Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = radioactive iodine theranostics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 770 KiB  
Review
Evolving Paradigm in Radioactive Iodine Therapy for Differentiated Thyroid Cancer: Historical Perspectives, Current Practices and Future Directions
by Jasna Mihailović
Diagnostics 2025, 15(11), 1438; https://doi.org/10.3390/diagnostics15111438 - 5 Jun 2025
Viewed by 1656
Abstract
Therapy with radioactive iodine (I-131) following a total thyroidectomy has been a gold standard in the treatment of differentiated thyroid cancer (DTC) for over 80 years. Over the years, its role has shifted from routine use to a more selective, risk-adapted approach, informed [...] Read more.
Therapy with radioactive iodine (I-131) following a total thyroidectomy has been a gold standard in the treatment of differentiated thyroid cancer (DTC) for over 80 years. Over the years, its role has shifted from routine use to a more selective, risk-adapted approach, informed by tumor biology, patient risk stratification and evolving clinical guidelines. This review examines the changing landscape of I-131 therapy, tracing its historical foundations, current indications, and future directions shaped by molecular medicine. We discuss the transition from a standardized, one-size-fits-all treatment approach to an individualized, dynamic stratification model that allows for ongoing risk reassessment and tailored treatment strategies. Key updates in clinical practice, such as the 2015 ATA Guidelines, the 2022 ETA Consensus Statement, and joint SNMMI and EANM nuclear medicine recommendations, are critically examined. We also address ongoing controversies in the management of low- and intermediate-risk patients, including the roles of I-131 whole-body scanning, activity selection, and overall treatment approach. Molecular theranostics is ushering in a new era in DTC management, enabling improved patient selection and more precise treatment. Advances in molecular profiling, imaging, and targeted therapies support a personalized treatment approach that aims to optimize therapeutic decisions while minimizing side effects and enhancing long-term safety. Full article
(This article belongs to the Special Issue Applications of PET/CT in Clinical Diagnostics)
Show Figures

Figure 1

24 pages, 10379 KiB  
Review
Theranostics Nuclear Medicine in Prostate Cancer
by Helena Lima, Marina Etchebehere, Mateos Bogoni, Caroline Torricelli, Ellen Nogueira-Lima, Victor M. Deflon, Mariana Lima and Elba Etchebehere
Pharmaceuticals 2024, 17(11), 1483; https://doi.org/10.3390/ph17111483 - 5 Nov 2024
Cited by 1 | Viewed by 3517
Abstract
Theranostic Nuclear Medicine is based on the idea of combining the same molecule (or drug) with different radioisotopes for both diagnosis and treatment, a concept that emerged in the early 1940s with the use of radioactive iodine for thyroid diseases. Theranostic Nuclear Medicine [...] Read more.
Theranostic Nuclear Medicine is based on the idea of combining the same molecule (or drug) with different radioisotopes for both diagnosis and treatment, a concept that emerged in the early 1940s with the use of radioactive iodine for thyroid diseases. Theranostic Nuclear Medicine has since expanded to diseases of higher incidence, such as prostate cancer, with several imaging methods used to assess the extent of the disease and the corresponding radiopharmaceuticals used for treatment. For example, by detecting osteoblastic metastases by bone scintigraphy, corresponding radiopharmaceuticals with therapeutic properties can be administered to eliminate or reduce pain associated with metastases and/or determine overall survival gain. The purpose of this review is to discuss the role of Theranostic Nuclear Medicine in prostate cancer, addressing the main diagnostic imaging studies with their corresponding treatments in the Theranostic model. Full article
Show Figures

Figure 1

16 pages, 2185 KiB  
Review
Molecular Perspectives in Radioactive Iodine Theranostics: Current Redifferentiation Protocols for Mis-Differentiated Thyroid Cancer
by Seza A. Gulec, Cristina Benites and Maria E. Cabanillas
J. Clin. Med. 2024, 13(13), 3645; https://doi.org/10.3390/jcm13133645 - 21 Jun 2024
Cited by 2 | Viewed by 2486
Abstract
Thyroid cancer molecular oncogenesis involves functional dedifferentiation. The initiating genomic alterations primarily affect the MAPK pathway signal transduction and generate an enhanced ERK output, which in turn results in suppression of the expression of transcription of the molecules of iodine metabolomics. The clinical [...] Read more.
Thyroid cancer molecular oncogenesis involves functional dedifferentiation. The initiating genomic alterations primarily affect the MAPK pathway signal transduction and generate an enhanced ERK output, which in turn results in suppression of the expression of transcription of the molecules of iodine metabolomics. The clinical end result of these molecular alterations is an attenuation in theranostic power of radioactive iodine (RAI). The utilization of RAI in systemic therapy of metastatic disease requires restoration of the functional differentiation. This concept has been accomplished by modulation of MAPK signaling. Objective responses have been demonstrated in metastatic disease settings. RAI-refractoriness in “differentiated thyroid cancers” remains a clinical problem despite optimized RAI administration protocols. Functional mis-differentiation and associated RAI-indifference are the underlying primary obstacles. MAPK pathway modulation offers a potential for reversal of RAI-indifference and combat refractoriness. This review presents the latest clinical experience and protocols for the redifferentiation of radioiodine-refractory mis-differentiated thyroid cancer, providing a comprehensive overview of the current protocols and intervention strategies used by leading institutions. Timing and techniques of imaging, thyrotropin (TSH) stimulation methods, and redifferentiation agents are presented. The efficacy and limitations of various approaches are discussed, providing an overview of the advantages and disadvantages associated with each of the protocols. Full article
(This article belongs to the Special Issue New Strategies in the Treatment of Thyroid Carcinoma)
Show Figures

