Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (504)

Search Parameters:
Keywords = range of motion monitoring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 11880 KiB  
Article
A Low-Cost Portable SDIMM for Daytime Atmospheric Optical Turbulence Measurement in Observatory Site Testing: Primary Results from Ali Site
by Jingxing Wang, Jing Feng, Xuan Qian, Yongqiang Yao, Mingyu Zhao, Kaifeng Kang and Tengfei Song
Photonics 2025, 12(7), 705; https://doi.org/10.3390/photonics12070705 - 11 Jul 2025
Viewed by 215
Abstract
Atmospheric optical turbulence intensity, quantified by the Fried parameter (r0), serves as a critical metric for astronomical site testing and selection. The Solar Differential Image Motion Monitor (SDIMM), adapted from the methodology of the Differential Image Motion Monitor (DIMM), is [...] Read more.
Atmospheric optical turbulence intensity, quantified by the Fried parameter (r0), serves as a critical metric for astronomical site testing and selection. The Solar Differential Image Motion Monitor (SDIMM), adapted from the methodology of the Differential Image Motion Monitor (DIMM), is a dedicated instrument for daytime r0 measurements. Conventional SDIMM systems typically employ telescopes with apertures ≥30 cm and reconstruct wavefront segmentation at the exit pupil, resulting in bulky configurations that impede portability. To address the demands of multi-site surveys, we developed a low-cost, portable SDIMM system that directly adopts the DIMM optical path without backend wavefront reconstruction, instead deriving r0 through image processing algorithms. Integrated with a 20 cm aperture telescope, the system achieves a total weight of <20 kg, significantly enhancing field portability. This paper details the instrument’s architecture, measurement principles, and comparative tests with a traditional SDIMM, demonstrating strong consistency between the two systems. Field measurements conducted at the Ali Observatory (elevation: 5050 m) from 16 August to 10 December 2024 yielded the site’s first continuous daytime r0 dataset, with values ranging from 1.5 cm to 12 cm and a mean of 4.09 cm. The compact SDIMM provides a cost-effective and easily deployable solution for comparative daytime r0 assessments across multiple candidate astronomical sites. Full article
(This article belongs to the Special Issue Recent Advances in Optical Turbulence)
Show Figures

Figure 1

19 pages, 26396 KiB  
Article
Development of a Networked Multi-Participant Driving Simulator with Synchronized EEG and Telemetry for Traffic Research
by Poorendra Ramlall, Ethan Jones and Subhradeep Roy
Systems 2025, 13(7), 564; https://doi.org/10.3390/systems13070564 - 10 Jul 2025
Viewed by 297
Abstract
This paper presents a multi-participant driving simulation framework designed to support traffic experiments involving the simultaneous collection of vehicle telemetry and cognitive data. The system integrates motion-enabled driving cockpits, high-fidelity steering and pedal systems, immersive visual displays (monitor or virtual reality), and the [...] Read more.
This paper presents a multi-participant driving simulation framework designed to support traffic experiments involving the simultaneous collection of vehicle telemetry and cognitive data. The system integrates motion-enabled driving cockpits, high-fidelity steering and pedal systems, immersive visual displays (monitor or virtual reality), and the Assetto Corsa simulation engine. To capture cognitive states, dry-electrode EEG headsets are used alongside a custom-built software tool that synchronizes EEG signals with vehicle telemetry across multiple drivers. The primary contribution of this work is the development of a modular, scalable, and customizable experimental platform with robust data synchronization, enabling the coordinated collection of neural and telemetry data in multi-driver scenarios. The synchronization software developed through this study is freely available to the research community. This architecture supports the study of human–human interactions by linking driver actions with corresponding neural activity across a range of driving contexts. It provides researchers with a powerful tool to investigate perception, decision-making, and coordination in dynamic, multi-participant traffic environments. Full article
(This article belongs to the Special Issue Modelling and Simulation of Transportation Systems)
Show Figures

