Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,629)

Search Parameters:
Keywords = ranking data

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 670 KB  
Article
Comparison of Short-Term Outcomes and Survivorship of Three Modular Dual Mobility Implants in Primary Total Hip Surgery
by Mitchell Kennedy, Braden Terner, Chukwuweike Gwam and Ran Schwarzkopf
J. Clin. Med. 2025, 14(19), 6977; https://doi.org/10.3390/jcm14196977 (registering DOI) - 1 Oct 2025
Abstract
Background: Total hip arthroplasty (THA) is a common procedure, yet instability and dislocation remain leading causes of revision. Dual mobility (DM) acetabular constructs improve stability, but comparative data across modular DM systems are limited. This study compared the safety and efficacy of [...] Read more.
Background: Total hip arthroplasty (THA) is a common procedure, yet instability and dislocation remain leading causes of revision. Dual mobility (DM) acetabular constructs improve stability, but comparative data across modular DM systems are limited. This study compared the safety and efficacy of three modular DM implants in primary THA, focusing on acetabular revision and functional recovery. Methods: We retrospectively reviewed 963 primary THAs performed from 2016–2024 using three modular DM systems. Patients with revision or bilateral THA, age < 18, or <2 years of follow-up were excluded. Outcomes included acetabular revision, 90-day readmission, and Hip Disability and Osteoarthritis Outcome Score for Joint Replacement (HOOS, JR). Kaplan–Meier analysis estimated 3-year implant survivorship for each implant, and non-inferiority of Implant A was tested against a combined “Dual Mobility Control” cohort (Implants B + C) using a prespecified −10% margin. Results: A total of 297 patients met inclusion criteria (142 Implant A, 110 Implant B, 45 Implant C). Revision rates were 4.9% for Implant A, 6.4% for Implant B, and 8.9% for Implant C. HOOS, JR scores improved significantly in all cohorts with comparable 2-year outcomes. Kaplan–Meier analysis showed 3-year survivorship of 98.3% for Implant A, 98.4% for Implant B, and 96.9% for Implant C (log-rank p = 0.053). The Dual Mobility Control cohort survivorship was 98.0%, and the difference between Implant A and controls (95% CI: −2.19% to 2.69%) met the non-inferiority margin (log-rank p = 0.796). Conclusions: Implant A demonstrated non-inferior 3-year survivorship and comparable short-term patient-reported outcomes relative to two other modular DM implants. Larger, multicenter studies with longer follow-up are warranted to confirm these findings. Full article
(This article belongs to the Special Issue New Advances in Hip and Knee Arthroplasty)
44 pages, 9238 KB  
Article
SZOA: An Improved Synergistic Zebra Optimization Algorithm for Microgrid Scheduling and Management
by Lihong Cao and Qi Wei
Biomimetics 2025, 10(10), 664; https://doi.org/10.3390/biomimetics10100664 - 1 Oct 2025
Abstract
To address the challenge of coordinating economic cost control and low-carbon objectives in microgrid scheduling, while overcoming the performance limitations of the traditional Zebra Optimization Algorithm (ZOA) in complex problems, this paper proposes a Synergistic Zebra Optimization Algorithm (SZOA) and integrates it with [...] Read more.
To address the challenge of coordinating economic cost control and low-carbon objectives in microgrid scheduling, while overcoming the performance limitations of the traditional Zebra Optimization Algorithm (ZOA) in complex problems, this paper proposes a Synergistic Zebra Optimization Algorithm (SZOA) and integrates it with innovative management concepts to enhance the microgrid scheduling process. The SZOA incorporates three core strategies: a multi-population cooperative search mechanism to strengthen global exploration, a vertical crossover–mutation strategy to meet high-dimensional scheduling requirements, and a leader-guided boundary control strategy to ensure variable feasibility. These strategies not only improve algorithmic performance but also provide technical support for innovative management in microgrid scheduling. Extensive experiments on the CEC2017 (d = 30) and CEC2022 (d = 10, 20) benchmark sets demonstrate that the SZOA achieves higher optimization accuracy and stability compared with those of nine state-of-the-art algorithms, including IAGWO and EWOA. Friedman tests further confirm its superiority, with the best average rankings of 1.20 for CEC2017 and 1.08/1.25 for CEC2022 (d = 10, 20). To validate practical applicability, the SZOA is applied to grid-connected microgrid scheduling, where the system model integrates renewable energy sources such as photovoltaic (PV) generation and wind turbines (WT); controllable sources including fuel cells (FC), microturbines (MT), and gas engines (GS); a battery (BT) storage unit; and the main grid. The optimization problem is formulated as a bi-objective model minimizing both economic costs—including fuel, operation, pollutant treatment, main-grid interactions, and imbalance penalties—and carbon emissions, subject to constraints on generation limits and storage state-of-charge safety ranges. Simulation results based on typical daily data from Guangdong, China, show that the optimized microgrid achieves a minimum operating cost of USD 5165.96, an average cost of USD 6853.07, and a standard deviation of only USD 448.53, consistently outperforming all comparison algorithms across economic indicators. Meanwhile, the SZOA dynamically coordinates power outputs: during the daytime, it maximizes PV utilization (with peak output near 35 kW) and WT contribution (30–40 kW), while reducing reliance on fossil-based units such as FC and MT; at night, BT discharges (−20 to −30 kW) to cover load deficits, thereby lowering fossil fuel consumption and pollutant emissions. Overall, the SZOA effectively realizes the synergy of “economic efficiency and low-carbon operation”, offering a reliable and practical technical solution for innovative management and sustainable operation of microgrid scheduling. Full article
Show Figures

