Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = rate of change of the tec index

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3031 KB  
Article
Post-Sunrise Ionospheric Irregularities in Southeast Asia During the Geomagnetic Storm on 19–20 April 2024
by Prayitno Abadi, Ihsan Naufal Muafiry, Teguh Nugraha Pratama, Angga Yolanda Putra, Agri Faturahman, Noersomadi, Edy Maryadi, Febrylian Fahmi Chabibi, Umar Ali Ahmad, Guozhu Li, Wenjie Sun, Haiyong Xie, Yuichi Otsuka, Septi Perwitasari and Punyawi Jamjareegulgran
Remote Sens. 2025, 17(16), 2906; https://doi.org/10.3390/rs17162906 - 20 Aug 2025
Cited by 2 | Viewed by 2403
Abstract
We present new insights into post-sunrise ionospheric irregularities in Southeast Asia during the intense geomagnetic storm of 19–20 April 2024. By utilizing Total Electron Content (TEC) and Rate of TEC Change Index (ROTI) maps, along with ionosondes, we identified the emergence of post-sunset [...] Read more.
We present new insights into post-sunrise ionospheric irregularities in Southeast Asia during the intense geomagnetic storm of 19–20 April 2024. By utilizing Total Electron Content (TEC) and Rate of TEC Change Index (ROTI) maps, along with ionosondes, we identified the emergence of post-sunset Equatorial Plasma Bubbles (EPBs)—plasma depletion structures and irregularities—in western Southeast Asia on 19 April. These EPBs moved eastward, and the irregularities dissipated before midnight after the EPBs covered approximately 10° of longitude. Interestingly, plasma density depletion structures persisted and turned westward after midnight until post-sunrise the following day. Concurrently, an increase in F-region height from midnight to sunrise, possibly induced by the storm’s electric field, facilitated the regeneration of irregularities in the residual plasma depletions during the post-sunrise period. The significant increase in F-region height was particularly pronounced in western Southeast Asia. As a result, post-sunrise irregularities expanded their latitudinal structure while propagating westward. These findings suggest that areas with decayed plasma depletion structures from post-sunset EPBs that last past midnight could be sites for creating post-sunrise irregularities during geomagnetic storms. The storm-induced electric fields produce EPBs and ionospheric irregularities at longitudes where the surviving plasma depletion structures of post-sunset EPBs are present. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

15 pages, 5121 KB  
Article
Regional Spatial Mean of Ionospheric Irregularities Based on K-Means Clustering of ROTI Maps
by Yenca Migoya-Orué, Oladipo E. Abe and Sandro Radicella
Atmosphere 2024, 15(9), 1098; https://doi.org/10.3390/atmos15091098 - 9 Sep 2024
Cited by 2 | Viewed by 1149
Abstract
In this paper, we investigate and propose the application of an unsupervised machine learning clustering method to characterize the spatial and temporal distribution of ionospheric plasma irregularities over the Western African equatorial region. The ordinary Kriging algorithm was used to interpolate the rate [...] Read more.
In this paper, we investigate and propose the application of an unsupervised machine learning clustering method to characterize the spatial and temporal distribution of ionospheric plasma irregularities over the Western African equatorial region. The ordinary Kriging algorithm was used to interpolate the rate of change of the total electron content (TEC) index (ROTI) over gridded 0.5° by 0.5° latitude and longitude regional maps in order to simulate the level of ionospheric plasma irregularities in a quasi-real-time scenario. K-means was used to obtain a spatial mean index through an optimal stratification of regional post-processed ROTI maps. The results obtained could be adapted by appropriate K-means algorithms to a real-time scenario, as has been performed for other applications. This method could allow us to monitor plasma irregularities in real time over the African region and, therefore, lead to the possibility of mitigating their effects on satellite-based location systems in the said region. Full article
Show Figures