Figure 1

40 pages, 2250 KiB  
Review
Comprehensive Comparative Analysis of Lower Limb Exoskeleton Research: Control, Design, and Application
by Sk Hasan and Nafizul Alam
Actuators 2025, 14(7), 342; https://doi.org/10.3390/act14070342 - 9 Jul 2025
Viewed by 262
Abstract
This review provides a comprehensive analysis of recent advancements in lower limb exoskeleton systems, focusing on applications, control strategies, hardware architecture, sensing modalities, human-robot interaction, evaluation methods, and technical innovations. The study spans systems developed for gait rehabilitation, mobility assistance, terrain adaptation, pediatric [...] Read more.
This review provides a comprehensive analysis of recent advancements in lower limb exoskeleton systems, focusing on applications, control strategies, hardware architecture, sensing modalities, human-robot interaction, evaluation methods, and technical innovations. The study spans systems developed for gait rehabilitation, mobility assistance, terrain adaptation, pediatric use, and industrial support. Applications range from sit-to-stand transitions and post-stroke therapy to balance support and real-world navigation. Control approaches vary from traditional impedance and fuzzy logic models to advanced data-driven frameworks, including reinforcement learning, recurrent neural networks, and digital twin-based optimization. These controllers support personalized and adaptive interaction, enabling real-time intent recognition, torque modulation, and gait phase synchronization across different users and tasks. Hardware platforms include powered multi-degree-of-freedom exoskeletons, passive assistive devices, compliant joint systems, and pediatric-specific configurations. Innovations in actuator design, modular architecture, and lightweight materials support increased usability and energy efficiency. Sensor systems integrate EMG, EEG, IMU, vision, and force feedback, supporting multimodal perception for motion prediction, terrain classification, and user monitoring. Human–robot interaction strategies emphasize safe, intuitive, and cooperative engagement. Controllers are increasingly user-specific, leveraging biosignals and gait metrics to tailor assistance. Evaluation methodologies include simulation, phantom testing, and human–subject trials across clinical and real-world environments, with performance measured through joint tracking accuracy, stability indices, and functional mobility scores. Overall, the review highlights the field’s evolution toward intelligent, adaptable, and user-centered systems, offering promising solutions for rehabilitation, mobility enhancement, and assistive autonomy in diverse populations. Following a detailed review of current developments, strategic recommendations are made to enhance and evolve existing exoskeleton technologies. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

10 pages, 592 KiB  
Article
Assessing the Accuracy and Reliability of the Monitored Augmented Rehabilitation System for Measuring Shoulder and Elbow Range of Motion
by Samuel T. Lauman, Lindsey J. Patton, Pauline Chen, Shreya Ravi, Stephen J. Kimatian and Sarah E. Rebstock
Sensors 2025, 25(14), 4269; https://doi.org/10.3390/s25144269 - 9 Jul 2025
Viewed by 167
Abstract
Accurate range of motion (ROM) assessment is essential for evaluating musculoskeletal function and guiding rehabilitation, particularly in pediatric populations. Traditional methods, such as optical motion capture and handheld goniometry, are often limited by cost, accessibility, and inter-rater variability. This study evaluated the feasibility [...] Read more.
Accurate range of motion (ROM) assessment is essential for evaluating musculoskeletal function and guiding rehabilitation, particularly in pediatric populations. Traditional methods, such as optical motion capture and handheld goniometry, are often limited by cost, accessibility, and inter-rater variability. This study evaluated the feasibility and accuracy of the Microsoft Azure Kinect-powered Monitored Augmented Rehabilitation System (MARS) compared to Kinovea. Sixty-five pediatric participants (ages 5–18) performed standardized shoulder and elbow movements in the frontal and sagittal planes. ROM data were recorded using MARS and compared to Kinovea. Measurement reliability was evaluated using intraclass correlation coefficients (ICC3k), and accuracy was evaluated using root mean squared error (RMSE) analysis. MARS demonstrated excellent reliability with an average ICC3k of 0.993 and met the predefined accuracy threshold (RMSE ≤ 8°) for most movements, with the exception of sagittal elbow flexion. These findings suggest that MARS is a reliable, accurate, and cost-effective alternative for clinical ROM assessment, offering a markerless solution that enhances measurement precision and accessibility in pediatric rehabilitation. Future studies should enhance accuracy in sagittal plane movements and further validate MARS against gold-standard systems. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

