Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = radial piston motor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4124 KiB  
Article
Digital Hydraulic Motor Characteristic Analysis for Heavy-Duty Vehicle Traction
by Hao Zhang, Wenshu Wei, Hong Wang, Yang Zhang and Xiaochao Liu
Actuators 2025, 14(1), 11; https://doi.org/10.3390/act14010011 - 1 Jan 2025
Cited by 1 | Viewed by 1015
Abstract
Hydraulic motors have been widely used in large-scale machinery such as ground heavy equipment and heavy-duty vehicles, ships, and so on because of their high-power drive capability. However, the driving device is confronted with constraints related to its size and weight. Typically, the [...] Read more.
Hydraulic motors have been widely used in large-scale machinery such as ground heavy equipment and heavy-duty vehicles, ships, and so on because of their high-power drive capability. However, the driving device is confronted with constraints related to its size and weight. Typically, the hydraulic axial piston motor is preferred for its simplicity and efficiency. However, the oil distributor in traditional hydraulic motors faces significant challenges, such as evident oil leakage and power loss from the mating surfaces of the fixed oil distributor and rotating cylinder block. To enhance the reliability and performance of hydraulic motors employed in paper driving applications, this paper introduces a digital radial hydraulic motor used for heavy-duty vehicle traction. The motor is powered by an on-board pump station from which several on/off valves can distribute the hydraulic oil. This design effectively mitigates the performance degradation issues associated with friction and wear in traditional hydraulic motor oil distributors. The drive characteristics of the motor can be flexibly adjusted through the combination of valves. Our investigation into the motor’s design principles and parameter analysis is poised to make an indirect yet significant contribution to the optimization of heavy-duty vehicle traction systems. This paper delineates the application conditions and operational principles of the digital hydraulic motor, thoroughly analyzes the intricate topological interrelationships of its parameters, and meticulously develops a detailed component-level model. Through comprehensive calculations, it reveals the impact of configuration and flow valve parameters on motor efficiency. A simulation model is established for the purpose of verification. Furthermore, the influence of the flow allocation method on efficiency and pressure pulsation is examined, leading to the proposal of a novel flow allocation strategy, the efficacy of which is substantiated through simulation. In conclusion, this paper formulates critical insights to inform the design and selection of components for digital hydraulic motors. These findings may provide a feasible solution for heavy-duty vehicle traction application scenarios. Full article
(This article belongs to the Section High Torque/Power Density Actuators)
Show Figures

Figure 1

18 pages, 10016 KiB  
Article
Prediction and Dynamic Simulation Verification of Output Characteristics of Radial Piston Motors Based on Neural Networks
by Chunjin Li, Zhengwen Xia and Yongjie Tang
Machines 2024, 12(7), 491; https://doi.org/10.3390/machines12070491 - 20 Jul 2024
Viewed by 1418
Abstract
Radial piston motors are executive components in hydraulic systems, tasked with providing appropriate torque and speed according to load requirements in practical applications. The purpose of this study is to predict the output torque of radial piston hydraulic motors and confirm their suitable [...] Read more.
Radial piston motors are executive components in hydraulic systems, tasked with providing appropriate torque and speed according to load requirements in practical applications. The purpose of this study is to predict the output torque of radial piston hydraulic motors and confirm their suitable operating conditions. Efficiency determination experiments were conducted on physical models, yielding thirty sets of performance data. Torque (output torque) and mechanical efficiency from the experimental data were selected as prediction targets and fitted using two methods: multiple linear regression and neural networks. A dynamic simulation model was built using Adams2020 software to obtain theoretical torque values, enabling the verification of the alignment between the predicted values and simulation results. The results indicate that the error between the theoretical torque of the dynamic model and the physical experiments is 1.9%, with the error of the neural network predictions being within 2%. The dynamic simulation model can yield highly accurate theoretical torque values, providing a reference for the external load of hydraulic motors; additionally, neural networks offer accurate predictions of output torque, thus reducing experimental testing costs. Full article
Show Figures