Figure 1

27 pages, 10426 KB  
Article
Multi-Instrument Observation of the Ionospheric Irregularities and Disturbances during the 23–24 March 2023 Geomagnetic Storm
by Afnan Tahir, Falin Wu, Munawar Shah, Christine Amory-Mazaudier, Punyawi Jamjareegulgarn, Tobias G. W. Verhulst and Muhammad Ayyaz Ameen
Remote Sens. 2024, 16(9), 1594; https://doi.org/10.3390/rs16091594 - 30 Apr 2024
Cited by 12 | Viewed by 4383
Abstract
This work investigates the ionospheric response to the March 2023 geomagnetic storm over American and Asian sectors from total electron content (TEC), rate of TEC index, ionospheric heights, Swarm plasma density, radio occultation profiles of Formosat-7/Cosmic-2 (F7/C2), Fabry-Perot interferometer driven neutral winds, and [...] Read more.
This work investigates the ionospheric response to the March 2023 geomagnetic storm over American and Asian sectors from total electron content (TEC), rate of TEC index, ionospheric heights, Swarm plasma density, radio occultation profiles of Formosat-7/Cosmic-2 (F7/C2), Fabry-Perot interferometer driven neutral winds, and E region electric field. During the storm’s main phase, post-sunset equatorial plasma bubbles (EPBs) extend to higher latitudes in the western American longitudes, showing significant longitudinal differences in the American sector. Over the Indian longitudes, suppression of post-sunset irregularities is observed, attributed to the westward prompt penetration electric field (PPEF). At the early recovery phase, the presence of post-midnight/near-sunrise EPBs till post-sunrise hours in the American sector is associated with the disturbance of dynamo-electric fields (DDEF). Additionally, a strong consistency between F7/C2 derived amplitude scintillation (S4) ≥ 0.5 and EPB occurrences is observed. Furthermore, a strong eastward electric field induced an increase in daytime TEC beyond the equatorial ionization anomaly crest in the American region, which occurred during the storm’s main phase. Both the Asian and American sectors exhibit negative ionospheric storms and inhibition of ionospheric irregularities at the recovery phase, which is dominated by the disturbance dynamo effect due to equatorward neutral winds. A slight increase in TEC in the Asian sector during the recovery phase could be explained by the combined effect of DDEF and thermospheric composition change. Overall, storm-time ionospheric variations are controlled by the combined effects of PPEF and DDEF. This study may further contribute to understanding the ionospheric responses under the influence of storm-phase and LT-dependent electric fields. Full article
Show Figures

Figure 1

19 pages, 8596 KB  
Article
The Movement of GPS Positioning Discrepancy Clouds at a Mid-Latitude Region in March 2015
by Janis Balodis, Madara Normand and Ansis Zarins
Remote Sens. 2023, 15(8), 2032; https://doi.org/10.3390/rs15082032 - 12 Apr 2023
Cited by 4 | Viewed by 2507
Abstract
The geomagnetic storm on 17 March 2015 had a strong impact on the global navigation satellite systems (GNSS) positioning results in many GNSS Continuously Operating Reference Stations (CORS) in Europe. The analysis of global positioning system (GPS) observations in Latvian CORS stations discovered [...] Read more.
The geomagnetic storm on 17 March 2015 had a strong impact on the global navigation satellite systems (GNSS) positioning results in many GNSS Continuously Operating Reference Stations (CORS) in Europe. The analysis of global positioning system (GPS) observations in Latvian CORS stations discovered a strong impact of this space weather event over the whole country. The impact appeared as a moving cloud of positioning discrepancies across the country. However, the analysis of the days before 17 March revealed other smaller duration ionospheric scintillation events. The objective was to analyze the GPS positioning discrepancy cloud movement, total electron content (TEC), and rate of change of the TEC index (ROTI) relationships, as well as discrepancy statistics. The area of analysis on 16–18 March was increased by including the EGNOS ground-based Ranging and Integrity Monitoring Stations (RIMS): GVLA and GVLB, LAPA and LAPB, and WRSA and WRSB. The conclusion of the study is that each “shot” after 90 s gives a completely new cloud with a new impacted station subset, its configuration, and completely irregular discrepancy values. Full article
Show Figures

