Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (119)

Search Parameters:
Keywords = radioactive waste management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1495 KiB  
Review
Computer Vision for Low-Level Nuclear Waste Sorting: A Review
by Tianshuo Li, Danielle E. Winckler and Zhong Li
Environments 2025, 12(8), 270; https://doi.org/10.3390/environments12080270 - 5 Aug 2025
Abstract
Nuclear power is a low-emission and economically competitive energy source, yet the effective disposal and management of its associated radioactive waste can be challenging. Radioactive waste can be categorised as high-level waste (HLW), intermediate-level waste (ILW), and low-level waste (LLW). LLW primarily comprises [...] Read more.
Nuclear power is a low-emission and economically competitive energy source, yet the effective disposal and management of its associated radioactive waste can be challenging. Radioactive waste can be categorised as high-level waste (HLW), intermediate-level waste (ILW), and low-level waste (LLW). LLW primarily comprises materials contaminated during routine clean-up, such as mop heads, paper towels, and floor sweepings. While LLW is less radioactive compared to HLW and ILW, the management of LLW poses significant challenges due to the large volume that requires processing and disposal. The volume of LLW can be significantly reduced through sorting, which is typically performed manually in a labour-intensive way. Smart management techniques, such as computer vision (CV) and machine learning (ML), have great potential to help reduce the workload and human errors during LLW sorting. This paper provides a comprehensive review of previous research related to LLW sorting and a summative review of existing applications of CV in solid waste management. It also discusses state-of-the-art CV and ML algorithms and their potential for automating LLW sorting. This review lays a foundation for and helps facilitate the applications of CV and ML techniques in LLW sorting, paving the way for automated LLW sorting and sustainable LLW management. Full article
Show Figures

Figure 1

27 pages, 1491 KiB  
Article
Spent Nuclear Fuel—Waste to Resource, Part 1: Effects of Post-Reactor Cooling Time and Novel Partitioning Strategies in Advanced Reprocessing on Highly Active Waste Volumes in Gen III(+) UOx Fuel Systems
by Alistair F. Holdsworth, Edmund Ireland and Harry Eccles
J. Nucl. Eng. 2025, 6(3), 29; https://doi.org/10.3390/jne6030029 - 5 Aug 2025
Abstract
Some of nuclear power’s primary detractors are the unique environmental challenges and impacts of radioactive wastes generated during fuel cycle operations. Key benefits of spent fuel reprocessing (SFR) are reductions in primary high active waste (HAW) masses, volumes, and lengths of radiotoxicity at [...] Read more.
Some of nuclear power’s primary detractors are the unique environmental challenges and impacts of radioactive wastes generated during fuel cycle operations. Key benefits of spent fuel reprocessing (SFR) are reductions in primary high active waste (HAW) masses, volumes, and lengths of radiotoxicity at the expense of secondary waste generation and high capital and operational costs. By employing advanced waste management and resource recovery concepts in SFR beyond the existing standard PUREX process, such as minor actinide and fission product partitioning, these challenges could be mitigated, alongside further reductions in HAW volumes, masses, and duration of radiotoxicity. This work assesses various current and proposed SFR and fuel cycle options as base cases, with further options for fission product partitioning of the high heat radionuclides (HHRs), rare earths, and platinum group metals investigated. A focus on primary waste outputs and the additional energy that could be generated by the reprocessing of high-burnup PWR fuel from Gen III(+) reactors using a simple fuel cycle model is used; the effects of 5- and 10-year spent fuel cooling times before reprocessing are explored. We demonstrate that longer cooling times are preferable in all cases except where short-lived isotope recovery may be desired, and that the partitioning of high-heat fission products (Cs and Sr) could allow for the reclassification of traditional raffinates to intermediate level waste. Highly active waste volume reductions approaching 50% vs. PUREX raffinate could be achieved in single-target partitioning of the inactive and low-activity rare earth elements, and the need for geological disposal could potentially be mitigated completely if HHRs are separated and utilised. Full article
Show Figures