Figure 1

18 pages, 443 KB  
Article
Low-Rank Matrix Completion via Nonconvex Rank Approximation for IoT Network Localization
by Nana Li, Ling He, Die Meng, Chuang Han and Qiang Tu
Electronics 2025, 14(19), 3920; https://doi.org/10.3390/electronics14193920 - 1 Oct 2025
Abstract
Accurate node localization is essential for many Internet of Things (IoT) applications. However, incomplete and noisy distance measurements often degrade the reliability of the Euclidean Distance Matrix (EDM), which is critical for range-based localization. To address this issue, a Low-Rank Matrix Completion approach [...] Read more.
Accurate node localization is essential for many Internet of Things (IoT) applications. However, incomplete and noisy distance measurements often degrade the reliability of the Euclidean Distance Matrix (EDM), which is critical for range-based localization. To address this issue, a Low-Rank Matrix Completion approach based on nonconvex rank approximation (LRMCN) is proposed to recover the true EDM. First, the observed EDM is decomposed into a low-rank matrix representing the true distances and a sparse matrix capturing noise. Second, a nonconvex surrogate function is used to approximate the matrix rank, while the l1-norm is utilized to model the sparsity of the noise component. Third, the resulting optimization problem is solved using the Alternating Direction Method of Multipliers (ADMMs). This enables accurate recovery of a complete and denoised EDM from incomplete and corrupted measurements. Finally, relative node locations are estimated using classical multi-dimensional scaling, and absolute coordinates are determined based on a small set of anchor nodes with known locations. The experimental results show that the proposed method achieves superior performance in both matrix completion and localization accuracy, even in the presence of missing and corrupted data. Full article
(This article belongs to the Section Networks)
Show Figures

