp. 475–480. [Google Scholar]
- Wootters, W.K.; Zurek, W.H. A single quantum cannot be cloned. Nature 1982, 299, 802–803. [Google Scholar] [CrossRef]
- Helstrom, C.W. Quantum detection and estimation theory. J. Stat. Phys. 1969, 1, 231–252. [Google Scholar] [CrossRef]
- Holevo, A.S. Statistical decision theory for quantum systems. J. Multivar. Anal. 1973, 3, 337–394. [Google Scholar] [CrossRef]
- Solís-Prosser, M.; Fernandes, M.; Jiménez, O.; Delgado, A.; Neves, L. Experimental minimum-error quantum-state discrimination in high dimensions. Phys. Rev. Lett. 2017, 118, 100501. [Google Scholar] [CrossRef] [PubMed]
- Clarke, R.B.; Chefles, A.; Barnett, S.M.; Riis, E. Experimental demonstration of optimal unambiguous state discrimination. Phys. Rev. A 2001, 63, 040305. [Google Scholar] [CrossRef]
- Mohseni, M.; Steinberg, A.M.; Bergou, J.A. Optical realization of optimal unambiguous discrimination for pure and mixed quantum states. Phys. Rev. Lett. 2004, 93, 200403. [Google Scholar] [CrossRef]
- Agnew, M.; Bolduc, E.; Resch, K.J.; Franke-Arnold, S.; Leach, J. Discriminating single-photon states unambiguously in high dimensions. Phys. Rev. Lett. 2014, 113, 020501. [Google Scholar] [CrossRef]
- Ivanovic, I.D. How to differentiate between non-orthogonal states. Phys. Lett. A 1987, 123, 257–259. [Google Scholar] [CrossRef]
- Dieks, D. Overlap and distinguishability of quantum states. Phys. Lett. A 1988, 126, 303–306. [Google Scholar] [CrossRef]
- Peres, A. How to differentiate between non-orthogonal states. Phys. Lett. A 1988, 128, 19. [Google Scholar] [CrossRef]
- Jaeger, G.; Shimony, A. Optimal distinction between two non-orthogonal quantum states. Phys. Lett. A 1995, 197, 83–87. [Google Scholar] [CrossRef]
- Clarke, R.B.; Kendon, V.M.; Chefles, A.; Barnett, S.M.; Riis, E.; Sasaki, M. Experimental realization of optimal detection strategies for overcomplete states. Phys. Rev. A 2001, 64, 012303. [Google Scholar] [CrossRef]
- Christodoulides, D.; Yang, J. (Eds.) Parity-Time Symmetry and Its Applications; Springer: Singapore, 2018; Volume 280. [Google Scholar]
- Özdemir, Ş.K.; Rotter, S.; Nori, F.; Yang, L. Parity–time symmetry and exceptional points in photonics. Nat. Mater. 2019, 18, 783–798. [Google Scholar] [CrossRef]
- Croke, S. PT-symmetric Hamiltonians and their application in quantum information. Phys. Rev. A 2015, 91, 052113. [Google Scholar] [CrossRef]
- Kawabata, K.; Ashida, Y.; Ueda, M. Information retrieval and criticality in parity-time-symmetric systems. Phys. Rev. Lett. 2017, 119, 190401. [Google Scholar] [CrossRef]
- Xiao, L.; Wang, K.; Zhan, X.; Bian, Z.; Kawabata, K.; Ueda, M.; Yi, W.; Xue, P. Observation of critical phenomena in parity-time-symmetric quantum dynamics. Phys. Rev. Lett. 2019, 123, 230401. [Google Scholar] [CrossRef]
- Wang, Y.T.; Li, Z.P.; Yu, S.; Ke, Z.J.; Liu, W.; Meng, Y.; Yang, Y.Z.; Tang, J.S.; Li, C.F.; Guo, G.C. Experimental investigation of state distinguishability in parity-time symmetric quantum dynamics. Phys. Rev. Lett. 2020, 124, 230402. [Google Scholar] [CrossRef]
- Fang, Y.L.; Zhao, J.L.; Zhang, Y.; Chen, D.X.; Wu, Q.C.; Zhou, Y.H.; Yang, C.P.; Nori, F. Experimental demonstration of coherence flow in PT-and anti-PT-symmetric systems. Commun. Phys. 2021, 4, 223. [Google Scholar] [CrossRef]
- Wang, W.C.; Zhou, Y.L.; Zhang, H.L.; Zhang, J.; Zhang, M.C.; Xie, Y.; Wu, C.W.; Chen, T.; Ou, B.Q.; Wu, W.; et al. Observation of PT-symmetric quantum coherence in a single-ion system. Phys. Rev. A 2021, 103, L020201. [Google Scholar] [CrossRef]
- Zheng, C. Quantum simulation of PT-arbitrary-phase–symmetric systems. Europhys. Lett. 2022, 136, 30002. [Google Scholar] [CrossRef]
- Zheng, C. Quantum simulation of τ-anti-pseudo-Hermitian two-level systems. Chin. Phys. B 2022, 31, 100301. [Google Scholar] [CrossRef]
- Zheng, C. Duality quantum simulation of a general parity-time-symmetric two-level system. Europhys. Lett. 2018, 123, 40002. [Google Scholar] [CrossRef]