Figure 1

23 pages, 2231 KiB  
Review
Advanced Nuclear Reactors—Challenges Related to the Reprocessing of Spent Nuclear Fuel
by Katarzyna Kiegiel, Tomasz Smoliński and Irena Herdzik-Koniecko
Energies 2025, 18(15), 4080; https://doi.org/10.3390/en18154080 - 1 Aug 2025
Viewed by 280
Abstract
Nuclear energy can help stop climate change by generating large amounts of emission-free electricity. Nuclear reactor designs are continually being developed to be more fuel efficient, safer, easier to construct, and to produce less nuclear waste. The term advanced nuclear reactors refers either [...] Read more.
Nuclear energy can help stop climate change by generating large amounts of emission-free electricity. Nuclear reactor designs are continually being developed to be more fuel efficient, safer, easier to construct, and to produce less nuclear waste. The term advanced nuclear reactors refers either to Generation III+ and Generation IV or small modular reactors. Every reactor is associated with the nuclear fuel cycle that must be economically viable and competitive. An important matter is optimization of fissile materials used in reactor and/or reprocessing of spent fuel and reuse. Currently operating reactors use the open cycle or partially closed cycle. Generation IV reactors are intended to play a significant role in reaching a fully closed cycle. At the same time, we can observe the growing interest in development of small modular reactors worldwide. SMRs can adopt either fuel cycle; they can be flexible depending on their design and fuel type. Spent nuclear fuel management should be an integral part of the development of new reactors. The proper management methods of the radioactive waste and spent fuel should be considered at an early stage of construction. The aim of this paper is to highlight the challenges related to reprocessing of new forms of nuclear fuel. Full article
Show Figures

Figure 1

20 pages, 1106 KiB  
Article
Synchrotron-Based Structural Analysis of Nanosized Gd2(Ti1−xZrx)2O7 for Radioactive Waste Management
by Marco Pinna, Andrea Trapletti, Claudio Minelli, Armando di Biase, Federico Bianconi, Michele Clemente, Alessandro Minguzzi, Carlo Castellano and Marco Scavini
Nanomaterials 2025, 15(14), 1134; https://doi.org/10.3390/nano15141134 - 21 Jul 2025
Viewed by 311
Abstract
Complex oxides with the general formula Gd2(Ti1−xZrx)2O7 are promising candidates for radioactive waste immobilization due to their capacity to withstand radiation by dissipating part of the free energy driving defect creation and phase transitions. [...] Read more.
Complex oxides with the general formula Gd2(Ti1−xZrx)2O7 are promising candidates for radioactive waste immobilization due to their capacity to withstand radiation by dissipating part of the free energy driving defect creation and phase transitions. In this study, samples with varying zirconium content (xZr = 0.00, 0.15, 0.25, 0.375, 0.56, 0.75, 0.85, 1.00) were synthesized via the sol–gel method and thermally treated at 500 °C to obtain nanosized powders mimicking the defective structure of irradiated materials. Synchrotron-based techniques were employed to investigate their structural properties: High-Resolution X-ray Powder Diffraction (HR-XRPD) was used to assess long-range structure, while Pair Distribution Function (PDF) analysis and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy provided insights into the local structure. HR-XRPD data revealed that samples with low Zr content (xZr ≤ 0.25) are amorphous. Increasing Zr concentration led to the emergence of a crystalline phase identified as defective fluorite (xZr = 0.375, 0.56). Samples with the highest Zr content (xZr ≥ 0.75) were fully crystalline and exhibited only the fluorite phase. The experimental G(r) functions of the fully crystalline samples in the low r range are suitably fitted by the Weberite structure, mapping the relaxations induced by structural disorder in defective fluorite. These structural insights informed the subsequent EXAFS analysis at the Zr-K and Gd-L3 edges, confirming the splitting of the cation–cation distances associated with different metal species. Moreover, EXAFS provided a local structural description of the amorphous phases, identifying a consistent Gd-O distance across all compositions. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Graphical abstract