Figure 1

61 pages, 5190 KB  
Article
Feature Selection Method Based on Simultaneous Perturbation Stochastic Approximation Technique Evaluated on Cancer Genome Data Classification
by Satya Dev Pasupuleti and Simone A. Ludwig
Algorithms 2025, 18(10), 622; https://doi.org/10.3390/a18100622 - 1 Oct 2025
Abstract
Cancer classification using high-dimensional genomic data presents significant challenges in feature selection, particularly when dealing with datasets containing tens of thousands of features. This study presents a new application of the Simultaneous Perturbation Stochastic Approximation (SPSA) method for feature selection on large-scale cancer [...] Read more.
Cancer classification using high-dimensional genomic data presents significant challenges in feature selection, particularly when dealing with datasets containing tens of thousands of features. This study presents a new application of the Simultaneous Perturbation Stochastic Approximation (SPSA) method for feature selection on large-scale cancer datasets, representing the first investigation of the SPSA-based feature selection technique applied to cancer datasets of this magnitude. Our research extends beyond traditional SPSA applications, which have historically been limited to smaller datasets, by evaluating its effectiveness on datasets containing 35,924 to 44,894 features. Building upon established feature-ranking methodologies, we introduce a comprehensive evaluation framework that examines the impact of varying proportions of top-ranked features (5%, 10%, and 15%) on classification performance. This systematic approach enables the identification of optimal feature subsets most relevant to cancer detection across different selection thresholds. The key contributions of this work include the following: (1) the first application of SPSA-based feature selection to large-scale cancer datasets exceeding 35,000 features, (2) an evaluation methodology examining multiple feature proportion thresholds to optimize classification performance, (3) comprehensive experimental validation through comparison with ten state-of-the-art feature selection and classification methods, and (4) statistical significance testing to quantify the improvements achieved by the SPSA approach over benchmark methods. Our experimental evaluation demonstrates the effectiveness of the feature selection and ranking-based SPSA method in handling high-dimensional cancer data, providing insights into optimal feature selection strategies for genomic classification tasks. Full article
(This article belongs to the Special Issue Algorithms in Data Classification (3rd Edition))
36 pages, 2656 KB  
Article
Energy Footprint and Reliability of IoT Communication Protocols for Remote Sensor Networks
by Jerzy Krawiec, Martyna Wybraniak-Kujawa, Ilona Jacyna-Gołda, Piotr Kotylak, Aleksandra Panek, Robert Wojtachnik and Teresa Siedlecka-Wójcikowska
Sensors 2025, 25(19), 6042; https://doi.org/10.3390/s25196042 - 1 Oct 2025
Abstract
Excessive energy consumption of communication protocols in IoT/IIoT systems constitutes one of the key constraints for the operational longevity of remote sensor nodes, where radio transmission often incurs higher energy costs than data acquisition or local computation. Previous studies have remained fragmented, typically [...] Read more.
Excessive energy consumption of communication protocols in IoT/IIoT systems constitutes one of the key constraints for the operational longevity of remote sensor nodes, where radio transmission often incurs higher energy costs than data acquisition or local computation. Previous studies have remained fragmented, typically focusing on selected technologies or specific layers of the communication stack, which has hindered the development of comparable quantitative metrics across protocols. The aim of this study is to design and validate a unified evaluation framework enabling consistent assessment of both wired and wireless protocols in terms of energy efficiency, reliability, and maintenance costs. The proposed approach employs three complementary research methods: laboratory measurements on physical hardware, profiling of SBC devices, and simulations conducted in the COOJA/Powertrace environment. A Unified Comparative Method was developed, incorporating bilinear interpolation and weighted normalization, with its robustness confirmed by a Spearman rank correlation coefficient exceeding 0.9. The analysis demonstrates that MQTT-SN and CoAP (non-confirmable mode) exhibit the highest energy efficiency, whereas HTTP/3 and AMQP incur the greatest energy overhead. Results are consolidated in the ICoPEP matrix, which links protocol characteristics to four representative RS-IoT scenarios: unmanned aerial vehicles (UAVs), ocean buoys, meteorological stations, and urban sensor networks. The framework provides well-grounded engineering guidelines that may extend node lifetime by up to 35% through the adoption of lightweight protocol stacks and optimized sampling intervals. The principal contribution of this work is the development of a reproducible, technology-agnostic tool for comparative assessment of IoT/IIoT communication protocols. The proposed framework addresses a significant research gap in the literature and establishes a foundation for further research into the design of highly energy-efficient and reliable IoT/IIoT infrastructures, supporting scalable and long-term deployments in diverse application environments. Full article
(This article belongs to the Collection Sensors and Sensing Technology for Industry 4.0)
18 pages, 294 KB  
Article