Figure 1

19 pages, 4881 KB  
Article
Multi-Instrumental Observations of Midlatitude Plasma Irregularities over Eastern Asia during a Moderate Magnetic Storm on 16 July 2003
by Hailun Ye, Wen Yi, Baozhu Zhou, Jianfei Wu, Bingkun Yu, Penghao Tian, Jianyuan Wang, Chi Long, Maolin Lu, Xianghui Xue, Tingdi Chen and Xiangkang Dou
Remote Sens. 2023, 15(4), 1160; https://doi.org/10.3390/rs15041160 - 20 Feb 2023
Cited by 9 | Viewed by 2962
Abstract
This study presents the observations of midlatitude plasma irregularities over Eastern Asia during a moderate magnetic storm on 16 July 2003. Multi-instrumental observations, including the ground-based ionosondes, the GNSS networks, and the CHAMP and ROCSAT-1 satellites, were utilized to investigate the occurrence and [...] Read more.
This study presents the observations of midlatitude plasma irregularities over Eastern Asia during a moderate magnetic storm on 16 July 2003. Multi-instrumental observations, including the ground-based ionosondes, the GNSS networks, and the CHAMP and ROCSAT-1 satellites, were utilized to investigate the occurrence and characteristics of midlatitude plasma irregularities. The midlatitude strong spread F (SSF) mainly occurred in the midnight–morning sector as observed by ionosondes over Japan during this storm. SSF was related to plasma depletions, which is also recorded by GNSS network in the form of the enhancement of the rate of total electron content (TEC) change index (ROTI). The possible mechanism for the generation of SSF is that the enhanced eastward electric fields, associated with the prompt penetration electric fields and disturbance dynamo electric fields, cause the uplift and latitudinal extension of equatorial plasma bubbles (EPBs) to generate the observed midlatitude SSF further. Meanwhile, plasma density increased significantly under the influence of this storm. In addition, other common type of spread F, frequency spread F (FSF), was observed over Japan on the non-storm day and/or at high latitude station WK545, which seems to be closely related to the coupling of medium-scale traveling ionospheric disturbances (MSTIDs) and sporadic E (Es) layer. The above results indicate that various types of midlatitude spread F can be produced by different physical mechanisms. It is found that SSF can significantly affect the performance of radio wave propagation compared with FSF. Our results show that space weather events have a significant influence on the day-to-day variability of the occurrence and characteristics of ionospheric F-region irregularities at midlatitudes. Full article
Show Figures

Figure 1

9 pages, 2933 KB  
Article
A Dual-Cavity Fiber Fabry–Pérot Interferometer for Simultaneous Measurement of Thermo-Optic and Thermal Expansion Coefficients of a Polymer
by Cheng-Ling Lee, Chao-Tsung Ma, Kuei-Chun Yeh and Yu-Ming Chen
Polymers 2022, 14(22), 4966; https://doi.org/10.3390/polym14224966 - 16 Nov 2022
Cited by 11 | Viewed by 2718
Abstract
This paper presents a novel method based on a dual-cavity fiber Fabry–Pérot interferometer (DCFFPI) for simultaneously measuring the thermo-optic coefficient (TOC) and thermal expansion coefficient (TEC) of a polymer. The polymer is, by nature, highly responsive to temperature (T) in that its size [...] Read more.
This paper presents a novel method based on a dual-cavity fiber Fabry–Pérot interferometer (DCFFPI) for simultaneously measuring the thermo-optic coefficient (TOC) and thermal expansion coefficient (TEC) of a polymer. The polymer is, by nature, highly responsive to temperature (T) in that its size (length, L) and refractive index (RI, n) are highly dependent on the thermal effect. When the optical length of the polymer cavity changes with T, it is difficult to distinguish whether there is a change in L or n, or both. The variation rates of L and n with a change in T were the TOC and TEC, respectively. Therefore, there was a cross-sensitivity between TOC and TEC in the polymer-based interferometer. The proposed DCFFPI, which cascades a polymer and an air cavity, can solve the above problem. The expansion of the polymer cavity is equal to the compression of the air cavity with the increase in T. By analyzing the individual optical spectra of the polymer and air cavities, the parameters of TOC and TEC can be determined at the same time. The simultaneous measurement of TOC and TEC with small measured deviations of 6 × 10−6 (°C−1) and 3.67 × 10−5 (°C−1) for the polymer NOA61 and 7 × 10−6 (°C−1) and 1.46 × 10−4 (°C−1) for the NOA65 can be achieved. Experimental results regarding the measured accuracy for the class of adhesive-based polymer are presented to demonstrate the feasibility and verify the usefulness of the proposed DCFFPI. Full article
(This article belongs to the Special Issue Polymer Materials in Sensors, Actuators and Energy Conversion II)
Show Figures