19 pages, 793 KiB  
Article
Lateral Asymmetries and Their Predictive Ability for Maximal Incremental Cycle Ergometer Performance in Road Cyclists
by Mario Iglesias-Caamaño, Jose Manuel Abalo-Rey, Tania Álvarez-Yates, Diego Fernández-Redondo, Jose Angel López-Campos, Fábio Yuzo Nakamura, Alba Cuba-Dorado and Oscar García-García
Symmetry 2025, 17(7), 1060; https://doi.org/10.3390/sym17071060 - 4 Jul 2025
Viewed by 336
Abstract
This study aimed to (1) determine and compare the magnitude and direction of asymmetry in lower limbs neuromuscular properties, range of motion, strength and muscle electrical activity (EMG) in well-trained male road cyclist across categories (elite, under-23 and junior); (2) establish test- and [...] Read more.
This study aimed to (1) determine and compare the magnitude and direction of asymmetry in lower limbs neuromuscular properties, range of motion, strength and muscle electrical activity (EMG) in well-trained male road cyclist across categories (elite, under-23 and junior); (2) establish test- and age-specific asymmetry thresholds for these variables to enable individualized classification; and (3) examine the relationship between these lateral asymmetries and performance in a maximal incremental cycle ergometer test. Fifty-five well-trained road cyclists were assessed through tensiomyography (TMG), active knee extension test (AKE), leg press and EMG of vastus lateralis (VL-EMG) during a maximal incremental cycling test. Junior cyclists showed lower asymmetry in VM than elite cyclists, but greater asymmetry in AKE. No significant differences were found in strength or VL-EMG during the maximal incremental cycle ergometer test. The magnitude and direction of lateral asymmetry differs between tests (TMG: 11.3–21.3%; AKE: 2.3%; leg-press: 9.8–31.9%; VL-EMG: 20.8–22.7%). Multiple linear regression revealed a significant predictive model for maximal incremental cycling ergometer performance based on lateral asymmetry in AKE, leg press and VL and rectus femoris contraction time (R2a = 0.23). These reference data can support trainers in monitoring and managing lateral asymmetry throughout the cyclists’ season. Full article
(This article belongs to the Section Life Sciences)
Show Figures

Figure 1

13 pages, 2884 KiB  
Article
Entropy-Based Human Activity Measure Using FMCW Radar
by Hak-Hoon Lee and Hyun-Chool Shin
Entropy 2025, 27(7), 720; https://doi.org/10.3390/e27070720 - 3 Jul 2025
Viewed by 225
Abstract
Existing activity measurement methods, such as gas analyzers, activity trackers, and camera-based systems, have limitations in accuracy, convenience, and privacy. To address these issues, this study proposes an improved activity estimation algorithm using a 60 GHz Frequency-Modulated Continuous-Wave (FMCW) radar. Unlike conventional methods [...] Read more.
Existing activity measurement methods, such as gas analyzers, activity trackers, and camera-based systems, have limitations in accuracy, convenience, and privacy. To address these issues, this study proposes an improved activity estimation algorithm using a 60 GHz Frequency-Modulated Continuous-Wave (FMCW) radar. Unlike conventional methods that rely solely on distance variations, the proposed method incorporates both distance and velocity information, enhancing measurement accuracy. The algorithm quantifies activity levels using Shannon entropy to reflect the spatial–temporal variation in range signatures. The proposed method was validated through experiments comparing estimated activity levels with motion sensor-based ground truth data. The results demonstrate that the proposed approach significantly improves accuracy, achieving a lower Root Mean Square Error (RMSE) and higher correlation with ground truth values than conventional methods. This study highlights the potential of FMCW radar for non-contact, unrestricted activity monitoring and suggests future research directions using multi-channel radar systems for enhanced motion analysis. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Figure 1

