Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = reactive air brazing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 8131 KiB  
Article
Utilizing Fly Ash from Coal-Fired Power Plants to Join ZrO2 and Crofer by Reactive Air Brazing
by Shu-Wei Chang, Ren-Kae Shiue and Liang-Wei Huang
Materials 2025, 18(9), 1956; https://doi.org/10.3390/ma18091956 - 25 Apr 2025
Viewed by 429
Abstract
This study attempts to use fly ash as the brazing filler additive to increase the sustainable use of coal-fired power plant by-product materials. The experimental results show that adding 5 wt% fly ash into the Ag paste filler contributes to the interfacial reactions [...] Read more.
This study attempts to use fly ash as the brazing filler additive to increase the sustainable use of coal-fired power plant by-product materials. The experimental results show that adding 5 wt% fly ash into the Ag paste filler contributes to the interfacial reactions in heterogeneous reactive air brazing (RAB) of the ZrO2 and Crofer alloy. The Ag-rich phase dominates the brazed zone. The interfacial reaction layers contain oxidation of the Cu-Ti coating layer, Crofer alloy, and the Si/Al-rich oxides from the fly ash particles. The 5% fly ash RAB joint maintained airtightness for 280 h under 2 psig helium at room temperature. When the test temperature was raised to 600 °C for 24 h, the pressure of the joint assembly still did not drop. When the fly ash addition was increased to 10 wt%, the joint assembly was no longer leak-free at room temperature. Many visible voids and cracks exist in the brazed zone and at the ZrO2/braze and braze/Crofer interfaces. A high volume fraction of the fly ash particles results in many brittle Si/Al-rich oxides in the joint after RAB, and the fracture of these oxides significantly deteriorates the airtightness of the joint. This study shows the feasibility and potential of introducing 5 wt% fly ash particles to the Ag-rich paste filler during the RAB of ZrO2 and Crofer for airtight applications. Full article
Show Figures

Figure 1

13 pages, 17643 KiB  
Article
Zirconia and Crofer Joint Made by Reactive Air Brazing Using the Silver Base Paste and Cu-Ti Coating Layer
by Shu-Wei Chang, Ren-Kae Shiue and Liang-Wei Huang
Materials 2024, 17(15), 3822; https://doi.org/10.3390/ma17153822 - 2 Aug 2024
Cited by 1 | Viewed by 984
Abstract
This study proposes a method to enhance the airtightness of the joint between the ZrO2 and Crofer alloy using coating technology. With the aid of vacuum sputtering technology, a titanium–copper alloy layer with a thickness between 1.5 μm and 6 μm was [...] Read more.
This study proposes a method to enhance the airtightness of the joint between the ZrO2 and Crofer alloy using coating technology. With the aid of vacuum sputtering technology, a titanium–copper alloy layer with a thickness between 1.5 μm and 6 μm was first deposited on the surface of ZrO2 and Crofer, respectively. The chemical composition of the deposited reaction layer was 70.2 Cu and 29.8 Ti in at%. Then, using silver as the base material in the reactive air brazing (RAB) process, we explore the use of this material design to improve the microstructure and reaction mechanism of the joint surface between ceramics and metal, compare the effects of different pretreatment thicknesses on the microstructure, and evaluate its effectiveness through air tightness tests. The results show that a coating of Cu-Ti alloy on the ZrO2 substrate can significantly improve bonding between the Ag filler and ZrO2. The Cu-Ti metallization layer on the ZrO2 substrate is beneficial to the RAB. After the brazing process, the coated Cu-Ti layers form suitable reaction interfaces between the filler, the metal, the filler, and the ceramic. In terms of coating layer thickness, the optimized 3 μm coated Cu-Ti alloy layer is achieved from the experiment. Melting and dissolving the Cu-Ti coated layer into the ZrO2 substrate results in a defect-free interface between the Ag-rich braze and the ZrO2. The air tightness test result shows no leakage under 2 psig at room temperature for 28 h. The pressure condition can still be maintained even under high-temperature conditions of 600 °C for 24 h. Full article
Show Figures