- Wen, J.; Zheng, C.; Kong, X.; Wei, S.; Xin, T.; Long, G. Experimental demonstration of a digital quantum simulation of a general PT-symmetric system. Phys. Rev. A 2019, 99, 062122. [Google Scholar] [CrossRef]
- Gao, W.C.; Zheng, C.; Liu, L.; Wang, T.J.; Wang, C. Experimental simulation of the parity-time symmetric dynamics using photonic qubits. Opt. Express 2020, 29, 517–526. [Google Scholar] [CrossRef]
- Wen, J.; Zheng, C.; Ye, Z.; Xin, T.; Long, G. Stable states with nonzero entropy under broken PT symmetry. Phys. Rev. Res. 2021, 3, 013256. [Google Scholar] [CrossRef]
- Wang, P.; Jin, L.; Song, Z. Berry curvature inside a PT-symmetry protected exceptional surface. Phys. Rev. B 2024, 109, 115406. [Google Scholar] [CrossRef]
- Li, C.; Jin, L.; Song, Z. Coalescing Majorana edge modes in non-Hermitian PT-symmetric Kitaev chain. Sci. Rep. 2020, 10, 6807. [Google Scholar]
- Chu, Y.; Liu, Y.; Liu, H.; Cai, J. Quantum sensing with a single-qubit pseudo-Hermitian system. Phys. Rev. Lett. 2020, 124, 020501. [Google Scholar] [CrossRef]
- Ryu, J.W.; Han, J.H.; Yi, C.H.; Park, H.C.; Park, M.J. Pseudo-Hermitian topology in multiband non-Hermitian systems. Phys. Rev. A 2025, 111, 042205. [Google Scholar] [CrossRef]
- Jin, L.; Song, Z. Symmetry-protected scattering in non-Hermitian linear systems. Chin. Phys. Lett. 2021, 38, 024202. [Google Scholar] [CrossRef]
- Xu, H.; Jin, L. Pseudo-Hermiticity protects the energy-difference conservation in the scattering. Phys. Rev. Res. 2023, 5, L042005. [Google Scholar] [CrossRef]
- Jin, L. Unitary scattering protected by pseudo-hermiticity. Chin. Phys. Lett. 2022, 39, 037302. [Google Scholar] [CrossRef]
- Zhang, S.; He, T.; Jin, L. Localization dynamics at the exceptional point of non-hermitian creutz ladder. Chin. Phys. Lett. 2024, 41, 027201. [Google Scholar] [CrossRef]
- Zhang, X.; Jin, L.; Song, Z. Dynamic magnetization in non-Hermitian quantum spin systems. Phys. Rev. B 2020, 101, 224301. [Google Scholar] [CrossRef]
- Hosseiny, S.M.; Jahromi, H.R.; Farajollahi, B.; Amniat-Talab, M. Technique for studying the coalescence of eigenstates and eigenvalues in non-Hermitian systems. Front. Phys. 2025, 20, 014201. [Google Scholar] [CrossRef]
- Sablevice, E.; Millington, P. Poincaré symmetries and representations in pseudo-Hermitian quantum field theory. Phys. Rev. D 2024, 109, 065012. [Google Scholar] [CrossRef]
- Starkov, G.A. Interplay of pseudo-Hermitian symmetries and degenerate manifolds in the eigenspectrum of non-Hermitian systems. arXiv 2024, arXiv:2402.07690. [Google Scholar]
- Breuer, H.P.; Petruccione, F. The Theory of Open Quantum Systems; OUP Oxford: Oxford, UK, 2002. [Google Scholar]
- Barreiro, J.T.; Müller, M.; Schindler, P.; Nigg, D.; Monz, T.; Chwalla, M.; Hennrich, M.; Roos, C.F.; Zoller, P.; Blatt, R. An open-system quantum simulator with trapped ions. Nature 2011, 470, 486–491. [Google Scholar] [CrossRef]
- Hu, Z.; Xia, R.; Kais, S. A quantum algorithm for evolving open quantum dynamics on quantum computing devices. arXiv 2019, arXiv:1904.00910. [Google Scholar] [CrossRef]
- Del Re, L.; Rost, B.; Kemper, A.; Freericks, J. Driven-dissipative quantum mechanics on a lattice: Simulating a fermionic reservoir on a quantum computer. Phys. Rev. B 2020, 102, 125112. [Google Scholar] [CrossRef]
- Viyuela, O.; Rivas, A.; Gasparinetti, S.; Wallraff, A.; Filipp, S.; Martín-Delgado, M.A. Observation of topological Uhlmann phases with superconducting qubits. Npj Quantum Inf. 2018, 4, 10. [Google Scholar] [CrossRef]
- Del Re, L.; Rost, B.; Foss-Feig, M.; Kemper, A.; Freericks, J. Robust measurements of n-point correlation functions of driven-dissipative quantum systems on a digital quantum computer. Phys. Rev. Lett. 2024, 132, 100601. [Google Scholar] [CrossRef]
- Schlimgen, A.W.; Head-Marsden, K.; Sager, L.M.; Narang, P.; Mazziotti, D.A. Quantum simulation of open quantum systems using a unitary decomposition of operators. Phys. Rev. Lett. 2021, 127, 270503. [Google Scholar] [CrossRef]
- Bender, C.M.; Boettcher, S. Real spectra in non-Hermitian Hamiltonians having P T symmetry. Phys. Rev. Lett. 1998, 80, 5243. [Google Scholar] [CrossRef]