15 pages, 6418 KiB  
Article
Multifunctional Sensor for Strain, Pressure, and UV Light Detections Using Polyaniline and ZnO Nanostructures on a Flexible Substrate
by Seung-Woo Lee, Ju-Seong Lee, Hyeon-Wook Yu, Tae-Hee Kim and Hyun-Seok Kim
Polymers 2025, 17(13), 1825; https://doi.org/10.3390/polym17131825 - 30 Jun 2025
Viewed by 260
Abstract
Wearable sensors have rapidly advanced, enabling applications such as human activity monitoring, electronic skin, and biomimetic robotics. To meet the growing demands of these applications, multifunctional sensing has become essential for wearable devices. However, most existing studies predominantly focus on enhancing single-function sensing [...] Read more.
Wearable sensors have rapidly advanced, enabling applications such as human activity monitoring, electronic skin, and biomimetic robotics. To meet the growing demands of these applications, multifunctional sensing has become essential for wearable devices. However, most existing studies predominantly focus on enhancing single-function sensing capabilities. This study introduces a multifunctional sensor that combines high stretchability for strain and pressure detection with ultraviolet (UV) sensing capability. To achieve simultaneous detection of strain, pressure, and UV light, a multi-sensing approach was employed: a capacitive method for strain and pressure detections and a resistive method utilizing a pn-heterojunction diode for UV detection. In the capacitive method, polyaniline (PANI) served as parallel-plate electrodes, while silicon-based elastomer acted as the dielectric layer. This configuration enabled up to 100% elongation and enhanced operational stability through encapsulation. The sensor demonstrated a strong linear relationship between capacitance value changes reasonably based on the area of PANI, and showed a good linearity with an R-squared value of 0.9918. It also detected pressure across a wide range, from low (0.4 kPa) to high (9.4 kPa). Furthermore, for wearable applications, the sensor reliably captured capacitance variations during finger bending at different angles. For UV detection, a pn-heterojunction diode composed of p-type silicon and n-type zinc oxide nanorods exhibited a rapid response time of 6.1 s and an on/off ratio of 13.8 at −10 V. Durability under 100% tensile strain was confirmed through Von Mises stress calculations using finite element modeling. Overall, this multifunctional sensor offers significant potential for a variety of applications, including human motion detection, wearable technology, and robotics. Full article
(This article belongs to the Special Issue Polymer Thin Films: Synthesis, Characterization and Applications)
Show Figures

Figure 1

13 pages, 1361 KiB  
Article
Characterizing Indoor Black Carbon Dynamics in a Residential Environment: The Role of Human Activity and Ventilation Behavior
by Nikolina Račić, Sanja Frka, Ana Cvitešić Kušan, Valentino Petrić, Francesco Mureddu and Mario Lovrić
Toxics 2025, 13(7), 536; https://doi.org/10.3390/toxics13070536 - 26 Jun 2025
Viewed by 337
Abstract
Understanding indoor black carbon (BC) dynamics is important for assessing human exposure and informing air quality management in residential settings. This study presents a high-resolution, multi-sensor dataset collected over 24 days in a semi-occupied home in Zagreb, Croatia, designed to characterize the temporal [...] Read more.
Understanding indoor black carbon (BC) dynamics is important for assessing human exposure and informing air quality management in residential settings. This study presents a high-resolution, multi-sensor dataset collected over 24 days in a semi-occupied home in Zagreb, Croatia, designed to characterize the temporal behavior and sources of indoor BC. Indoor BC concentrations were measured at 1 min resolution using a dual-spot aethalometer, with source apportionment into biomass burning and fossil fuel components. Complementary contextual data including motion detection, door and window states, and traffic activity were collected in parallel using smart sensors and annotated experimental logs. Across the monitoring period, daily mean BC concentrations ranged from 174.7 and 1053.1 ng/m3 for biomass burning BC and between 53.2 and 880.3 ng/m3 for fossil fuel component. Statistical analyses revealed significant increases in BC concentrations during direct combustion-related activities, including scented candle burning and gas burner use. Additional BC elevations were associated with mechanical heat sources and nearby vehicle traffic, particularly affecting the fossil fuel BC component. In contrast, non-combustion activities such as brief human presence exhibited minor or inconsistent effects on indoor BC levels. This study elucidates the primary role of combustion-based indoor activities in influencing short-term BC exposure and highlights the importance of synchronized, high-resolution datasets for indoor air quality research. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Graphical abstract