Figure 1

20 pages, 5696 KiB  
Article
Numerical Modeling of Residual Stresses and Fracture Strengths of Ba0.5Sr0.5Co0.8Fe0.2O3−δ in Reactive Air Brazed Joints
by Donat Rudenskiy, Simone Herzog, Lutz Horbach, Nils Christian Gebhardt, Felix Weber, Anke Kaletsch and Christoph Broeckmann
Materials 2023, 16(23), 7265; https://doi.org/10.3390/ma16237265 - 21 Nov 2023
Cited by 2 | Viewed by 1434
Abstract
Reactive Air Brazing (RAB) enables the joining of vacuum-sensitive oxide ceramics, such as Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF), to metals in a one-step process. However, damage may form in ceramic or joint during RAB. In this work, [...] Read more.
Reactive Air Brazing (RAB) enables the joining of vacuum-sensitive oxide ceramics, such as Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF), to metals in a one-step process. However, damage may form in ceramic or joint during RAB. In this work, experimental microstructure characterization, measurement, and prediction of local material properties using finite element analysis were combined to enlighten these damage mechanisms, which are currently not well understood. Micromechanical simulations were performed using representative volume elements. Cooling simulations indicate that small-sized CuO precipitations are most likely to cause crack initiation in BSCF during cooling. The ball-on-three-balls experiment with porous BSCF samples was analyzed numerically to determine the values of temperature-dependent BSCF fracture stresses. The inversely calibrated fracture stresses in the bulk BSCF phase are underestimated, and true values should be quite high, according to an extreme value analysis of pore diameters. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

14 pages, 9115 KiB  
Article
Microstructural Evolution and Gas-Tight Properties of Yttria-Stabilized Zirconia/Crofer 22H Stainless Steel Brazed Joints with the Ag-Ge-Si Filler for Use in Solid-Oxide Fuel Cells
by Liang-Wei Huang, Ren-Kae Shiue and Chien-Kuo Liu
Metals 2023, 13(11), 1866; https://doi.org/10.3390/met13111866 - 9 Nov 2023
Cited by 2 | Viewed by 1492
Abstract
In this paper, a novel 95Ag-2.5Ge-2.5Si (in wt %) filler is utilized for brazing yttria-stabilized zirconia (YSZ) electrolytes and commercial Crofer 22H interconnects for solid-oxide fuel cells’ (SOFCs) sealing application. Before brazing, surface metallization is applied on YSZ and Crofer 22H substrates to [...] Read more.
In this paper, a novel 95Ag-2.5Ge-2.5Si (in wt %) filler is utilized for brazing yttria-stabilized zirconia (YSZ) electrolytes and commercial Crofer 22H interconnects for solid-oxide fuel cells’ (SOFCs) sealing application. Before brazing, surface metallization is applied on YSZ and Crofer 22H substrates to improve the wetting performance of the filler on YSZ and Crofer 22H substrates. The brazing procedure is performed at 900 °C for 10 min under a high vacuum (~10−6 torr) to prepare sandwiched YSZ/Crofer 22H brazed coupons. The metallization mentioned above can achieve reactive wetting toward YSZ ceramics. A Si/Ti-rich oxide layer and an Fe-Cr-Si alloying phase are formed at the brazed joints’ YSZ/filler and filler/Crofer 22H interfaces. After exposure to air at 750 °C for 100 h, Cu and Si contents suffer from oxidation and form CuO and SiO2, respectively, in the brazed zone and the YSZ/filler interface of the joints. The Fe-Cr-Si alloying phase at the filler/Crofer 22H interface is preserved without apparent oxidation. The pressure-drop test results show that the brazed joints’ gas tightness does not deteriorate significantly after thermal aging, which is attributed to the good interfacial integrity of thermal-aged joints. Full article
Show Figures

Figure 1

11 pages, 4888 KiB  
Article
Study on Reactive Air Brazing of p-SiO2 Ceramic with Ag-xCuO Filler Metal
by Yongwei Chen, Qiang Ma and Peng He
Metals 2023, 13(9), 1561; https://doi.org/10.3390/met13091561 - 6 Sep 2023
Viewed by 1249
Abstract
Reactive air brazing of porous SiO2 ceramic (p-SiO2) was achieved using Ag-CuO filler metal. When brazing p-SiO2, two main problems existed. Firstly, the wettability of the Ag filler metal on the surface of p-SiO2 was poor. Secondly, [...] Read more.
Reactive air brazing of porous SiO2 ceramic (p-SiO2) was achieved using Ag-CuO filler metal. When brazing p-SiO2, two main problems existed. Firstly, the wettability of the Ag filler metal on the surface of p-SiO2 was poor. Secondly, the residual stress caused by the mismatch of the coefficient of thermal expansion was high in the joint. In order to solve these problems, the effects of CuO contents on the p-SiO2 brazed joint were analyzed. In a wetting experiment, the addition of CuO significantly improved the wettability of the Ag-CuO/p-SiO2 system. With the content of CuO increasing, the contact angle decreased from 90° to 0°. In addition, when the content of CuO increased to 0.5 mol%, the contact angle decreased from 90° to 52°. Then, during brazing p-SiO2 with the Ag-xCuO filler metal, the typical interfacial microstructure of the joints brazed at 1000 °C for 30 min was p-SiO2 ceramic/Ag (s,s) + SiO2 + CuO/Ag (s,s)/Ag (s,s) + SiO2 + CuO/p-SiO2 ceramic. Meanwhile, Ag-CuO infiltrated into the p-SiO2 ceramic and an infiltration layer formed. The infiltration layer was composed of Ag (s,s) + SiO2 + CuO and the infiltration layer was conductive to form a good gradient transition of the coefficient of thermal expansion (CTE). Then, the residual stress in the joint was released and the shear strength improved. In addition, with the content of CuO increasing, the depth of the infiltration layer increased. Furthermore, when the content of CuO was 0.5 mol%, the maximum shear strength of the joint was 55 MPa. Full article
(This article belongs to the Special Issue Studies on Underwater Welding of Metallic Materials)
Show Figures