Figure 1

11 pages, 1689 KiB  
Review
Theranostic Risk Stratification for Thyroid Cancer in the Genomic Paradigm
by Seza A. Gulec and Evander Meneses
Cancers 2024, 16(8), 1585; https://doi.org/10.3390/cancers16081585 - 20 Apr 2024
Cited by 2 | Viewed by 2246
Abstract
Theranostics define diagnostic evaluations directing patient-specific therapeutic decisions. Molecular theranostics involves genomic, transcriptomic, proteomic, metabolomic and finally phenonic definitions thyroid cancer differentiation. It is the functional differentiation that determines the sensitivity and accuracy of RAI imaging as well as the effectiveness of RAI [...] Read more.
Theranostics define diagnostic evaluations directing patient-specific therapeutic decisions. Molecular theranostics involves genomic, transcriptomic, proteomic, metabolomic and finally phenonic definitions thyroid cancer differentiation. It is the functional differentiation that determines the sensitivity and accuracy of RAI imaging as well as the effectiveness of RAI treatment. Total thyroidectomy is performed to empower an anticipated RAI treatment. A preoperative determination of the genomic and transcriptomic profile of the tumor is a strong predictor of response to therapeutic interventions. This article discusses the oncopathophysiologic basis of the theranostic risk stratification approach. Full article
(This article belongs to the Special Issue Thyroid Cancer: Diagnosis, Prognosis and Treatment)
Show Figures

Figure 1

18 pages, 6172 KiB  
Article
Identification of DPP4/CTNNB1/MET as a Theranostic Signature of Thyroid Cancer and Evaluation of the Therapeutic Potential of Sitagliptin
by Sheng-Yao Cheng, Alexander T. H. Wu, Gaber El-Saber Batiha, Ching-Liang Ho, Jih-Chin Lee, Halimat Yusuf Lukman, Mohammed Alorabi, Abdullah N. AlRasheedi and Jia-Hong Chen
Biology 2022, 11(2), 324; https://doi.org/10.3390/biology11020324 - 17 Feb 2022
Cited by 8 | Viewed by 4121
Abstract
In recent years, the incidence of thyroid cancer has been increasing globally, with papillary thyroid cancer (PTCa) being the most prevalent pathological type, accounting for approximately 80% of all cases. Although PTCa has been regarded to be slow growing and has a good [...] Read more.
In recent years, the incidence of thyroid cancer has been increasing globally, with papillary thyroid cancer (PTCa) being the most prevalent pathological type, accounting for approximately 80% of all cases. Although PTCa has been regarded to be slow growing and has a good prognosis, in some cases, PTCa can be aggressive and progress despite surgery and radioactive iodine treatment. In addition, most cancer treatment drugs have been shown to be cytotoxic and nonspecific to cancer cells, as they also affect normal cells and consequently cause harm to the body. Therefore, searching for new targets and therapies is required. Herein, we explored a bioinformatics analysis to identify important theranostic markers for THCA. Interestingly, we identified that the DPP4/CTNNB1/MET gene signature was overexpressed in PTCa, which, according to our analysis, is associated with immuno-invasive phenotypes, cancer progression, metastasis, resistance, and unfavorable clinical outcomes of thyroid cancer cohorts. Since most cancer drugs were shown to exhibit cytotoxicity and to be nonspecific, herein, we evaluated the anticancer effects of the antidiabetic drug sitagliptin, which was recently shown to possess anticancer activities, and is well tolerated and effective. Interestingly, our in silico molecular docking results exhibited putative binding affinities of sitagliptin with DPP4/CTNNB1/MET signatures, even higher than standard inhibitors of these genes. This suggests that sitagliptin is a potential THCA therapeutic, worthy of further investigation both in vitro and in vivo and in clinical settings. Full article
(This article belongs to the Special Issue Bioinformatics and Machine Learning for Cancer Biology)
Show Figures

Figure 1

Back to TopTop