Assessment of Knowledge and Attitudes of Healthcare Personnel Towards Artificial Intelligence Technologies in Greece: A Survey Study
by Dimitris Karaferis, Dimitra Balaska, Maria Eleni Karaferi and Yannis Pollalis
Hygiene 2025, 5(4), 44; https://doi.org/10.3390/hygiene5040044 - 1 Oct 2025
Abstract
Artificial intelligence (AI) is progressively being utilized in the healthcare sector to enhance efficiency, alleviate administrative burdens, and improve patient care outcomes. In the secondary healthcare sector, AI presents a range of opportunities as well as challenges. This study investigates the viewpoints of [...] Read more.
Artificial intelligence (AI) is progressively being utilized in the healthcare sector to enhance efficiency, alleviate administrative burdens, and improve patient care outcomes. In the secondary healthcare sector, AI presents a range of opportunities as well as challenges. This study investigates the viewpoints of healthcare professionals regarding the adoption of AI in Greece, emphasizing the anticipated advantages and apprehensions associated with its integration. A cross-sectional descriptive study was carried out to collect responses from healthcare professionals at the General Hospital of “Evangelismos”, which is the largest hospital in Athens, Greece. A questionnaire was utilized and distributed over a period of four months, involving 513 registered healthcare professionals (comprising 136 physicians, 235 nursing staff, and 142 other healthcare personnel). Each participant had a minimum of one year of clinical experience and was selected using a convenience sampling method. The questionnaire comprised two parts: one focused on evaluating the AI knowledge and attitudes of healthcare professionals, and the other collected demographic data. The overall comprehension of knowledge pertaining to AI among healthcare professionals was evaluated as moderate, resulting in a mean score of 3.39. A distinction exists among different personnel categories, with physicians (M = 3.73) demonstrating a greater understanding of AI and a firm conviction that AI cannot supplant human positions. Conversely, nursing personnel appear to express apprehension regarding the implications of AI on the human experience, with a notable concern about potential replacement and job loss (M = 2.63), which was identified as the lowest-ranked issue. This latter concern is also echoed by other healthcare personnel (M = 2.90). Nevertheless, the majority of participants regard the prospective use of AI favorably, demonstrate confidence in its application, and contend that the benefits outweigh the possible risks. Sufficient training and ongoing updates would enhance employees’ comprehension of AI and their awareness of its potential benefits within the healthcare sector. Full article
(This article belongs to the Section Health Promotion, Social and Behavioral Determinants)
22 pages, 6779 KB  
Article
Unveiling the Responses’ Feature of Composites Subjected to Fatigue Loadings—Part 1: Theoretical and Experimental Fatigue Response Under the Strength-Residual Strength-Life Equal Rank Assumption (SRSLERA) and the Equivalent Residual Strength Assumption (ERSA)
by Alberto D’Amore and Luigi Grassia
J. Compos. Sci. 2025, 9(10), 528; https://doi.org/10.3390/jcs9100528 - 1 Oct 2025
Abstract
This paper discusses whether the principal response features of composites subjected to fatigue loadings, including residual strength and lifetime statistics under variable amplitude (VA) loadings, can be resolved based on constant amplitude (CA) fatigue life data. The approach is based on the strength-residual [...] Read more.
This paper discusses whether the principal response features of composites subjected to fatigue loadings, including residual strength and lifetime statistics under variable amplitude (VA) loadings, can be resolved based on constant amplitude (CA) fatigue life data. The approach is based on the strength-residual strength-life equal-rank assumption (SRSLERA), providing a statistical correspondence between the static strength, residual strength, and fatigue life distribution functions under CA loadings. Under VA loadings, the strength degradation progression and then the fatigue lifetime are calculated by dividing the loading spectrum into a sequence of CA block loadings of given extents (including one cycle), and assuming that the strength at the end of a generic block loading equals the strength at the start of the consecutive one, namely the equivalent residual strength assumption (ERSA). The consequences of SRSLERA and ERSA are first discussed by re-elaborating a series of uniaxial, statistically sound CA residual strength and fatigue life data obtained under different loading ratios, R, ranging from pure tension to mixed tension–compression to pure compression. It is shown that the static strength Weibull’s shape and scale parameters, as well as the fatigue formulation parameters recovered under pure compression or tension loadings, represent the fingerprint of composite materials subjected to fatigue and characterize their uniqueness. The residual strength statistics, fatigue probability density functions (PDFs), and constant life diagram (CLD) construction are theoretically reported. Then, based on ERSA, the statistical lifetimes under VA loadings and the cycle-by-cycle damage progressions of block repeated loadings are analyzed, and a residual strength-based damage rule is compared to Miner’s rule. Full article
(This article belongs to the Special Issue Characterization and Modelling of Composites, Volume III)
Show Figures