Figure 1

21 pages, 19872 KiB  
Article
Diffusion Barriers Minimizing the Strength Degradation of Reactive Air Brazed Ba0.5Sr0.5Co0.8Fe0.2O3-δ Membranes during Aging
by Simone Herzog, Anke Kaletsch and Christoph Broeckmann
Membranes 2023, 13(5), 504; https://doi.org/10.3390/membranes13050504 - 10 May 2023
Cited by 3 | Viewed by 1883
Abstract
The separation of oxygen from air by means of inorganic ceramic membranes requires gas-tight ceramic–metal joints that enable reliable permeation operation in the oxygen partial pressure gradient at 850 °C. Reactive air brazing is a promising method to solve this challenge. However, reactive [...] Read more.
The separation of oxygen from air by means of inorganic ceramic membranes requires gas-tight ceramic–metal joints that enable reliable permeation operation in the oxygen partial pressure gradient at 850 °C. Reactive air brazing is a promising method to solve this challenge. However, reactive air brazed BSCF membranes suffer from a significant strength degradation that is caused by unhindered diffusion from the metal component during aging. In this study, we investigated how diffusion layers applied on the austenitic steel AISI 314 influence the bending strength of BSCF-Ag3CuO-AISI314 joints after aging. Three different approaches were compared as diffusion barriers: (1) aluminizing via pack cementation, (2) spray coating with NiCoCrAlReY, and (3) spray coating with NiCoCrAlReY and an additional 7YSZ top layer. Coated steel components were brazed to bending bars and aged for 1000 h at 850 °C in air prior to four-point bending and subsequent macroscopic as well microscopic analyses. In particular, coating with NiCoCrAlReY showed low-defect microstructures. The characteristic joint strength was raised from 17 MPa to 35 MPa after 1000 h aging at 850 °C. In addition, the dominant delamination fracture between the steel and the mixed oxide layer, observed in the reference series with uncoated steel, could be replaced by mixed and ceramic fractures of higher strength. The effect of residual joint stresses on the crack formation and path is analyzed and discussed. Chromium poisoning could no longer be detected in the BSCF, and interdiffusion through the braze was effectively reduced. Since the strength degradation of reactive air brazed joints is mainly caused by the metallic joining partner, the findings on the effect of the diffusion barriers in BSCF joints might be transferred to numerous other joining systems. Full article
Show Figures

Graphical abstract

14 pages, 6664 KiB  
Article
Joining 3YSZ Electrolyte to AISI 441 Interconnect Using the Ag Particle Interlayer: Enhanced Mechanical and Aging Properties
by Xiaoqing Si, Xiaoyang Wang, Chun Li, Tong Lin, Junlei Qi and Jian Cao
Crystals 2021, 11(12), 1573; https://doi.org/10.3390/cryst11121573 - 16 Dec 2021
Cited by 10 | Viewed by 2862
Abstract
Reactive air brazing has been widely used in fabricating solid oxide fuel/electrolysis cell (SOFC/SOEC) stacks. However, the conventional Ag–CuO braze can lead to (I) over oxidation at the steel interconnect interface caused by its adverse reactions with the CuO and (II) many voids [...] Read more.
Reactive air brazing has been widely used in fabricating solid oxide fuel/electrolysis cell (SOFC/SOEC) stacks. However, the conventional Ag–CuO braze can lead to (I) over oxidation at the steel interconnect interface caused by its adverse reactions with the CuO and (II) many voids caused by the hydrogen-induced decomposition of CuO. The present work demonstrates that the Ag particle interlayer can be used to join yttria-stabilized zirconia (YSZ) electrolytes to AISI 441 interconnect in air instead of Ag–CuO braze. Reliable joining between YSZ and AISI 441 can be realized at 920 °C. A dense and thin oxide layer (~2 μm) is formed at the AISI 441 interface. Additionally, an interatomic joining at the YSZ/Ag interface was observed by TEM. Obtained joints displayed a shear strength of ~86.1 MPa, 161% higher than that of the joints brazed by Ag–CuO braze (~33 MPa). After aging in reducing and oxidizing atmospheres (800 °C/300 h), joints remained tight and dense, indicating a better aging performance. This technique eliminates the CuO-induced issues, which may extend lifetimes for SOFC/SOEC stacks and other ceramic/metal joining applications. Full article
Show Figures