Graphical abstract

21 pages, 990 KB  
Article
Analysis of Spatial Differences and the Influencing Factors in Eco-Efficiency of Urban Agglomerations in China
by Danyu Liu and Ke Zhang
Sustainability 2022, 14(19), 12611; https://doi.org/10.3390/su141912611 - 4 Oct 2022
Cited by 10 | Viewed by 2213
Abstract
In the context of climate change, studying the ecological efficiency (EE) of urban agglomerations is of great significance in promoting sustainable development. First, night light data are used as the expected output to build an evaluation index system based on the five major [...] Read more.
In the context of climate change, studying the ecological efficiency (EE) of urban agglomerations is of great significance in promoting sustainable development. First, night light data are used as the expected output to build an evaluation index system based on the five major urban agglomerations, namely, the Yangtze River Delta, Pearl River Delta, Beijing–Tianjin–Hebei, the middle reaches of the Yangtze River, and Chengdu–Chongqing urban agglomerations. Second, the super-efficient Epsilon-based (super-EBM) model and the input–output redundancy rates are used to measure the EE of the five major urban agglomerations from 2006 to 2018. Then, their spatial differences are explored with the help of the Gini coefficient. Finally, the spatial differences in the EE drivers of urban agglomerations are analyzed using Geodetector. The results reveal the following. (1) The EE of the five major urban agglomerations present the decline fluctuation trend of “∧”. However, this trend has slowed down. From the perspective of urban agglomeration, Beijing–Tianjin–Hebei > The Pearl River Delta > Chengdu–Chongqing > Yangtze River Delta > the middle reaches of the Yangtze River. The lowest efficiency of the Yangtze River’s middle reaches has “high investment, low output, and high pollution” characteristics. (2) The EE of the five major urban agglomerations had weak synergistic development and noticeable spatial differences. The primary sources are inter-group differences and hypervariable density. (3) From the perspective of influencing, the difference in technological innovation levels (TEC) is the single leading factor in the differences in the EE space of urban agglomerations. In addition, the interaction combination of industrial structure upgrades (IDS) and traffic infrastructure (TRAF) is a crucial combination driver. However, the core influencing factors of spatial differences in EE in five urban agglomerations are heterogeneous. Among them, the nature-influencing factors of the EE space differences in the Beijing–Tianjin–Hebei and the Chengdu–Chongqing urban agglomerations are environmental regulations (ER). Meanwhile, the influencing factor in the Yangtze River Delta urban agglomeration is the development of urbanization (URB). Moreover, the prominent factor in the middle reaches of the Yangtze River and the Pearl River Delta urban agglomerations is foreign direct investment (FDI). On this basis, this study aims to promote ecological civilization construction in urban agglomerations and optimize regional integrated spatial patterns. Full article
Show Figures

Figure 1

26 pages, 4860 KB  
Article
Signatures of Equatorial Plasma Bubbles and Ionospheric Scintillations from Magnetometer and GNSS Observations in the Indian Longitudes during the Space Weather Events of Early September 2017
by Ram Kumar Vankadara, Sampad Kumar Panda, Christine Amory-Mazaudier, Rolland Fleury, Venkata Ratnam Devanaboyina, Tarun Kumar Pant, Punyawi Jamjareegulgarn, Mohd Anul Haq, Daniel Okoh and Gopi Krishna Seemala
Remote Sens. 2022, 14(3), 652; https://doi.org/10.3390/rs14030652 - 29 Jan 2022
Cited by 51 | Viewed by 5865
Abstract
Scintillation due to ionospheric plasma irregularities remains a challenging task for the space science community as it can severely threaten the dynamic systems relying on space-based navigation services. In the present paper, we probe the ionospheric current and plasma irregularity characteristics from a [...] Read more.
Scintillation due to ionospheric plasma irregularities remains a challenging task for the space science community as it can severely threaten the dynamic systems relying on space-based navigation services. In the present paper, we probe the ionospheric current and plasma irregularity characteristics from a latitudinal arrangement of magnetometers and Global Navigation Satellite System (GNSS) stations from the equator to the far low latitude location over the Indian longitudes, during the severe space weather events of 6–10 September 2017 that are associated with the strongest and consecutive solar flares in the 24th solar cycle. The night-time influence of partial ring current signatures in ASYH and the daytime influence of the disturbances in the ionospheric E region electric currents (Diono) are highlighted during the event. The total electron content (TEC) from the latitudinal GNSS observables indicate a perturbed equatorial ionization anomaly (EIA) condition on 7 September, due to a sequence of M-class solar flares and associated prompt penetration electric fields (PPEFs), whereas the suppressed EIA on 8 September with an inverted equatorial electrojet (EEJ) suggests the driving disturbance dynamo electric current (Ddyn) corresponding to disturbance dynamo electric fields (DDEFs) penetration in the E region and additional contributions from the plausible storm-time compositional changes (O/N2) in the F-region. The concurrent analysis of the Diono and EEJ strengths help in identifying the pre-reversal effect (PRE) condition to seed the development of equatorial plasma bubbles (EPBs) during the local evening sector on the storm day. The severity of ionospheric irregularities at different latitudes is revealed from the occurrence rate of the rate of change of TEC index (ROTI) variations. Further, the investigations of the hourly maximum absolute error (MAE) and root mean square error (RMSE) of ROTI from the reference quiet days’ levels and the timestamps of ROTI peak magnitudes substantiate the severity, latitudinal time lag in the peak of irregularity, and poleward expansion of EPBs and associated scintillations. The key findings from this study strengthen the understanding of evolution and the drifting characteristics of plasma irregularities over the Indian low latitudes. Full article
Show Figures