18 pages, 3737 KiB  
Article
Simulation-Based RF-ICP Torch Optimization for Efficient and Environmentally Sustainable Radioactive Waste Management
by Roman Stetsiuk, Mustafa A. Aldeeb and Hossam A. Gabbar
Recycling 2025, 10(4), 139; https://doi.org/10.3390/recycling10040139 - 15 Jul 2025
Viewed by 284
Abstract
This study examines methods to improve the energy efficiency of radiofrequency inductively coupled plasma (RF-ICP) torches for radioactive waste treatment, with a focus on surpassing the typical energy efficiency limit of approximately 70%. To improve energy efficiency and plasma performance, this research investigates [...] Read more.
This study examines methods to improve the energy efficiency of radiofrequency inductively coupled plasma (RF-ICP) torches for radioactive waste treatment, with a focus on surpassing the typical energy efficiency limit of approximately 70%. To improve energy efficiency and plasma performance, this research investigates the transition from axial gas flow to vortex gas flow patterns using COMSOL Multiphysics software v6.2. Key plasma parameters, including energy efficiency, number of gas vortices, heat transfer, and temperature distribution, were analyzed to evaluate the improvements. The results indicate that adopting a vortex flow pattern increases energy conversion efficiency, increases heat flux, and reduces charge losses. Furthermore, optimizing the torch body design, particularly the nozzle, chamber volume, and gas entry angle, significantly improves plasma properties and energy efficiency by up to 90%. Improvements to RF-ICP torches positively impact waste decomposition by creating better thermal conditions that support resource recovery and potential material recycling. In addition, these improvements contribute to reducing secondary waste, mitigating environmental risks, and fostering long-term public support for nuclear technology, thereby promoting a more sustainable approach to waste management. Simulation results demonstrate the potential of RF-ICP flares as a cost-effective and sustainable solution for the thermal treatment of low- to intermediate-level radioactive waste. Full article
Show Figures

Figure 1

16 pages, 9499 KiB  
Article
Durability Assessment of Alkali-Activated Geopolymers Matrices for Organic Liquid Waste Immobilization
by Rosa Lo Frano, Salvatore Angelo Cancemi, Eleonora Stefanelli and Viktor Dolin
Materials 2025, 18(13), 3181; https://doi.org/10.3390/ma18133181 - 4 Jul 2025
Viewed by 315
Abstract
This study investigates the mechanical and microstructural performance of three alkali-activated geopolymer formulations, constituted of metakaolin (MK), blast furnace slag (BFS), and a ternary blend of MK, BFS, and fly ash (MIX), for the immobilization of simulated radioactive liquid organic waste (RLOW). Thermal [...] Read more.
This study investigates the mechanical and microstructural performance of three alkali-activated geopolymer formulations, constituted of metakaolin (MK), blast furnace slag (BFS), and a ternary blend of MK, BFS, and fly ash (MIX), for the immobilization of simulated radioactive liquid organic waste (RLOW). Thermal ageing tests were performed to evaluate geopolymer durability, including fire exposure (800 °C) and climatic chamber cycles (from −20 to 40 °C). Characterization through thermogravimetric analysis (TGA), compression tests, and scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS) was carried out to assess material degradation after thermal ageing. Preliminary results showed substantial strength and microstructural degradation in oil-loaded specimens after cyclic climatic ageing, while fire-exposed blank matrices retained partial mechanical integrity. BFS matrices exhibited the best thermal resistance, attributable to the formation of Ca-Al-Si-hydrate (C-A-S-H) gels. These findings support the use of optimized geopolymer formulations for safe RLOW immobilization, while contributing to the advancement of knowledge on sustainable and regulatory-compliant direct conditioning technology. Full article
Show Figures