Figure 1

11 pages, 3675 KiB  
Article
Reactive Air Brazing of TiAl Alloy Using Ag-CuO: Microstructure and Joint Properties
by Haoran Yang, Xiaoqing Si, Chun Li and Jian Cao
Crystals 2021, 11(12), 1496; https://doi.org/10.3390/cryst11121496 - 2 Dec 2021
Cited by 2 | Viewed by 2197
Abstract
TiAl alloy was successfully brazed with Ag-CuO filler in air atmosphere under simple technical conditions. The wettability of a series of Ag-CuO fillers on TiAl was analyzed. Ag-2mol%CuO filler possessed good wetting behavior on TiAl alloy. The microstructure and mechanical properties of the [...] Read more.
TiAl alloy was successfully brazed with Ag-CuO filler in air atmosphere under simple technical conditions. The wettability of a series of Ag-CuO fillers on TiAl was analyzed. Ag-2mol%CuO filler possessed good wetting behavior on TiAl alloy. The microstructure and mechanical properties of the brazed joints were investigated. Oxide layers can be found on both sides, which can be divided into external TiO2-rich layer and internal Al2O3-rich layer. The maximum shear strength of the joint was obtained at 1020 °C holding for 20 min. Full article
Show Figures

Figure 1

12 pages, 7077 KiB  
Article
Development and Proof of Concept of a Compact Metallic Reactor for MIEC Ceramic Membranes
by Sonia Escolástico, Falk Schulze-Küppers, Stefan Baumann, Katja Haas-Santo and Roland Dittmeyer
Membranes 2021, 11(7), 541; https://doi.org/10.3390/membranes11070541 - 16 Jul 2021
Cited by 7 | Viewed by 3213
Abstract
The integration of mixed ionic–electronic conducting separation membranes in catalytic membrane reactors can yield more environmentally safe and economically efficient processes. Concentration polarization effects are observed in these types of membranes when O2 permeating fluxes are significantly high. These undesired effects can [...] Read more.
The integration of mixed ionic–electronic conducting separation membranes in catalytic membrane reactors can yield more environmentally safe and economically efficient processes. Concentration polarization effects are observed in these types of membranes when O2 permeating fluxes are significantly high. These undesired effects can be overcome by the development of new membrane reactors where mass transport and heat transfer are enhanced by adopting state-of-the-art microfabrication. In addition, careful control over the fluid dynamics regime by employing compact metallic reactors equipped with microchannels could allow the rapid extraction of the products, minimizing undesired secondary reactions. Moreover, a high membrane surface area to catalyst volume ratio can be achieved. In this work, a compact metallic reactor was developed for the integration of mixed ionic–electronic conducting ceramic membranes. An asymmetric all-La0.6Sr0.4Co0.2Fe0.8O3–δ membrane was sealed to the metallic reactor by the reactive air brazing technique. O2 permeation was evaluated as a proof of concept, and the influence of different parameters, such as temperature, sweep gas flow rates and oxygen partial pressure in the feed gas, were evaluated. Full article
(This article belongs to the Special Issue Characterization of Ceramic Membranes)
Show Figures

Graphical abstract

12 pages, 2552 KiB  
Article
Brazing Strategies for High Temperature Ultrasonic Transducers Based on LiNbO3 Piezoelectric Elements
by Christopher Bosyj, Neelesh Bhadwal, Thomas Coyle and Anthony Sinclair
Instruments 2019, 3(1), 2; https://doi.org/10.3390/instruments3010002 - 23 Dec 2018
Cited by 10 | Viewed by 5021
Abstract
Long-term installation of ultrasonic transducers in high temperature environments allows for continuous monitoring of critical components and processes without the need to halt industrial operations. Transducer designs based on the high-Curie-point piezoelectric material lithium niobate have been shown to both be effective and [...] Read more.
Long-term installation of ultrasonic transducers in high temperature environments allows for continuous monitoring of critical components and processes without the need to halt industrial operations. Transducer designs based on the high-Curie-point piezoelectric material lithium niobate have been shown to both be effective and stable at extreme temperatures for long-term installation. In this study, several brazing techniques are evaluated, all of which aim to provide both mechanical bonding and acoustic coupling directly to a bare lithium niobate piezoelectric element. Two brazing materials—a novel silver-copper braze applied in a reactive air environment and an aluminum-based braze applied in a vacuum environment—are found to be suitable for ultrasound transmission at elevated temperatures. Reliable wide-bandwidth and low-noise ultrasound transmission is achieved between room temperature and 800 °C. Full article
Show Figures

Figure 1

Back to TopTop