Figure 1

21 pages, 3139 KB  
Technical Note
Effects of the 12 May 2021 Geomagnetic Storm on Georeferencing Precision
by Juan Carlos Valdés-Abreu, Marcos A. Díaz, Juan Carlos Báez and Yohadne Stable-Sánchez
Remote Sens. 2022, 14(1), 38; https://doi.org/10.3390/rs14010038 - 23 Dec 2021
Cited by 10 | Viewed by 5840
Abstract
In this work, we present the positioning error analysis of the 12 May 2021 moderate geomagnetic storm. The storm happened during spring in the northern hemisphere (fall in the south). We selected 868 GNSS stations around the globe to study the ionospheric and [...] Read more.
In this work, we present the positioning error analysis of the 12 May 2021 moderate geomagnetic storm. The storm happened during spring in the northern hemisphere (fall in the south). We selected 868 GNSS stations around the globe to study the ionospheric and the apparent position variations. We compared the day of the storm with the three previous days. The analysis shows the global impact of the storm. In the quiet days, 93% of the stations had 3D errors less than 10 cm, while during the storm, only 41% kept this level of accuracy. The higher impact was over the Up component. Although the stations have algorithms to correct ionospheric disturbances, the inaccuracies lasted for nine hours. The most severe effects on the positioning errors were noticed in the South American sector. More than 60% of the perturbed stations were located in this region. We also studied the effects produced by two other similar geomagnetic storms that occurred on 27 March 2017 and on 5 August 2019. The comparison of the storms shows that the effects on position inaccuracies are not directly deductible neither from the characteristics of geomagnetic storms nor from enhancement and/or variations of the ionospheric plasma. Full article
(This article belongs to the Special Issue Space Geodesy and Ionosphere)
Show Figures

Figure 1

20 pages, 5742 KB  
Technical Note
Extreme Solar Events’ Impact on GPS Positioning Results
by Janis Balodis, Madara Normand and Inese Varna
Remote Sens. 2021, 13(18), 3624; https://doi.org/10.3390/rs13183624 - 10 Sep 2021
Cited by 7 | Viewed by 4077
Abstract
The main objective of the present study is to perform an analysis of the space weather impact on the Latvian CORS (Continuously Operating GNSS (Global Navigation Satellite System) Stations) GPS (Global Positioning System) observations, in situations of geomagnetic storms, sun flares and extreme [...] Read more.
The main objective of the present study is to perform an analysis of the space weather impact on the Latvian CORS (Continuously Operating GNSS (Global Navigation Satellite System) Stations) GPS (Global Positioning System) observations, in situations of geomagnetic storms, sun flares and extreme TEC (Total Electron Content) and ROTI (Rate of change of TEC index) levels, by analyzing the results, i.e., 90-s kinematic post-processing solutions, obtained using Bernese GNSS Software v5.2. To complete this study, the 90-s kinematic time series of all the Latvian CORS for the period from 2007 to 2017 were analyzed, and a correlation between time series outliers (hereinafter referred to as faults) and extreme space weather events was sought. Over 36 million position determination solutions were examined, 0.6% of the solutions appear to be erroneous, 0.13% of the solutions have errors greater than 1 m, 0.05% have errors greater than 10 m, and 0.01% of the solutions show errors greater than 50 m. The correlation between faulty results, TEC and ROTI levels and Bernese GNSS Software v5.2 detected cycle slips was computed. This also includes an analysis of fault distribution depending on the geomagnetic latitude as well as faults distribution simultaneously occurring in some stations, etc. This work is the statistical analysis of the Latvian CORS security, mainly focusing on geomagnetic extreme events and ionospheric scintillations in the region of Latvia, with a latitude around 57°N. Full article
Show Figures