Figure 1

16 pages, 249 KiB  
Article
Social Values, Individual Judgments and Acceptance: The Case of High-Level Radioactive Waste in Germany
by Cord Drögemüller, Roman Seidl and Clemens Walther
Sustainability 2025, 17(12), 5373; https://doi.org/10.3390/su17125373 - 11 Jun 2025
Viewed by 442
Abstract
The sustainable final disposal of high-level radioactive waste (HLW) remains an unresolved and highly controversially discussed issue, partly because of ecological, economic, and societal challenges and partly because of the risks the public associates with such disposal. Clearly, there will be little public [...] Read more.
The sustainable final disposal of high-level radioactive waste (HLW) remains an unresolved and highly controversially discussed issue, partly because of ecological, economic, and societal challenges and partly because of the risks the public associates with such disposal. Clearly, there will be little public acceptance of the project if citizens lack trust in responsible decision-makers and the site selection procedure. This endeavor will only be accepted if trust in the ongoing procedure is strengthened. We evaluated over 1800 comments from a German study (conducted in 2020) on the issue of final HLW disposal to answer the questions of how risk perceptions, trust, and acceptance are interrelated and what role other aspects, such as social values, play. By categorizing the comments, we obtained a different picture of opinions and identified the following needs circulating among the German population: the acceptance of a HLW repository or the site selection procedure depends particularly on the extent to which individual participants perceive the values of safety and fairness as fulfilled. When do they consider a repository safe, and when do they consider the procedure fair enough? The answers to these questions seem to depend strongly on the extent to which one’s own values are considered violated. The repository’s safety and the procedure’s fairness are essential. Moreover, instead on risks, respondents commented on safety. These concerns should be taken into account in the course of the site selection procedure to enable sustainable management and disposal of HLW. Full article
22 pages, 780 KiB  
Article
Radiological Assessment of Coal Fly Ash from Polish Power and Cogeneration Plants: Implications for Energy Waste Management
by Krzysztof Isajenko, Barbara Piotrowska, Mirosław Szyłak-Szydłowski, Magdalena Reizer, Katarzyna Maciejewska and Małgorzata Kwestarz
Energies 2025, 18(12), 3010; https://doi.org/10.3390/en18123010 - 6 Jun 2025
Viewed by 598
Abstract
The combustion of hard coal and lignite in power and combined heat and power plants generates significant amounts of coal fly ash (CFA), a waste material with variable properties. CFA naturally contains radionuclides, specifically naturally occurring radioactive materials (NORMs), which pose potential radiological [...] Read more.
The combustion of hard coal and lignite in power and combined heat and power plants generates significant amounts of coal fly ash (CFA), a waste material with variable properties. CFA naturally contains radionuclides, specifically naturally occurring radioactive materials (NORMs), which pose potential radiological risks to the environment and human health during their storage and utilization, including their incorporation into building materials. Although global research on the radionuclide content in CFA is available, there is a clear gap in detailed and current data specific to Central and Eastern Europe and notably, a lack of a systematic analysis investigating the influence of installed power plant capacity on the concentration profile of these radionuclides in the generated ash. This study aimed to fill this gap and provide crucial data for the Polish energy and environmental context. The objective was to evaluate the concentrations of selected radionuclides (232Th, 226Ra, and 40K) in coal fly ash samples collected between 2020 and 2023 from 19 Polish power and combined heat and power plants with varying capacities (categorized into four groups: S1–S4) and to assess the associated radiological risk. Radionuclide concentrations were determined using gamma spectrometry, and differences between groups were analyzed using non-parametric statistical methods, including PERMANOVA. The results demonstrated that plant capacity has a statistically significant influence on the concentration profiles of thorium and potassium but not radium. Calculated radiological hazard assessment factors (Raeq, Hex, Hin, IAED) revealed that although most samples fall near regulatory limits (e.g., 370 Bq kg−1 for Raeq), some exceed these limits, particularly in groups S1 (plants with a capacity less than 300 MW) and S4 (plants with a capacity higher than 300 MW). It was also found that the frequency of exceeding the annual effective dose limits (IAEDs) showed an increasing trend with the increasing installed capacity of the facility. These findings underscore the importance of plant capacity as a key factor to consider in the radiological risk assessment associated with coal fly ash. This study’s outcomes are crucial for informing environmental risk management strategies, guiding safe waste processing practices, and shaping environmental policies within the energy sector in Central and Eastern European countries, including Poland. Full article
Show Figures