Figure 1

18 pages, 10798 KiB  
Article
Friction and Wear Performance of a Hydraulic Motor Roller/Piston Pair Contact Lined with the Self-Lubricating Bearing Bush Modified by PEEK
by Ying Li, Xuanxuan Han, Xueshi Cui, Ziyang Wang and Jin Zhang
Appl. Sci. 2024, 14(14), 6011; https://doi.org/10.3390/app14146011 - 10 Jul 2024
Cited by 1 | Viewed by 2068
Abstract
Poly Ether Ether Ketone (PEEK) is a kind of special engineering plastic with excellent properties such as high-temperature resistance, self-lubrication, wear resistance, and high mechanical strength. However, its blending or composite modification applications still face numerous challenges. The primary objective of this research [...] Read more.
Poly Ether Ether Ketone (PEEK) is a kind of special engineering plastic with excellent properties such as high-temperature resistance, self-lubrication, wear resistance, and high mechanical strength. However, its blending or composite modification applications still face numerous challenges. The primary objective of this research was to evaluate the friction and wear performance of a three-layer self-lubricating bearing bush, which was made from a modified material containing short carbon fiber and Poly Ether Ether Ketone (SCF/PEEK). The bearing bush is used as a surface contact layer on the pistons of a hydraulic motor in the interface with the cam roller. The bearing bush was processed using a 15% SCF-modified PEEK material, and the friction and wear test was conducted using a self-built friction test machine. This study aimed to assess the frictional and wear characteristics of the SCF/PEEK-modified material in the bearing bush. The results show that as the experimental pressure rises from 15 MPa to 25 MPa, the friction coefficient of the SCF-modified bearing bush experiences a significant decrease from 0.420 to 0.296. Furthermore, the stability of the frictional morphology of carbon fibers indicates its effective adaptability to low speed and high load conditions. Full article
Show Figures

Figure 1

20 pages, 9136 KiB  
Article
Digitalization of Radial Piston Pumps through Internal Mechanically Actuated Designs
by Keith Pate, Israa Azzam, Farid Breidi, James R. Marschand and John H. Lumkes
Actuators 2023, 12(11), 425; https://doi.org/10.3390/act12110425 - 15 Nov 2023
Cited by 5 | Viewed by 3126
Abstract
Digital hydraulics is a technology gaining perceptible growth in fluid power research. The advantages of digital fluid power systems can be realized through improved system efficiencies, energy savings, increased productivity, and system performance compared to traditional fluid power systems. Conventional check valve pumps [...] Read more.
Digital hydraulics is a technology gaining perceptible growth in fluid power research. The advantages of digital fluid power systems can be realized through improved system efficiencies, energy savings, increased productivity, and system performance compared to traditional fluid power systems. Conventional check valve pumps use differential pressures to deliver pressurized flow to the system. Digital fluid power pumps enable conventional check valve pumps to achieve variable displacements by enhancing the controllability of the inlet and outlet valves through digital hydraulic technologies and techniques. The benefit of this technology is the use of positive sealing check valves with lower leakage losses compared to typical variable displacement pumps, increasing the unit’s overall efficiency. The primary focus of prior digital pump/motor research has been on digital actuation using electronic solenoids to actuate or latch the valves. While these electrical systems provide a platform for digital hydraulic techniques, they come with a cost: added energy sources, advanced controls, and expensive data acquisition systems. Research has also shown that minor valve timing inconsistencies can limit the potential energy savings of digital pumps in electrically actuated systems. A system configuration that promotes the advantages of digital hydraulics while mitigating the disadvantages associated with electrical systems is mechanically actuated systems. This work discusses variable cams and their advantages/disadvantages in digital radial piston pump/motor technologies. The significance of this work is the investigation of the digitalization of radial piston pumps through mechanically actuated valving systems, which has yet to be implemented in prior research. This paper evaluates various design concepts for commercializing digital radial piston pumps using mechanically actuated cams. A two-quadrant pump and a four-quadrant pump/motor design are simulated to assess their potential efficiency across the bandwidth of their displacement. The results show that the two systems can achieve relatively high efficiencies across their displacement bandwidth but show room for further improvement by optimizing these systems. This study is the first step in designing an integrated mechanically actuated variable cam system in digital radial piston pumps. Full article
(This article belongs to the Special Issue Innovative and Intelligent Actuation for Heavy-Duty Applications)
Show Figures

Figure 1

18 pages, 8728 KiB  
Article
Dynamic Modelling and Experimental Validation of a Pneumatic Radial Piston Motor
by Kyle Grimaldi, Ahmad Najjaran, Zhiwei Ma, Huashan Bao and Tony Roskilly
Energies 2023, 16(4), 1954; https://doi.org/10.3390/en16041954 - 16 Feb 2023
Viewed by 2256
Abstract
A pneumatic radial piston motor is studied in this paper in order to establish a dynamic modelling and simulation method. As a result of using geometric parameters, the piston cylinder volume change was calculated, and the heat transfer equation, thermodynamic energy balance equation, [...] Read more.
A pneumatic radial piston motor is studied in this paper in order to establish a dynamic modelling and simulation method. As a result of using geometric parameters, the piston cylinder volume change was calculated, and the heat transfer equation, thermodynamic energy balance equation, and motion equation were combined in order to create a complete model of the piston cylinder. With the aid of compressed air, several experimental tests were conducted, and the results of rotational speed with varying inlet pressure were fed into the simulation to determine one of the critical unknown parameters, such as the overall friction coefficient of the system. For the studied piston motor, this coefficient was 0.0625 Nm. Computer simulations can be used to adjust design parameters in order to reach a higher rotation speed by using an accurate model. As a result, better efficiency and performance present several opportunities that would not be possible when running experimental tests in a lab. The mathematical model yielded higher rotational speeds of 50 RPM on average, with an increased piston diameter of 1.775 mm; by increasing the diameter of the cylinder to 25.8 mm, it was possible to achieve faster rotational speeds. The performed precise simulation could be used for further motor design and optimisation, and performance estimates under a broader range of operational conditions. Simulations should be conducted on multiple sets of experimental test results to determine the correct foverall value for each motor. In addition to guiding the design and optimisation of the motor, simulations could also predict its performance under a broader range of operating conditions by utilising effective parameters such as geometrical characteristics, flow conditions, and motion equations. Full article
Show Figures