Graphical abstract

22 pages, 12670 KB  
Article
Occurrence of GPS Loss of Lock Based on a Swarm Half-Solar Cycle Dataset and Its Relation to the Background Ionosphere
by Michael Pezzopane, Alessio Pignalberi, Igino Coco, Giuseppe Consolini, Paola De Michelis, Fabio Giannattasio, Maria Federica Marcucci and Roberta Tozzi
Remote Sens. 2021, 13(11), 2209; https://doi.org/10.3390/rs13112209 - 4 Jun 2021
Cited by 20 | Viewed by 4969
Abstract
This paper discusses the occurrence of Global Positioning System (GPS) loss of lock events obtained by considering total electron content (TEC) measurements carried out by the three satellites of the European Space Agency Swarm constellation from December 2013 to December 2020, which represents [...] Read more.
This paper discusses the occurrence of Global Positioning System (GPS) loss of lock events obtained by considering total electron content (TEC) measurements carried out by the three satellites of the European Space Agency Swarm constellation from December 2013 to December 2020, which represents the longest dataset ever used to perform such an analysis. After describing the approach used to classify a GPS loss of lock, the corresponding occurrence is analyzed as a function of latitude, local time, season, and solar activity to identify well-defined patterns. Moreover, the strict relation of the occurrence of the GPS loss of lock events with defined values of both the rate of change of electron density index (RODI) and the rate of change of TEC index (ROTI) is highlighted. The scope of this study is, on one hand, to characterize the background conditions of the ionosphere for such events and, on the other hand, to pave the way for their possible future modeling. The results shown, especially the fact that GPS loss of lock events tend to happen for well-defined values of both RODI and ROTI, are of utmost importance in the light of Space Weather effects mitigation. Full article
(This article belongs to the Special Issue Space Geodesy and Ionosphere)
Show Figures

Graphical abstract

17 pages, 2362 KB  
Article
Statistical Study of the Seasonal Variations in TEC Depletion and the ROTI during 2013–2019 over Hong Kong
by Qiang Li, Yanbo Zhu, Kun Fang and Jisi Fang
Sensors 2020, 20(21), 6200; https://doi.org/10.3390/s20216200 - 30 Oct 2020
Cited by 18 | Viewed by 2943
Abstract
Equatorial plasma bubbles (EPBs) can cause large total electron content (TEC) gradient magnitudes and significant density irregularities. In this paper, depletions and irregularities due to EPBs are identified by using the Global Positioning System (GPS)-TEC time series extracted from nine Global Navigation Satellite [...] Read more.
Equatorial plasma bubbles (EPBs) can cause large total electron content (TEC) gradient magnitudes and significant density irregularities. In this paper, depletions and irregularities due to EPBs are identified by using the Global Positioning System (GPS)-TEC time series extracted from nine Global Navigation Satellite System (GNSS) stations over Hong Kong near the equatorial ionization anomaly (EIA) crest region from 2013 to 2019. The correlation analyses between the daily variation in the rate of TEC change index (ROTI) and that of the EPB occurrence rate, depth, and duration are presented. The monthly EPB occurrence rate, depth, duration, and ROTI show strong seasonal variations, with maxima during equinoctial seasons, especially during the moderate-to-high solar activity years of 2013–2016. Furthermore, two seasonal asymmetries can be clearly seen for these parameters from 2013 to 2016. The EPB occurrences rate, depth, and duration vary annually with the solar radio flux at 10.7 cm (F10.7) index. The correlation analyses of the EPB occurrence rate, depth, and duration are found to be much more strongly correlated with the F10.7 index on an annual basis than on a monthly basis. The correlation analysis of monthly variations shows the impacts of solar activity on EPB occurrence, depth, and duration are seasonally dependent, which is significantly greater in the equinoctial seasons and summer than in winter. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