- El-Ganainy, R.; Makris, K.G.; Khajavikhan, M.; Musslimani, Z.H.; Rotter, S.; Christodoulides, D.N. Non-Hermitian physics and PT symmetry. Nat. Phys. 2018, 14, 11–19. [Google Scholar] [CrossRef]
- Bender, C.M.; Boettcher, S.; Meisinger, P.N. PT-symmetric quantum mechanics. J. Math. Phys. 1999, 40, 2201–2229. [Google Scholar] [CrossRef]
- Bender, C.M.; Brody, D.C.; Caldeira, J.; Günther, U.; Meister, B.K.; Samsonov, B.F. PT-symmetric quantum state discrimination. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 2013, 371, 20120160. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.X.; Zhang, Y.; Zhao, J.L.; Wu, Q.C.; Fang, Y.L.; Yang, C.P.; Nori, F. Quantum state discrimination in a PT-symmetric system. Phys. Rev. A 2022, 106, 022438. [Google Scholar] [CrossRef]
- Bender, C.M.; Brody, D.C.; Jones, H.F.; Meister, B.K. Faster than Hermitian quantum mechanics. Phys. Rev. Lett. 2007, 98, 040403. [Google Scholar] [CrossRef]
- Carlini, A.; Hosoya, A.; Koike, T.; Okudaira, Y. Time-optimal quantum evolution. Phys. Rev. Lett. 2006, 96, 060503. [Google Scholar] [CrossRef]
- Lam, M.R.; Peter, N.; Groh, T.; Alt, W.; Robens, C.; Meschede, D.; Negretti, A.; Montangero, S.; Calarco, T.; Alberti, A. Demonstration of quantum brachistochrones between distant states of an atom. Phys. Rev. X 2021, 11, 011035. [Google Scholar] [CrossRef]
- Zheng, C.; Hao, L.; Long, G.L. Observation of a fast evolution in a parity-time-symmetric system. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120053. [Google Scholar] [CrossRef]
- Assis, P.E.; Fring, A. The quantum brachistochrone problem for non-Hermitian Hamiltonians. J. Phys. A Math. Theor. 2008, 41, 244002. [Google Scholar] [CrossRef]
- Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2018, 2, 79. [Google Scholar] [CrossRef]
- Lee, T.; Wick, G. Negative metric and the unitarity of the S-matrix. Nucl. Phys. B 1969, 9, 209–243. [Google Scholar] [CrossRef]
- Konotop, V.V.; Yang, J.; Zezyulin, D.A. Nonlinear waves in PT-symmetric systems. Rev. Mod. Phys. 2016, 88, 035002. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian. J. Math. Phys. 2002, 43, 205–214. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Pseudo-Hermiticity versus PT-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum. J. Math. Phys. 2002, 43, 2814–2816. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Pseudo-Hermiticity versus PT-symmetry III: Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries. J. Math. Phys. 2002, 43, 3944–3951. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Pseudounitary operators and pseudounitary quantum dynamics. J. Math. Phys. 2004, 45, 932–946. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Two-component formulation of the Wheeler–DeWitt equation. J. Math. Phys. 1998, 39, 4499–4512. [Google Scholar] [CrossRef]
- Ghatak, A.; Mandal, B.P. Entangled quantum state discrimination using a pseudo-Hermitian system. J. Phys. A Math. Theor. 2012, 45, 355301. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Q.; Gao, X.; Liu, Z.; Li, H.; Wen, J.; Zheng, C. A Guiding Principle for Quantum State Discrimination in the Real-Spectrum Phase of P-Pseudo-Hermitian Systems. Entropy 2025, 27, 836. https://doi.org/10.3390/e27080836
Dong Q, Gao X, Liu Z, Li H, Wen J, Zheng C. A Guiding Principle for Quantum State Discrimination in the Real-Spectrum Phase of P-Pseudo-Hermitian Systems. Entropy. 2025; 27(8):836. https://doi.org/10.3390/e27080836
Chicago/Turabian StyleDong, Qinliang, Xueer Gao, Zhihang Liu, Hui Li, Jingwei Wen, and Chao Zheng. 2025. "A Guiding Principle for Quantum State Discrimination in the Real-Spectrum Phase of P-Pseudo-Hermitian Systems" Entropy 27, no. 8: 836. https://doi.org/10.3390/e27080836
APA StyleDong, Q., Gao, X., Liu, Z., Li, H., Wen, J., & Zheng, C. (2025). A Guiding Principle for Quantum State Discrimination in the Real-Spectrum Phase of P-Pseudo-Hermitian Systems. Entropy, 27(8), 836. https://doi.org/10.3390/e27080836