Figure 1

29 pages, 13908 KB  
Article
SS3L: Self-Supervised Spectral–Spatial Subspace Learning for Hyperspectral Image Denoising
by Yinhu Wu, Dongyang Liu and Junping Zhang
Remote Sens. 2025, 17(19), 3348; https://doi.org/10.3390/rs17193348 - 1 Oct 2025
Abstract
Hyperspectral imaging (HSI) systems often suffer from complex noise degradation during the imaging process, significantly impacting downstream applications. Deep learning-based methods, though effective, rely on impractical paired training data, while traditional model-based methods require manually tuned hyperparameters and lack generalization. To address these [...] Read more.
Hyperspectral imaging (HSI) systems often suffer from complex noise degradation during the imaging process, significantly impacting downstream applications. Deep learning-based methods, though effective, rely on impractical paired training data, while traditional model-based methods require manually tuned hyperparameters and lack generalization. To address these issues, we propose SS3L (Self-Supervised Spectral-Spatial Subspace Learning), a novel HSI denoising framework that requires neither paired data nor manual tuning. Specifically, we introduce a self-supervised spectral–spatial paradigm that learns noisy features from noisy data, rather than paired training data, based on spatial geometric symmetry and spectral local consistency constraints. To avoid manual hyperparameter tuning, we propose an adaptive rank subspace representation and a loss function designed based on the collaborative integration of spectral and spatial losses via noise-aware spectral-spatial weighting, guided by the estimated noise intensity. These components jointly enable a dynamic trade-off between detail preservation and noise reduction under varying noise levels. The proposed SS3L embeds noise-adaptive subspace representations into the dynamic spectral–spatial hybrid loss-constrained network, enabling cross-sensor denoising through prior-informed self-supervision. Experimental results demonstrate that SS3L effectively removes noise while preserving both structural fidelity and spectral accuracy under diverse noise conditions. Full article
Show Figures