Figure 1

12 pages, 3257 KiB  
Article
Enhanced Separation of Palladium from Nuclear Wastewater by the Sulfur-Rich Functionalized Covalent Organic Framework
by Junli Wang, Chen Luo, Wentao Wang, Hui Wang, Yao Liu, Jianwei Li and Taihong Yan
Nanomaterials 2025, 15(10), 714; https://doi.org/10.3390/nano15100714 - 9 May 2025
Cited by 1 | Viewed by 803
Abstract
The separation of palladium from radioactive waste streams represents a critical aspect of the secure handling and disposal of such hazardous materials. Palladium, in addition to its radioactive nature, holds intrinsic value as a resource. Despite the urgency, prevailing adsorbents fall short in [...] Read more.
The separation of palladium from radioactive waste streams represents a critical aspect of the secure handling and disposal of such hazardous materials. Palladium, in addition to its radioactive nature, holds intrinsic value as a resource. Despite the urgency, prevailing adsorbents fall short in their ability to effectively separate palladium under highly acidic environments. To surmount this challenge, our research has pioneered the development of 1,3,5-tris(4-aminophenyl)benzene-2,5-Bis(methylthio)terephthalaldehyde COF (TAPB-BMTTPA-COF), a novel material distinguished by its remarkable stability and an abundance of sulfur-containing functional groups. Leveraging the pronounced affinity of the soft ligands’ nitrogen and sulfur within its molecular architecture, TAPB-BMTTPA-COF demonstrates an exceptional capability for the selective adsorption of palladium. Empirical evidence underscores the material’s swift adsorption kinetics, with equilibrium achieved in as little as ten minutes, and its broad tolerance to varying acidity levels ranging from 0.1 to 3 M HNO3. Furthermore, TAPB-BMTTPA-COF boasts an impressive adsorption capacity, peaking at 343.6 mg/g, coupled with high selectivity in 13 interfering ions’ environment and the ability to be regenerated, making it a sustainable solution. Comprehensive analyses, including Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS), alongside Density Functional Theory (DFT) calculations, have corroborated the pivotal role played by densely packed nitrogen and sulfur active sites within the framework. These sites exhibit a robust affinity for Pd(II), which is the cornerstone of the material’s outstanding adsorption efficacy. The outcomes of this research underscore the immense potential of COFs endowed with resilient linkers and precisely engineered functional groups. Such COFs can adeptly capture metal ions with high selectivity, even in the face of severe environmental conditions, thereby paving the way for the more effective and environmentally responsible management of radioactive waste. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