Figure 1

14 pages, 4980 KiB  
Article
Simulation Analysis on Electromagnetic Vibration and Noise of Novel Mechatronic-Electro-Hydraulic Coupler
by Baoquan Liu, Tiezhu Zhang, Hongxin Zhang, Zhen Zhang and Yang Cao
Machines 2022, 10(9), 762; https://doi.org/10.3390/machines10090762 - 2 Sep 2022
Cited by 7 | Viewed by 2134
Abstract
The mechatronic-electro-hydraulic coupler (MEHC) is a novel type of multisource coupling power device which integrates a traditional permanent magnet synchronous motor with a swash plate axial piston pump/motor to realize the mutual conversion of electrical energy, mechanical energy, and hydraulic energy. In order [...] Read more.
The mechatronic-electro-hydraulic coupler (MEHC) is a novel type of multisource coupling power device which integrates a traditional permanent magnet synchronous motor with a swash plate axial piston pump/motor to realize the mutual conversion of electrical energy, mechanical energy, and hydraulic energy. In order to improve the MEHC’s noise, vibration, and harshness performance, an electromagnetic vibration and noise simulation analysis was performed with a six-pole 36-slot motor as the research object. Firstly, the spatial order and frequency of the radial electromagnetic force were deduced by an analytical method. Subsequently, the electromagnetic field was simulated, and the electromagnetic force was extracted via a fast Fourier transform using Ansys/Maxwell software for the numerical verification. Thereafter, the harmonic response module coupled the electromagnetic field with the structural field for the harmonic response analysis. Ultimately, the research results were imported into the harmonic acoustics module for a noise simulation analysis and two different-shape magnetic isolation bridges optimization schemes were proposed. The results suggested that both optimisation solutions could effectively reduce motor vibration and noise. Scheme one reduced the maximum noise by about 6.5% and scheme two by 10.4%. The analysis process and conclusion provide a theoretical basis for the vibration and noise analysis of permanent magnet synchronous motors with different integer slots. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

21 pages, 7982 KiB  
Article
Influence of Hydraulic Drivetrain Configuration on Kinematic Discrepancy and Energy Consumption during Obstacle Overcoming in a 6 × 6 All-Wheel Hydraulic Drive Vehicle
by Mirosław Przybysz, Marian Janusz Łopatka, Arkadiusz Rubiec, Piotr Krogul, Karol Cieślik and Marcin Małek
Energies 2022, 15(17), 6397; https://doi.org/10.3390/en15176397 - 1 Sep 2022
Cited by 3 | Viewed by 1911
Abstract
One of the problems limiting the off-road mobility of multi-axle-wheeled vehicles is a kinematic discrepancy, which increases the resistance to motion when negotiating obstacles. This paper presents the results of research on the possibility of reducing the kinematic discrepancy in vehicles with a [...] Read more.
One of the problems limiting the off-road mobility of multi-axle-wheeled vehicles is a kinematic discrepancy, which increases the resistance to motion when negotiating obstacles. This paper presents the results of research on the possibility of reducing the kinematic discrepancy in vehicles with a hydrostatic drive for each wheel by the appropriate selection of hydraulic components—hydraulic motors and flow dividers. Four different configurations of the drivetrain were tested. They used slow-running hydraulic orbital motors and multi-piston radial motors, as well as gear and spool flow dividers. The tests were conducted with computer simulations based on tests that had already been performed to identify hydraulic parts. They allowed for the assessment of the influence of the characteristics of the components and the configuration of the drive system on the differentiation of the rotational speeds of individual wheels, slippage between the wheels and the ground, and the developed driving torques while overcoming obstacles. These values directly translate into the kinematic discrepancy of the system, the ability to overcome terrain obstacles, and energy consumption. Full article
Show Figures