Figure 1

17 pages, 618 KB  
Article
Advancing Sustainable Development Goal 4 through Green Education: A Multidimensional Assessment of Turkish Universities
by Bediha Sahin
Sustainability 2025, 17(19), 8800; https://doi.org/10.3390/su17198800 - 30 Sep 2025
Abstract
In this study, we provide, to our knowledge, one of the first multidimensional, data-driven evaluations of green education performance in Turkish higher education, combining the THE Education Score, THE Impact Score, and the UI GreenMetric Education & Research Score (GM-ED) with institutional characteristics, [...] Read more.
In this study, we provide, to our knowledge, one of the first multidimensional, data-driven evaluations of green education performance in Turkish higher education, combining the THE Education Score, THE Impact Score, and the UI GreenMetric Education & Research Score (GM-ED) with institutional characteristics, and situating the analysis within SDG 4 (Quality Education). While universities worldwide increasingly integrate sustainability into their missions, systematic evidence from middle-income systems remains scarce. To address this gap, we compile a dataset of 50 Turkish universities combining three global indicators—the Times Higher Education (THE) Education Score, THE Impact Score, and the UI GreenMetric Education & Research Score (GM-ED)—with institutional characteristics such as ownership and student enrollment. We employ descriptive statistics; correlation analysis; robust regression models; composite indices under equal, PCA, and entropy-based weighting; and exploratory k-means clustering. Results show that integration of sustainability into curricula and research is the most consistent predictor of SDG-oriented performance, while institutional size and ownership exert limited influence. In addition, we propose composite indices (GECIs). GECIs confirm stable top performers across methods, but mid-ranked universities are volatile, indicating that governance and strategic orientation matter more than structural capacity. The study contributes to international debates by framing green education as both a measurable indicator and a transformative institutional practice. For Türkiye, our findings highlight the need to move beyond symbolic initiatives toward systemic reforms that link accreditation, funding, and governance with green education outcomes. More broadly, we demonstrate how universities in middle-income contexts can institutionalize sustainability and provide a replicable framework for assessing progress toward SDG 4. Full article
(This article belongs to the Special Issue Sustainable Education for All: Latest Enhancements and Prospects)
37 pages, 905 KB  
Review
Application of Fuzzy Logic Techniques in Solar Energy Systems: A Review
by Siviwe Maqekeni, KeChrist Obileke, Odilo Ndiweni and Patrick Mukumba
Appl. Syst. Innov. 2025, 8(5), 144; https://doi.org/10.3390/asi8050144 - 30 Sep 2025
Abstract
Fuzzy logic has been applied to a wide range of problems, including process control, object recognition, image and signal processing, prediction, classification, decision-making, optimization, and time series analysis. These apply to solar energy systems. Though experts in renewable energy prefer fuzzy logic techniques, [...] Read more.
Fuzzy logic has been applied to a wide range of problems, including process control, object recognition, image and signal processing, prediction, classification, decision-making, optimization, and time series analysis. These apply to solar energy systems. Though experts in renewable energy prefer fuzzy logic techniques, their contribution to the decision-making process of solar energy systems lies in the possibility of illustrating risk factors and introducing the concepts of linguistic variables of data from solar energy applications. In solar energy systems, the primary beneficiaries and audience of the fuzzy logic techniques are solar energy policy makers, as it concerns decision-making models, ranking of criteria or weights, and assessment of the potential location of the installation of solar energy plants, depending on the case. In a real-world scenario, fuzzy logic allows easy and efficient controller configuration in a non-linear control system, such as a solar panel. This study attempts to review the role and contribution of fuzzy logic in solar energy based on its applications. The findings from the review revealed that the fuzzy logic application identifies and detects faults in solar energy systems as well as in the optimization of energy output and the location of solar energy plants. In addition, fuzzy model (predicting), hybrid model (simulating performance), and multi-criteria decision-making (MCDM) are components of fuzzy logic techniques. As the review indicated, these are useful as a solution to the challenges of solar energy systems. Importantly, the integration and incorporation of fuzzy logic and neural networks should be recommended for the efficient and effective performance of solar energy systems. Full article
Show Figures

Figure 1

28 pages, 11274 KB  
Article
Field-Scale Rice Yield Prediction in Northern Coastal Region of Peru Using Sentinel-2 Vegetation Indices and Machine Learning Models
by Isabel Jarro-Espinal, José Huanuqueño-Murillo, Javier Quille-Mamani, David Quispe-Tito, Lia Ramos-Fernández, Edwin Pino-Vargas and Alfonso Torres-Rua
Agriculture 2025, 15(19), 2054; https://doi.org/10.3390/agriculture15192054 - 30 Sep 2025
Abstract
Accurate rice yield prediction is essential for optimizing water management and supporting decision-making in agricultural systems, particularly in arid environments where irrigation efficiency is critical. This study assessed five machine learning algorithms—Multiple Linear Regression (MLR), Support Vector Regression (SVR, linear and RBF), Partial [...] Read more.
Accurate rice yield prediction is essential for optimizing water management and supporting decision-making in agricultural systems, particularly in arid environments where irrigation efficiency is critical. This study assessed five machine learning algorithms—Multiple Linear Regression (MLR), Support Vector Regression (SVR, linear and RBF), Partial Least Squares Regression (PLSR), Random Forest (RF), and Extreme Gradient Boosting (XGBoost)—for plot-scale rice yield estimation using Sentinel-2 vegetation indices (VIs) during the 2022 and 2023 seasons in the Chancay–Lambayeque Valley, Peru. VIs sensitive to canopy vigor, water status, and structure were derived in Google Earth Engine and optimized via Sequential Forward Selection to identify the most relevant predictors per phenological stage. Models were trained and validated against field yields using leave-one-out cross-validation (LOOCV). Intermediate stages (Flowering, Milk, Dough) yielded the strongest relationships, with water-sensitive indices (NDMI, MSI) consistently ranked as key predictors. MLR and PLSR achieved the highest generalization (R2_CV up to 0.68; RMSE_CV ≈ 1.3 t ha−1), while RF and XGBoost showed high training accuracy but lower validation performance, indicating overfitting. Model accuracy decreased in 2023 due to climatic variability and limited satellite observations. Findings confirm that Sentinel-2–based VI modeling offers a cost-effective, scalable alternative to UAV data for operational rice yield monitoring, supporting water resource management and decision-making in data-scarce agricultural regions. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