14 pages, 1813 KiB  
Article
The Physico-Chemical and Radionuclide Characterisation of Soil near a Future Radioactive Waste Management Centre
by Tomislav Bituh, Branko Petrinec, Martina Novosel, Dinko Babić, Davor Rašeta, Iva Hrelja, Marija Galić, Aleksandra Perčin, Ivan Širić, Ivica Kisić, Andrea Rapić and Željka Zgorelec
Environments 2025, 12(4), 121; https://doi.org/10.3390/environments12040121 - 15 Apr 2025
Viewed by 496
Abstract
A future radioactive waste management centre is under development in central Croatia. One of the activities in the centre’s development was to monitor environmental radioactivity before the disposal of radioactive materials. Part of the monitoring programme focused on soil characterisation in the municipality [...] Read more.
A future radioactive waste management centre is under development in central Croatia. One of the activities in the centre’s development was to monitor environmental radioactivity before the disposal of radioactive materials. Part of the monitoring programme focused on soil characterisation in the municipality (total area 1308 km2) surrounding the centre, where about 40% of the soil is today used in organic farming. The study included a physico-chemical and radionuclide characterisation of the soil as well as ambient dose rate measurements. The aim of this study was to investigate how the physical and chemical composition of soil affects the concentration of radionuclides 238U, 40K, and 137Cs in soil, based on the measured radionuclide concentrations and values of selected soil parameters. Additionally, the ambient equivalent dose rate H*(10)/t was measured and the annual effective dose was calculated for the average person living in the area of interest. The observed ranges of radionuclide concentrations in the soil samples were: 9–72 Bq/kg for 238U, 65–823 Bq/kg for 40K, and 4–80 Bq/kg for 137Cs. Ambient dose equivalent rate measurements were in the range of 52–130 nSv/h. The highest measured values were in correlation with higher 238U activity concentrations in these parts of the investigated area. The results of this study showed that 238U had a significant correlation with pH; plant available P; sand, silt, and clay content; hydrolytic acidity; CaCO3; total carbon, organic matter, and total inorganic and organic carbon; and concentrations of Al, Si, Fe, Ca, Ti, K, Rb, Zr, Nb, Y, Sr, Th, and W. 40K showed a significant correlation with pH, sand content, hydrolytic acidity, total hydrogen, total nitrogen, CaCO3, total carbon, total inorganic carbon, and concentrations of Al, Si, Fe, Ca, Ti, Rb, Zr, Nb, P, Y, Zn, and Th. 137Cs showed a significant correlation with silt content, total nitrogen, and Si concentration. Full article
Show Figures

Figure 1

41 pages, 1393 KiB  
Review
Challenges and Strategies for the Sustainable Environmental Management of Phosphogypsum
by Linda Maina, Katarzyna Kiegiel and Grażyna Zakrzewska-Kołtuniewicz
Sustainability 2025, 17(8), 3473; https://doi.org/10.3390/su17083473 - 13 Apr 2025
Cited by 1 | Viewed by 2154
Abstract
Phosphogypsum, a byproduct of phosphate fertilizer production, poses significant environmental challenges due to its large volume, hazardous composition, and radioactivity. Conventional disposal methods, such as stockpiling and landfilling, contribute to soil and water contamination and present risks to human health. This article explores [...] Read more.
Phosphogypsum, a byproduct of phosphate fertilizer production, poses significant environmental challenges due to its large volume, hazardous composition, and radioactivity. Conventional disposal methods, such as stockpiling and landfilling, contribute to soil and water contamination and present risks to human health. This article explores the potential of integrating phosphogypsum into a circular economy framework, focusing on reducing environmental impacts and extracting value from this industrial waste. A detailed assessment of phosphogypsum’s chemical composition, including trace metals and radionuclides, is essential for effective management. This review paper examines safe handling, storage, and disposal strategies to minimize environmental risks. Additionally, innovative reuse applications are investigated, such as incorporating phosphogypsum into construction materials like cement, plasterboard, and concrete and its use in agriculture as a soil amendment or for land reclamation. The recovery of critical elements, particularly rare earth elements (REEs), highlights its potential to reduce waste and contribute to meeting the growing demand for strategic resources. Despite its promise, challenges remain, including chemical variability and the presence of radioactive components. This article identifies the technological and regulatory steps required to enable safe, large-scale reuse of phosphogypsum, emphasizing its role in advancing sustainable resource management within a circular economy. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