16 pages, 3808 KiB  
Article
Mechanical Design, Control, and Laboratory Test of a Two-Degrees-of-Freedom Elbow Prosthesis
by Ramsés Hernández-Cerero, Juan Alejandro Flores-Campos, José Juan Mojica-Martínez, Adolfo Angel Casarez-Duran, Luis Angel Guerrero-Hernández and Christopher René Torres-SanMiguel
Bioengineering 2025, 12(7), 695; https://doi.org/10.3390/bioengineering12070695 - 25 Jun 2025
Viewed by 344
Abstract
This study presents the design and experimental testing of a two-degrees-of-freedom (2DOF) elbow prosthesis prototype designed to replicate the movement patterns of a native or normal human elbow. Two methods of the control of the prosthesis, namely, the proportional–integral–derivative method (PID; a well-established [...] Read more.
This study presents the design and experimental testing of a two-degrees-of-freedom (2DOF) elbow prosthesis prototype designed to replicate the movement patterns of a native or normal human elbow. Two methods of the control of the prosthesis, namely, the proportional–integral–derivative method (PID; a well-established method) and a combination of sliding mode control with a time base generator strategy (SMC + TBG; an advanced method), were compared on the basis of various performance metrics of the prosthesis, as obtained in laboratory tests. Among these metrics were the angular displacement and velocity as a function of time. The mechanical design combined 3D-printed components with custom-designed joints, featuring a worm gear transmission with a crown gear for flexion–extension, enhanced by torsional springs, and a pinion gear with a crown gear for pronation–supination and control. Sensors for voltage and current data acquisition enabled real-time monitoring and control. The prosthesis was tested in the laboratory with a range of motion of 100–120° for flexion–extension, 50° for supination, and 75° for pronation, demonstrating the adaptability of the actuators and validating their autonomy through battery-powered operation. The results showed that control using SMC + TBG resulted in biomimetic patterns for angular displacement and angular velocity of the prosthesis, whereas control using PID did not. Thus, the prosthesis with control provided using an SMC + TBG strategy may have been promised for use by people who have undergone transhumeral amputation. Full article
(This article belongs to the Special Issue Joint Biomechanics and Implant Design)
Show Figures

Figure 1

15 pages, 4940 KiB  
Article
Consistency Is Key: A Secondary Analysis of Wearable Motion Sensor Accuracy Measuring Knee Angles Across Activities of Daily Living Before and After Knee Arthroplasty
by Robert C. Marchand, Kelly B. Taylor, Emily C. Kaczynski, Skye Richards, Jayson B. Hutchinson, Shayan Khodabakhsh and Ryan M. Chapman
Sensors 2025, 25(13), 3942; https://doi.org/10.3390/s25133942 - 25 Jun 2025
Viewed by 375
Abstract
Background: Monitoring knee range of motion (ROM) after total knee arthroplasty (TKA) via clinically deployed wearable motion sensors is increasingly common. Prior work from our own lab showed promising results in one wearable motion sensor system; however, we did not investigate errors across [...] Read more.
Background: Monitoring knee range of motion (ROM) after total knee arthroplasty (TKA) via clinically deployed wearable motion sensors is increasingly common. Prior work from our own lab showed promising results in one wearable motion sensor system; however, we did not investigate errors across different activities. Accordingly, herein we conducted secondary analyses of error using wearable inertial measurement units (IMUs) quantifying sagittal knee angles across activities in TKA patients. Methods: After Institutional Review Board (IRB) approval, TKA patients were recruited for participation in two visits (n = 20 enrolled, n = 5 lost to follow-up). Following a sensor tutorial (MotionSense, Stryker, Mahwah, NJ, USA), sensors and motion capture (MOCAP) markers were applied for data capture before surgery. One surgeon then performed TKA. An identical data capture was then completed postoperatively. MOCAP and wearable motion sensor knee angles were computed during a series of activities and compared. Two-way ANOVA evaluated the impact of time (pre- vs. post-TKA) and activity on average error. Another two-way ANOVA was completed, assessing if error at local maxima was different than at local minima and if either was different across activities. Results: Pre-TKA/post-TKA errors were not different. No differences were noted across activities. On average, the errors were under clinically acceptable thresholds (i.e., 4.9 ± 2.6° vs. ≤5°). Conclusions: With average error ≤ 5°, these specific sensors accurately quantify knee angles before/after surgical intervention. Future investigations should explore leveraging this type of technology to evaluate preoperative function decline and postoperative function recovery. Full article
(This article belongs to the Special Issue State of the Art in Wearable Sensors for Health Monitoring)
Show Figures