13 pages, 426 KB  
Article
An Analysis of Barriers to the Implementation of Energy-Efficient Technologies in Residential Buildings: A Quantitative Approach
by Lesiba George Mollo and Takondwa Chomey
Buildings 2025, 15(19), 3520; https://doi.org/10.3390/buildings15193520 - 30 Sep 2025
Abstract
Building owners and occupants encounter challenges in implementing energy-efficient technologies arising from high upfront costs, limited awareness, and inconsistent policy enforcement. This study aims to investigate the barriers that prevent the adoption of energy-efficient technologies in residential buildings. A case study research design [...] Read more.
Building owners and occupants encounter challenges in implementing energy-efficient technologies arising from high upfront costs, limited awareness, and inconsistent policy enforcement. This study aims to investigate the barriers that prevent the adoption of energy-efficient technologies in residential buildings. A case study research design was used to collect quantitative data using a survey questionnaire in the Brandwag area of the Mangaung Metropolitan Municipality in South Africa. The findings reflect building occupants’ perceptions regarding the effectiveness of various barriers encountered during the implementation of energy-efficient technologies in buildings. Notably, the highest-ranked barrier was the limited availability of financial support, which received a mean score of 4.19, while the lowest-ranked barrier was the shortage of qualified or skilled professionals, with a mean score of 3.78. An integrated strategy that simultaneously addresses financial processes, technical capacity building, and standardized regulations is essential for the successful adoption of energy-efficient technologies in residential buildings. However, a limitation of the study is its reliance on a survey-based research methodology for data collection. Although a quantitative approach was prioritized, the low response rate of the survey limits the generalizability of the findings. Future research should address this limitation by employing a mixed-methods research design for comparable evaluations focusing on South Africa, not just a province. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

10 pages, 219 KB  
Article
Validation of a Food Frequency Questionnaire for Assessing Fatty Acid Intake in Latvian Pregnant Women
by Ksenija Nikolajeva, Vinita Cauce and Laila Meija
Nutrients 2025, 17(19), 3108; https://doi.org/10.3390/nu17193108 - 30 Sep 2025
Abstract
Objectives: During pregnancy, fat intake is crucial for fetal development and optimal outcomes, and validation instruments are essential for assessing dietary composition and nutrient intake. The aim of this research was to validate a food frequency questionnaire (FFQ) against a 7-day food [...] Read more.
Objectives: During pregnancy, fat intake is crucial for fetal development and optimal outcomes, and validation instruments are essential for assessing dietary composition and nutrient intake. The aim of this research was to validate a food frequency questionnaire (FFQ) against a 7-day food record (FR) to measure fatty acid consumption during pregnancy. Methods: From July 2020 to June 2023, 138 women at 27–40 weeks’ gestation with a mean age of 31.5 ± 4.9 years were enrolled. Data were collected from medical records; an FFQ; a questionnaire gathering data on demographics, anthropometrics, health status, lifestyle, and use of food supplements at outpatient clinics; and a 7-day food record. Correlations between FA intakes from the FFQ and 7-day FR were assessed using Spearman’s rank-order correlation. Results: For the FFQ, correlation values ranged from 0.108 to 0.527, and all were statistically significant (p < 0.05) except for tetracosanoic acid. Conclusions: The developed FFQ is an accurate, valid instrument for assessing fatty acid (FA) intake among Latvian pregnant women and is reliable for future use in epidemiological studies. Full article
(This article belongs to the Section Nutrition in Women)
24 pages, 5484 KB  
Article
TFI-Fusion: Hierarchical Triple-Stream Feature Interaction Network for Infrared and Visible Image Fusion
by Mingyang Zhao, Shaochen Su and Hao Li
Information 2025, 16(10), 844; https://doi.org/10.3390/info16100844 - 30 Sep 2025
Abstract
As a key technology in multimodal information processing, infrared and visible image fusion holds significant application value in fields such as military reconnaissance, intelligent security, and autonomous driving. To address the limitations of existing methods, this paper proposes the Hierarchical Triple-Feature Interaction Fusion [...] Read more.
As a key technology in multimodal information processing, infrared and visible image fusion holds significant application value in fields such as military reconnaissance, intelligent security, and autonomous driving. To address the limitations of existing methods, this paper proposes the Hierarchical Triple-Feature Interaction Fusion Network (TFI-Fusion). Based on a hierarchical triple-stream feature interaction mechanism, the network achieves high-quality fusion through a two-stage, separate-model processing approach: In the first stage, a single model extracts low-rank components (representing global structural features) and sparse components (representing local detail features) from source images via the Low-Rank Sparse Decomposition (LSRSD) module, while capturing cross-modal shared features using the Shared Feature Extractor (SFE). In the second stage, another model performs fusion and reconstruction: it first enhances the complementarity between low-rank and sparse features through the innovatively introduced Bi-Feature Interaction (BFI) module, realizes multi-level feature fusion via the Triple-Feature Interaction (TFI) module, and finally generates fused images with rich scene representation through feature reconstruction. This separate-model design reduces memory usage and improves operational speed. Additionally, a multi-objective optimization function is designed based on the network’s characteristics. Experiments demonstrate that TFI-Fusion exhibits excellent fusion performance, effectively preserving image details and enhancing feature complementarity, thus providing reliable visual data support for downstream tasks. Full article
Show Figures