17 pages, 4486 KB  
Article
Spatiotemporal Dynamics of Beijing’s Urbanization Efficiency from 2005 to 2014
by Wei Qi, Ying Gao and Qian Zhang
Sustainability 2017, 9(12), 2190; https://doi.org/10.3390/su9122190 - 30 Nov 2017
Cited by 5 | Viewed by 4775
Abstract
In the context of Beijing’s accelerated economic growth, a high urbanization rate and associated urban problems pose challenges. We collected panel data for the period 2005–2014 to examine the relationship between Beijing’s urbanization efficiency and economic growth rate as well as its spatial [...] Read more.
In the context of Beijing’s accelerated economic growth, a high urbanization rate and associated urban problems pose challenges. We collected panel data for the period 2005–2014 to examine the relationship between Beijing’s urbanization efficiency and economic growth rate as well as its spatial patterns of dynamic and static urbanization efficiency. Specifically, we developed a comprehensive index system for assessing Beijing’s economic growth rate and urbanization efficiency at the district (county) level. Economic level was selected as an indicator of the economic growth rate. Economic urbanization and consumption levels were selected as indicators of urbanization efficiency. We applied a sequential Malmquist total factor productivity index to estimate the dynamic urbanization efficiency and economic growth rate at the district/country level from 2005 to 2014. We measured Beijing’s static urbanization efficiency in 2014 using a data envelopment analysis model and assessed its spatiotemporal dynamics and urbanization efficiency pattern using a Getis–Ord General Gi index. The results indicated an overall average increase of 1.07% in the total factor urbanization efficiency (TFUE), with an average value of 0.91, while the total factor economic growth rate (TFEE) remained stable at an average value of 0.979. The low TFUE level evidently continues to significantly constrain TFEE. Both TFUE and TFEE levels in the Capital Function Core (CFC) area were significant, exhibiting high inputs and outputs, while these levels in the Urban Function Development (UFD), City Development Zone (CDZ), and Ecological Conservation Development (ECD) areas were below 1 for most periods, strongly indicating inefficient factor allocation. In view of this spatial pattern, TFUE’s regional spatial distribution appears remarkable, showing a decreasing trend from north to south in Beijing, excluding CFC areas. During the period 2005–2014, the CFC area and northeastern Beijing gradually developed into high urbanization efficiency cluster regions. The dominant factors accounting for the difference in total factor productivity indices between TFUE and TFEE were technical change (TC) and scale efficiency change (SEC), and the main factors driving the regional spatial distribution pattern for urbanization efficiency were TC and technical efficiency change (TEC). Accordingly, local governments should promote TC, SEC, and TEC to improve urbanization levels, with optimal strategies entailing strengthening policy support and encouraging investments in technology in UFD, CDZ, and ECD areas. Within Beijing, Dongcheng, Xicheng, Shijingshan, Mentougou, and Yanqing demonstrated effectively balanced static urbanization efficiency levels in 2014, whereas these levels in the city’s remaining 11 districts were not optimal, with extensive development. County governments should therefore promote efforts to reduce input redundancy and improve pure technical efficiency to maintain sustainable and steady development. Full article
Show Figures

Figure 1

17 pages, 1088 KB  
Article
Regional Port Productivity in APEC
by Yen-Chun Jim Wu, Chih-Hung Yuan, M. Goh and Yung-Hsiang Lu
Sustainability 2016, 8(7), 689; https://doi.org/10.3390/su8070689 - 19 Jul 2016
Cited by 4 | Viewed by 6037
Abstract
The regional growth of the goods and services trade has placed greater pressure on the ports of the Asia-Pacific Economic Cooperation (APEC) members, especially in the developing countries. The purpose of this study is to apply the generalized metafrontier Malmquist productivity index (gMMPI) [...] Read more.
The regional growth of the goods and services trade has placed greater pressure on the ports of the Asia-Pacific Economic Cooperation (APEC) members, especially in the developing countries. The purpose of this study is to apply the generalized metafrontier Malmquist productivity index (gMMPI) to compare the port productivity of developed countries (DCs) and developing countries (LDCs) in APEC. The results indicate that, first, the average rate of utilized capacity among the ports of APEC members was only 65.7% during 2002–2011, which means that another 34.3% of additional through put can be handled with the same level of resources. Second, the average productivity of the container ports in the DCs appeared to be higher than those located in the LDCs. The main sources of productive growth in the DCs were based on scale efficiency change (SEC), technical efficiency change (TEC), and potential technological relative change (PTRC), while the main source of productive growth in LDCs was based on SEC. Third, SEC appeared to be the dominant factor that affects the utilization of all ports. Full article
(This article belongs to the Special Issue Sustainability in Supply Chain Management)
Show Figures

Figure 1

Back to TopTop