Figure 1

10 pages, 1177 KiB  
Article
Mold-Free Manufacturing of Ultra-Thin Composite Film with Flower-like Microstructures for Highly Sensitive Tactile Sensing
by Xin-Hua Zhao, Ling-Feng Liu, Qinyu He and Qi-Jun Sun
Materials 2025, 18(12), 2863; https://doi.org/10.3390/ma18122863 - 17 Jun 2025
Viewed by 310
Abstract
Wearable tactile sensors with high sensitivity can be potentially used to continuously monitoring physiological signals that are closely related to disease diagnosis and health condition tracking. However, the development of such tactile sensors involves a number of challenges, including a series of expensive [...] Read more.
Wearable tactile sensors with high sensitivity can be potentially used to continuously monitoring physiological signals that are closely related to disease diagnosis and health condition tracking. However, the development of such tactile sensors involves a number of challenges, including a series of expensive patterning processes for microstructure manufacturing and addressing the large thickness of the microstructured composite film. Herein, a mold-free approach is presented to develop an ultra-thin ZnO/PEDOT:PSS composite film with flower-like microstructures via a feasible solution process for highly sensitive tactile sensors. The fabricated tactile sensors exhibit a high sensitivity of 4 × 103 kPa−1 in the pressure range 0–10 kPa, a fast response to various pressures in merits of the hierarchical microstructures on top of the ultra-thin composite films. Thanks to the fascinating performance of the devices, the tactile sensors are demonstrated with the ability to monitor physiological signals, subtle human body motions, and spatial pressure distribution. Full article
(This article belongs to the Special Issue Smart Textile Materials: Design, Characterization and Application)
Show Figures