Figure 1

24 pages, 6146 KB  
Article
Research on Capacity Prediction and Interpretability of Dense Gas Pressure Based on Ensemble Learning
by Xuanyu Liu, Zhiwei Yu, Chao Zhou, Yu Wang and Yujie Bai
Processes 2025, 13(10), 3132; https://doi.org/10.3390/pr13103132 - 29 Sep 2025
Abstract
Data-driven modeling methods have been preliminarily applied in the development of tight-gas reservoirs, demonstrating unique advantages in post-fracturing productivity prediction. However, most of the established predictive models are “black-box” models, which provide productivity predictions based on a set of input parameters without revealing [...] Read more.
Data-driven modeling methods have been preliminarily applied in the development of tight-gas reservoirs, demonstrating unique advantages in post-fracturing productivity prediction. However, most of the established predictive models are “black-box” models, which provide productivity predictions based on a set of input parameters without revealing the internal prediction mechanisms. This lack of transparency reduces the credibility and practical utility of such models. To address the challenges of poor performance and low trustworthiness of “black-box” machine learning models, this study explores a data-driven approach to “black-box” predictive modeling by integrating ensemble learning with interpretability methods. The results indicate the following: The post-fracturing productivity prediction model for tight-gas reservoirs developed in this study, based on ensemble learning, achieves a goodness of fit of 0.923, representing a 26.09% improvement compared to the best-performing individual machine learning model. The stacking ensemble model predicts post-fracturing productivity for horizontal wells more accurately and effectively mitigates the prediction biases of individual machine learning models. An interpretability method for the “black-box” ensemble learning-based productivity prediction model was established, revealing the ranked importance of factors influencing post-fracturing productivity: reservoir properties, controllable operational parameters, and rock mechanics. This ranking aligns with the results of orthogonal experiments from mechanism-driven numerical models, providing mutual validation and enhancing the credibility of the ensemble learning-based productivity prediction model. In conclusion, this study integrates mechanistic numerical models and data-driven models to explore the influence of various factors on post-fracturing productivity. The cross-validation of results from both approaches underscores the reliability of the findings, offering theoretical and methodological support for the design of fracturing schemes and the iterative advancement of fracturing technologies in tight-gas reservoirs. Full article
(This article belongs to the Topic Enhanced Oil Recovery Technologies, 4th Edition)
Show Figures

Figure 1

Back to TopTop