22 pages, 10051 KiB  
Article
Reuse of Activated Carbons from Filters for Water Treatment Derived from the Steam Cycle of a Nuclear Power Plant
by Beatriz Ledesma Cano, Eva M. Rodríguez, Juan Félix González González and Sergio Nogales-Delgado
C 2025, 11(1), 19; https://doi.org/10.3390/c11010019 - 3 Mar 2025
Viewed by 1553
Abstract
Nuclear energy has a great impact on the global energy mix. In Spain, it supplies over 20% of current energy requirements, demonstrating the relevance of nuclear power plants. These plants generate different types of waste (apart from radioactive) that should be managed. For [...] Read more.
Nuclear energy has a great impact on the global energy mix. In Spain, it supplies over 20% of current energy requirements, demonstrating the relevance of nuclear power plants. These plants generate different types of waste (apart from radioactive) that should be managed. For instance, the activated carbon included in filters (which neutralize isotopes in a possible radioactive leakage) should be periodically replaced. Nevertheless, these activated carbons might present long service lives, as they have not undergone any adsorption processes. Consequently, a considerable amount of activated carbon can be reused in alternative processes, even in the same nuclear power plant. The aim of this work was to assess the use of activated carbons (previously included in filters to prevent possible radioactive releases in primary circuits) for water treatment derived from the steam cycle of a nuclear power plant. A regeneration process (boron removal) was carried out (with differences between untreated carbon and after treatments, from SBET = 684 m2 g−1 up to 934 m2 g−1), measuring the adsorption efficiency for ethanolamine and triton X-100. There were no significative results that support the adsorption effectiveness of the activated carbon tested for ethanolamine adsorption, whereas a high adsorption capacity was found for triton X-100 (qL1 = 281 mg·g−1), proving that factors such as porosity play an important role in the specific usage of activated carbons. Full article
(This article belongs to the Special Issue Carbon-Based Materials Applied in Water and Wastewater Treatment)
Show Figures

Figure 1

39 pages, 10913 KiB  
Article
Corrosion Behavior of X65 API 5L Carbon Steel Under Simulated Storage Conditions: Influence of Gas Mixtures, Redox States, and Temperature Assessed Using Electrochemical Methods for up to 100 Hours
by Yendoube Charles Sano Moyeme, Stephanie Betelu, Johan Bertrand, Karine Groenen Serrano and Ioannis Ignatiadis
Metals 2025, 15(2), 221; https://doi.org/10.3390/met15020221 - 18 Feb 2025
Cited by 1 | Viewed by 1133
Abstract
In the context of the deep geological disposal of high-level and intermediate-level long-lived radioactive waste in France, the Callovian–Oxfordian (Cox) clay formation has been selected as a natural barrier. Thus, understanding the corrosion phenomena between the carbon steel used (API 5L X65) for [...] Read more.
In the context of the deep geological disposal of high-level and intermediate-level long-lived radioactive waste in France, the Callovian–Oxfordian (Cox) clay formation has been selected as a natural barrier. Thus, understanding the corrosion phenomena between the carbon steel used (API 5L X65) for the waste lining tubes and the Cox pore water, as well as its possible future evolutions, is of great importance. A controlled laboratory experiment was conducted using robust handmade API 5L X65 carbon steel electrodes in synthetic Cox pore water under equilibrium with three distinct gas atmospheres, simulating oxic, anoxic, and sulfide-rich environments at 25 °C and 80 °C, in a batch-type electrochemical cell. The experimental methodology involved linear polarization resistance (LPR) cycles, electrochemical impedance spectroscopy (EIS), and Tafel extrapolation at regular intervals over a period of 70 to 100 h to elucidate corrosion mechanisms and obtain corrosion current densities. At the same time, the fluid’s key geochemical parameters (temperature, pH, and redox potential) were monitored for temporal variation. This study, with results showing high corrosion rates under the three conditions investigated at two temperatures, underscores the importance of controlling the immediate environment of the containment materials to prevent exposure to variable conditions and to ensure that corrosion remains controlled over the long term. Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
Show Figures