Figure 1

11 pages, 491 KiB  
Article
The Clinical Feasibility and Safety of 1.5 T MR-Guided Daily Adapted Radiotherapy in 1000 Patients: A Real-World Large Experience of an Early-Adopter Center
by Chiara De-Colle, Michele Rigo, Andrea Gaetano Allegra, Luca Nicosia, Niccolò Giaj-Levra, Edoardo Pastorello, Francesco Ricchetti, Carolina Orsatti, Andrea Romei, Nicola Bianchi, Riccardo Filippo Borgese, Antonio De Simone, Davide Gurrera, Stefania Naccarato, Gianluisa Sicignano, Ruggero Ruggieri and Filippo Alongi
Cancers 2025, 17(12), 2012; https://doi.org/10.3390/cancers17122012 - 17 Jun 2025
Viewed by 408
Abstract
Purpose/Objective: The clinical implementation of MR-guided radiotherapy on MR-linacs (MRL) hasrapidly increased in recent years. The advantages represented by the MR-based daily online plan adaptation and real-time monitoring have been exploited for different tumor sites. Nevertheless, some concerns remain, mainly related to the [...] Read more.
Purpose/Objective: The clinical implementation of MR-guided radiotherapy on MR-linacs (MRL) hasrapidly increased in recent years. The advantages represented by the MR-based daily online plan adaptation and real-time monitoring have been exploited for different tumor sites. Nevertheless, some concerns remain, mainly related to the longer treatment time and limited patient eligibility. We report here the experience of our center, where a 1.5T MRL was clinically implemented in 2019 and, since then, more than 1200 patients have been treated. Material and Methods: The first 1000 patients treated at the MRL in our department were selected. Technical information such as treatment time and adaptive technic have been prospectively recorded, while toxicity data were retrospectively collected. Results: Between October 2019 and June 2024, 1000 patients for a total of 1061 treatment courses were included. Prostate and prostate bed were irradiated in 57.1% and 10.2% of the cases, respectively, including regional pelvic lymphnodes in 4.7%. Other frequent treated sites were lymph node metastases, pancreas and liver. The most frequent prescribed doses were 36.25 Gy (31%), 35 Gy (28.3%) and 30 Gy (9.4%) in five fractions. On a total of 9076 administered fractions, 80.8% were performed with adapt-to-shape and 19.2% with adapt-to-position method. The mean in-room time was 38 min (range, 18–103), with 74.4% of patients completing the session within 40 min. Acute grade (G) 3 toxicity was recorded in 1.6% of the cases, while, on a total of 858 patients available for late toxicity, G3 was recorded in 0.3% of the cases, with no >G3. Conclusions: Our real-world experience of an early-adopter center confirms that MRL treatments are feasible for different tumor entities in several anatomical sites. We showed that most of the patients could be treated within 40 min and showed low toxicity rates. Protocols for dose escalation and margin reduction, by adopting new comprehensive motion monitoring strategies, are under development. Full article
(This article belongs to the Section Clinical Research of Cancer)
Show Figures

Figure 1

15 pages, 3467 KiB  
Article
Carbon Nanotube Elastic Fabric Motion Tape Sensors for Low Back Movement Characterization
by Elijah Wyckoff, Sara P. Gombatto, Yasmin Velazquez, Job Godino, Kevin Patrick, Emilia Farcas and Kenneth J. Loh
Sensors 2025, 25(12), 3768; https://doi.org/10.3390/s25123768 - 17 Jun 2025
Viewed by 408
Abstract
Monitoring posture and movement accurately and efficiently is essential for both physical therapy and athletic training evaluation and interventions. Motion Tape (MT), a self-adhesive wearable skin-strain sensor made of piezoresistive graphene nanosheets (GNS), has demonstrated promise in capturing low back posture and movements. [...] Read more.
Monitoring posture and movement accurately and efficiently is essential for both physical therapy and athletic training evaluation and interventions. Motion Tape (MT), a self-adhesive wearable skin-strain sensor made of piezoresistive graphene nanosheets (GNS), has demonstrated promise in capturing low back posture and movements. However, to address some of its limitations, this work explores alternative materials by replacing GNS with multi-walled carbon nanotubes (MWCNT). This study aimed to characterize the electromechanical properties of MWCNT-based MT. Cyclic load tests for different peak tensile strains ranging from 1% to 10% were performed on MWCNT-MT made with an aqueous ink of 2% MWCNT. Additional tests to examine load rate sensitivity and fatigue were also conducted. After characterizing the properties of MWCNT-MT, a human subject study with 10 participants was designed to test its ability to capture different postures and movements. Sets of six sensors were made from each material (GNS and MWCNT) and applied in pairs at three levels along each side of the lumbar spine. To record movement of the lower back, all participants performed forward flexion, left and right bending, and left and right rotation movements. The results showed that MWCNT-MT exceeded GNS-MT with respect to consistency of signal stability even when strain limits were surpassed. In addition, both types of MT could assess lower back movements. Full article
(This article belongs to the Special Issue Sensing Technologies for Human Evaluation, Testing and Assessment)
Show Figures

