Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = quinoline carboxamide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4203 KiB  
Article
Deciphering the Interplay: Thieno[2,3-b]pyridine’s Impact on Glycosphingolipid Expression, Cytotoxicity, Apoptosis, and Metabolomics in Ovarian Tumor Cell Lines
by Zdravko Odak, Sandra Marijan, Mila Radan, Lisa I. Pilkington, Monika Čikeš Botić, David Barker, Jóhannes Reynisson, Euphemia Leung and Vedrana Čikeš Čulić
Int. J. Mol. Sci. 2024, 25(13), 6954; https://doi.org/10.3390/ijms25136954 - 25 Jun 2024
Cited by 2 | Viewed by 1915
Abstract
Ovarian cancer is among the most prevalent causes of mortality among women. Despite improvements in diagnostic methods, non-specific symptoms and delayed gynecological exams can lead to late-stage ovarian tumor discovery. In this study, the effect of an anti-cancer compound, 3-amino-N-(3-chloro-2-methylphenyl)-5-oxo-5,6,7,8-tetrahydrothieno[2,3-b [...] Read more.
Ovarian cancer is among the most prevalent causes of mortality among women. Despite improvements in diagnostic methods, non-specific symptoms and delayed gynecological exams can lead to late-stage ovarian tumor discovery. In this study, the effect of an anti-cancer compound, 3-amino-N-(3-chloro-2-methylphenyl)-5-oxo-5,6,7,8-tetrahydrothieno[2,3-b]quinoline-2-carboxamide (Compound 1), was examined. The impacts of cytotoxicity, apoptosis, and metabolomic changes in ovarian cancer cell lines SK-OV-3 and OVCAR-3, as well as glycosphingolipid (GSL) expression, on cancer stem cells (CSCs), marked as CD49f+, and non-CSCs (CD49f) were explored. Treatment with Compound 1 reduced the percentage of CSCs compared to non-treated cells (p < 0.001). The functional impact of eight GSLs on CSCs and non-CSCs was examined using flow cytometry. The glycophenotype changed in both cell lines, with increases or decreases in its expression, after the treatment. These findings raise the possibility of specifically targeting CSCs in ovarian cancer therapy. Additionally, treatment with Compound 1 resulted in statistically meaningful increased apoptosis, including both early and late apoptosis (p < 0.001), suggesting a pivotal role in initiating programmed cell death by the apoptotic pathway. The analysis revealed that the metabolic activity of treated cancer cells was lower compared to those of the control group (p < 0.001). Full article
(This article belongs to the Special Issue Novel Therapeutic Targets in Cancers: 3rd Edition)
Show Figures

Figure 1

20 pages, 3855 KiB  
Article
Modulation of the Cytotoxic Properties of Pd(II) Complexes Based on Functionalized Carboxamides Featuring Labile Phosphoryl Coordination Sites
by Diana V. Aleksanyan, Aleksandr V. Konovalov, Svetlana G. Churusova, Ekaterina Yu. Rybalkina, Alexander S. Peregudov, Svetlana A. Aksenova, Evgenii I. Gutsul, Zinaida S. Klemenkova and Vladimir A. Kozlov
Pharmaceutics 2023, 15(4), 1088; https://doi.org/10.3390/pharmaceutics15041088 - 28 Mar 2023
Cited by 6 | Viewed by 2525
Abstract
Platinum-based drugs are commonly recognized as a keystone in modern cancer chemotherapy. However, intrinsic and acquired resistance as well as serious side effects often caused by the traditional Pt(II) anticancer agents prompt a continuous search for more selective and efficient alternatives. Today, significant [...] Read more.
Platinum-based drugs are commonly recognized as a keystone in modern cancer chemotherapy. However, intrinsic and acquired resistance as well as serious side effects often caused by the traditional Pt(II) anticancer agents prompt a continuous search for more selective and efficient alternatives. Today, significant attention is paid to the compounds of other transition metals, in particular those of palladium. Recently, our research group has suggested functionalized carboxamides as a useful platform for the creation of cytotoxic Pd(II) pincer complexes. In this work, a robust picolinyl- or quinoline-carboxamide core was combined with a phosphoryl ancillary donor group to achieve hemilabile coordination capable of providing the required level of thermodynamic stability and kinetic lability of the ensuing Pd(II) complexes. Several cyclopalladated derivatives featuring either a bi- or tridentate pincer-type coordination mode of the deprotonated phosphoryl-functionalized amides were selectively synthesized and fully characterized using IR and NMR spectroscopy as well as X-ray crystallography. The preliminary evaluation of the anticancer potential of the resulting palladocycles revealed a strong dependence of their cytotoxic properties on the binding mode of the deprotonated amide ligands and demonstrated certain advantages of the pincer-type ligation. Full article
(This article belongs to the Special Issue Beyond the Platinum in Metal-Based Cancer Therapy, 2nd Edition)
Show Figures