Figure 1

17 pages, 1391 KiB  
Article
Optimizing Sensor Data Interpretation via Hybrid Parametric Bootstrapping
by Victor V. Golovko
Sensors 2025, 25(4), 1183; https://doi.org/10.3390/s25041183 - 14 Feb 2025
Cited by 2 | Viewed by 695
Abstract
The Chalk River Laboratories (CRL) site in Ontario, Canada, has long been a hub for nuclear research, which has resulted in the accumulation of legacy nuclear waste, including radioactive materials such as uranium, plutonium, and other radionuclides. Effective management of this legacy requires [...] Read more.
The Chalk River Laboratories (CRL) site in Ontario, Canada, has long been a hub for nuclear research, which has resulted in the accumulation of legacy nuclear waste, including radioactive materials such as uranium, plutonium, and other radionuclides. Effective management of this legacy requires precise contamination and risk assessments, with a particular focus on the concentration levels of fissile materials such as U235. These assessments are essential for maintaining nuclear criticality safety. This study estimates the upper bounds of U235 concentrations. We investigated the use of a hybrid parametric bootstrapping method and robust statistical techniques to analyze datasets with outliers, then compared these outcomes with those derived from nonparametric bootstrapping. This study underscores the significance of measuring U235 for ensuring safety, conducting environmental monitoring, and adhering to regulatory compliance requirements at nuclear legacy sites. We used publicly accessible U235 data from the Eastern Desert of Egypt to demonstrate the application of these statistical methods to small datasets, providing reliable upper limit estimates that are vital for remediation and decommissioning efforts. This method seeks to enhance the interpretation of sensor data, ultimately supporting safer nuclear waste management practices at legacy sites such as CRL. Full article
(This article belongs to the Special Issue Sensors and Extreme Environments)
Show Figures

Figure 1

53 pages, 2645 KiB  
Review
The Future of Nuclear Energy: Key Chemical Aspects of Systems for Developing Generation III+, Generation IV, and Small Modular Reactors
by Katarzyna Kiegiel, Dagmara Chmielewska-Śmietanko, Irena Herdzik-Koniecko, Agnieszka Miśkiewicz, Tomasz Smoliński, Marcin Rogowski, Albert Ntang, Nelson Kiprono Rotich, Krzysztof Madaj and Andrzej G. Chmielewski
Energies 2025, 18(3), 622; https://doi.org/10.3390/en18030622 - 29 Jan 2025
Cited by 5 | Viewed by 1742
Abstract
Nuclear power plants have the lowest life-cycle greenhouse gas emissions intensity and produce more electricity with less land use compared to any other low-carbon-emission-based energy source. There is growing global interest in Generation IV reactors and, at the same time, there is great [...] Read more.
Nuclear power plants have the lowest life-cycle greenhouse gas emissions intensity and produce more electricity with less land use compared to any other low-carbon-emission-based energy source. There is growing global interest in Generation IV reactors and, at the same time, there is great interest in using small modular reactors. However, the development of new reactors introduces new engineering and chemical challenges critical to advancing nuclear energy safety, efficiency, and sustainability. For Generation III+ reactors, water chemistry control is essential to mitigate corrosion processes and manage radiolysis in the reactor’s primary circuit. Generation IV reactors, such as molten salt reactors (MSRs), face the challenge of handling and processing chemically aggressive coolants. Small modular reactor (SMR) technologies will have to address several drawbacks before the technology can reach technology readiness level 9 (TRL9). Issues related to the management of irradiated graphite from high-temperature reactors (HTR) must be addressed. Additionally, spent fuel processing, along with the disposal and storage of radioactive waste, should be integral to the development of new reactors. This paper presents the key chemical and engineering aspects related to the development of next-generation nuclear reactors and SMRs along with the challenges associated with them. Full article
(This article belongs to the Section B4: Nuclear Energy)
Show Figures

Figure 1

Back to TopTop