Figure 1

15 pages, 744 KiB  
Article
Validation of a Commercially Available IMU-Based System Against an Optoelectronic System for Full-Body Motor Tasks
by Giacomo Villa, Serena Cerfoglio, Alessandro Bonfiglio, Paolo Capodaglio, Manuela Galli and Veronica Cimolin
Sensors 2025, 25(12), 3736; https://doi.org/10.3390/s25123736 - 14 Jun 2025
Viewed by 573
Abstract
Inertial measurement units (IMUs) have gained popularity as portable and cost-effective alternatives to optoelectronic motion capture systems for assessing joint kinematics. This study aimed to validate a commercially available multi-sensor IMU-based system against a laboratory-grade motion capture system across lower limb, trunk, and [...] Read more.
Inertial measurement units (IMUs) have gained popularity as portable and cost-effective alternatives to optoelectronic motion capture systems for assessing joint kinematics. This study aimed to validate a commercially available multi-sensor IMU-based system against a laboratory-grade motion capture system across lower limb, trunk, and upper limb movements. Fifteen healthy participants performed a battery of single- and multi-joint tasks while motion data were simultaneously recorded by both systems. Range of motion (ROM) values were extracted from the two systems and compared. The IMU-based system demonstrated high concurrent validity, with non-significant differences in most tasks, root mean square error values generally below 7°, percentage of similarity greater than 97%, and strong correlations (r ≥ 0.77) with the reference system. Systematic biases were trivial (≤3.9°), and limits of agreement remained within clinically acceptable thresholds. The findings indicate that the tested IMU-based system provides ROM estimates statistically and clinically comparable to those obtained with optical reference systems. Given its portability, ease of use, and affordability, the IMU-based system presents a promising solution for motion analysis in both clinical and remote rehabilitation contexts, although future research should extend validation to pathological populations and longer monitoring periods. Full article
(This article belongs to the Special Issue IMU and Innovative Sensors for Healthcare)
Show Figures

Figure 1

26 pages, 42046 KiB  
Article
High-Resolution Wide-Beam Millimeter-Wave ArcSAR System for Urban Infrastructure Monitoring
by Wenjie Shen, Wenxing Lv, Yanping Wang, Yun Lin, Yang Li, Zechao Bai and Kuai Yu
Remote Sens. 2025, 17(12), 2043; https://doi.org/10.3390/rs17122043 - 13 Jun 2025
Viewed by 265
Abstract
Arc scanning synthetic aperture radar (ArcSAR) can achieve high-resolution panoramic imaging and retrieve submillimeter-level deformation information. To monitor buildings in a city scenario, ArcSAR must be lightweight; have a high resolution, a mid-range (around a hundred meters), and low power consumption; and be [...] Read more.
Arc scanning synthetic aperture radar (ArcSAR) can achieve high-resolution panoramic imaging and retrieve submillimeter-level deformation information. To monitor buildings in a city scenario, ArcSAR must be lightweight; have a high resolution, a mid-range (around a hundred meters), and low power consumption; and be cost-effective. In this study, a novel high-resolution wide-beam single-chip millimeter-wave (mmwave) ArcSAR system, together with an imaging algorithm, is presented. First, to handle the non-uniform azimuth sampling caused by motor motion, a high-accuracy angular coder is used in the system design. The coder can send the radar a hardware trigger signal when rotated to a specific angle so that uniform angular sampling can be achieved under the unstable rotation of the motor. Second, the ArcSAR’s maximum azimuth sampling angle that can avoid aliasing is deducted based on the Nyquist theorem. The mathematical relation supports the proposed ArcSAR system in acquiring data by setting the sampling angle interval. Third, the range cell migration (RCM) phenomenon is severe because mmwave radar has a wide azimuth beamwidth and a high frequency, and ArcSAR has a curved synthetic aperture. Therefore, the fourth-order RCM model based on the range-Doppler (RD) algorithm is interpreted with a uniform azimuth angle to suit the system and implemented. The proposed system uses the TI 6843 module as the radar sensor, and its azimuth beamwidth is 64°. The performance of the system and the corresponding imaging algorithm are thoroughly analyzed and validated via simulations and real data experiments. The output image covers a 360° and 180 m area at an azimuth resolution of 0.2°. The results show that the proposed system has good application prospects, and the design principles can support the improvement of current ArcSARs. Full article
Show Figures

Figure 1

Back to TopTop