Graphical abstract

31 pages, 6839 KiB  
Article
The Synthesis, Antimicrobial Activity, and Molecular Docking of New 1, 2, 4-Triazole, 1, 2, 4-Triazepine, Quinoline, and Pyrimidine Scaffolds Condensed to Naturally Occurring Furochromones
by Ameen Ali Abu-Hashem and Sami A. Al-Hussain
Pharmaceuticals 2022, 15(10), 1232; https://doi.org/10.3390/ph15101232 - 7 Oct 2022
Cited by 27 | Viewed by 3463
Abstract
This study aims to synthesize a new series of furochromone derivatives, evaluate their antimicrobial properties, and improve the permeability of potent compounds to inhibit different types of bacteria and fungi. Hence, Substituted furo[3,2-g]chromene-6-carbonitrile (3a,b) readily form 7-amino-5-methyl-furo [3,2-g [...] Read more.
This study aims to synthesize a new series of furochromone derivatives, evaluate their antimicrobial properties, and improve the permeability of potent compounds to inhibit different types of bacteria and fungi. Hence, Substituted furo[3,2-g]chromene-6-carbonitrile (3a,b) readily form 7-amino-5-methyl-furo [3,2-g]chromene-6-carbonitrile (4a,b) via reduction using sodium borohydride in methanol. The same compounds of (4a,b) were used as starting materials for the synthesis of new furochromone derivatives such as furochromeno [2,3-d]pyrimidines, N- (6-cyano- 5-methyl-furochromene) acetamide, N-(6-cyano-5-methyl-furo chromene)-2-phenyl acetamide, N- (6-cyano-5-methyl-furochromene) formimidate, furochromeno[1,2,4]triazepin-5-amine, furochrom ene-6-carboxamide, furochromeno[1,2,4]triazolopyrimidines, and furochromeno[2,3-b]quinolin- 6-amine. The structures of the new compounds were determined using spectroscopy: Nuclear Magnetic Resonance (1H, 13C), Mass spectra, Infrared, and elemental analysis. Molecular docking studies were conducted to investigate the binding patterns of the prepared compounds against DNA-gyrase (PDB 1HNJ). The results displayed that compounds furochromenotriazolopyrimidine (20a,b), furochromenoquinolin-6-amine (21a,b), furochromenotriazepin-amine (9a,b), and furo- chromenopyrimidine-amine (19a,b) were excellent antimicrobials. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