Figure 1

15 pages, 2012 KiB  
Article
Cylinder Fatigue Design of Low-Speed, High-Torque Radial Piston Motor
by Lifu Cheng, Xinyuan Chen and Guoqian Wei
Coatings 2022, 12(8), 1192; https://doi.org/10.3390/coatings12081192 - 16 Aug 2022
Cited by 2 | Viewed by 2135
Abstract
Through the comparison of fatigue properties of components made of composite materials and high-strength structural steel materials, this study proves that composite materials can replace traditional steel materials used in the production of mechanical structural components. The focus of this study was a [...] Read more.
Through the comparison of fatigue properties of components made of composite materials and high-strength structural steel materials, this study proves that composite materials can replace traditional steel materials used in the production of mechanical structural components. The focus of this study was a low-speed, high-torque radial piston motor mounted on a roadheader. According to different theories, the motor block was designed using a composite material made of carbon fiber, a classic high-strength structural steel, and an aluminum alloy. The thickness of the motor cylinder obtained by theoretical calculation was verified by finite-element numerical simulation technology, and the fatigue phenomenon caused by the time change of the piston cylinder pressure was considered. The results showed that the stress results of the numerical simulation verify the rationality of the theoretical calculation of the cylinder size. In terms of safety factors, the motor cylinder made of composite materials was close to the motor cylinder made of high-strength structural steel, and the difference between the static safety factor and fatigue safety factor was only 0.8 and 0.86. The weight of the motor cylinder made of composite material was reduced from 32 N to 7 N compared with steel material, which was about 78% lighter. This is of great significance for improving the use efficiency of equipment and reducing fuel costs. Full article
Show Figures

Figure 1

18 pages, 7506 KiB  
Review
Characteristics of Hydraulic and Electric Servo Motors
by Sayako Sakama, Yutaka Tanaka and Akiya Kamimura
Actuators 2022, 11(1), 11; https://doi.org/10.3390/act11010011 - 5 Jan 2022
Cited by 38 | Viewed by 10322
Abstract
Until the 1970s, hydraulic actuators were widely used in many mechanical systems; however, recently, electric motors have become mainstream by virtue of their improved performance, and hydraulic motors have largely been replaced by electric motors in many applications. Although this trend is expected [...] Read more.
Until the 1970s, hydraulic actuators were widely used in many mechanical systems; however, recently, electric motors have become mainstream by virtue of their improved performance, and hydraulic motors have largely been replaced by electric motors in many applications. Although this trend is expected to continue into the future, it is important to comprehensively evaluate which motor is most suitable when designing mechanical systems. This paper presents the results of a survey of the performance of electric and hydraulic servo motors and aims to provide quantitative data that can be used as a reference for selecting appropriate motors. We surveyed AC, AC direct, brushless DC, and brushed DC electric motors and swash plate-type axial piston, bent axis-type axial piston, crank-type radial piston, and multistroke-type radial piston hydraulic motors. Performance data were collected from catalogs and nonpublic data. We compared and evaluated the characteristics of these diverse servo motors using indexes such as torque, rotating speed, output power, power density, and power rate. Full article
(This article belongs to the Section High Torque/Power Density Actuators)
Show Figures

Figure 1

25 pages, 4474 KiB  
Article
Dynamic Response of a Digital Displacement Motor Operating with Various Displacement Strategies
by Sondre Nordås, Michael M. Beck, Morten K. Ebbesen and Torben O. Andersen
Energies 2019, 12(9), 1737; https://doi.org/10.3390/en12091737 - 8 May 2019
Cited by 8 | Viewed by 4608
Abstract
Digital displacement technology has the potential of revolutionizing the performance of hydraulic piston pumps and motors. Instead of connecting each cylinder chamber to high and low pressure in conjunction with the shaft position, two electrically-controlled on/off valves are connected to each chamber. This [...] Read more.
Digital displacement technology has the potential of revolutionizing the performance of hydraulic piston pumps and motors. Instead of connecting each cylinder chamber to high and low pressure in conjunction with the shaft position, two electrically-controlled on/off valves are connected to each chamber. This allows for individual cylinder chamber control. Variable displacement can be achieved by using different displacement strategies, like for example the full stroke, partial stroke, or sequential partial stroke displacement strategy. Each displacement strategy has its transient and steady-state characteristics. This paper provides a detailed simulation analysis of the transient and steady-state response of a digital displacement motor running with various displacement strategies. The non-linear digital displacement motor model is verified by experimental work on a radial piston motor. Full article
(This article belongs to the Special Issue Energy Efficiency and Controllability of Fluid Power Systems 2018)
Show Figures

Figure 1

Back to TopTop