17 pages, 4700 KiB  
Article
Novel Thieno [2,3-b]pyridine Anticancer Compound Lowers Cancer Stem Cell Fraction Inducing Shift of Lipid to Glucose Metabolism
by Matij Pervan, Sandra Marijan, Anita Markotić, Lisa I. Pilkington, Natalie A. Haverkate, David Barker, Jóhannes Reynisson, Luka Meić, Mila Radan and Vedrana Čikeš Čulić
Int. J. Mol. Sci. 2022, 23(19), 11457; https://doi.org/10.3390/ijms231911457 - 28 Sep 2022
Cited by 7 | Viewed by 3203
Abstract
Due to the role of cancer stem cells (CSCs) in tumor resistance and glycosphingolipid (GSL) involvement in tumor pathogenesis, we investigated the effect of a newly synthesized compound (3-amino-N-(3-chloro-2-methylphenyl)-5-oxo-5,6,7,8-tetrahydrothieno[2,3-b]quinoline-2-carboxamide 1 on the percentage of CSCs and the expression of [...] Read more.
Due to the role of cancer stem cells (CSCs) in tumor resistance and glycosphingolipid (GSL) involvement in tumor pathogenesis, we investigated the effect of a newly synthesized compound (3-amino-N-(3-chloro-2-methylphenyl)-5-oxo-5,6,7,8-tetrahydrothieno[2,3-b]quinoline-2-carboxamide 1 on the percentage of CSCs and the expression of six GSLs on CSCs and non-CSCs on breast cancer cell lines (MDA-MB-231 and MCF-7). We also investigated the effect of 1 on the metabolic profile of these cell lines. The MTT assay was used for cytotoxicity determination. Apoptosis and expression of GSLs were assessed by flow cytometry. A GC–MS-coupled system was used for the separation and identification of metabolites. Compound 1 was cytotoxic for both cell lines, and the majority of cells died by treatment-induced apoptosis. The percentage of CSCs was significantly lower in the MDA-MB-231 cell line. Treatment with 1 caused a decrease of CSC IV6Neu5Ac-nLc4Cer+ MDA-MB-231 cells. In the MCF-7 cell line, the percentage of GalNAc-GM1b+ CSCs was increased, while the expression of Gg3Cer was decreased in both CSC and non-CSC. Twenty-one metabolites were identified by metabolic profiling. The major impact of the treatment was in glycolysis/gluconeogenesis, pyruvate and inositol metabolism. Compound 1 exhibited higher potency in MBA-MB-231 cells, and it deserves further examination. Full article
(This article belongs to the Special Issue Cellular and Molecular Biology of Cancer Stem Cells)
Show Figures

Figure 1

18 pages, 2788 KiB  
Article
Common Molecular Targets of a Quinolone Based Bumped Kinase Inhibitor in Neospora caninum and Danio rerio
by Joachim Müller, Nicoleta Anghel, Dennis Imhof, Kai Hänggeli, Anne-Christine Uldry, Sophie Braga-Lagache, Manfred Heller, Kayode K. Ojo, Luis-Miguel Ortega-Mora, Wesley C. Van Voorhis and Andrew Hemphill
Int. J. Mol. Sci. 2022, 23(4), 2381; https://doi.org/10.3390/ijms23042381 - 21 Feb 2022
Cited by 10 | Viewed by 2696
Abstract
Neospora caninum is an apicomplexan parasite closely related to Toxoplasma gondii, and causes abortions, stillbirths and/or fetal malformations in livestock. Target-based drug development has led to the synthesis of calcium-dependent protein kinase 1 inhibitors, collectively named bumped kinase inhibitors (BKIs). Previous studies [...] Read more.
Neospora caninum is an apicomplexan parasite closely related to Toxoplasma gondii, and causes abortions, stillbirths and/or fetal malformations in livestock. Target-based drug development has led to the synthesis of calcium-dependent protein kinase 1 inhibitors, collectively named bumped kinase inhibitors (BKIs). Previous studies have shown that several BKIs have excellent efficacy against neosporosis in vitro and in vivo. However, several members of this class of compounds impair fertility in pregnant mouse models and cause embryonic malformation in a zebrafish (Danio rerio) model. Similar to the first-generation antiprotozoal drug quinine, some BKIs have a quinoline core structure. To identify common targets in both organisms, we performed differential affinity chromatography with cell-free extracts from N. caninum tachyzoites and D. rerio embryos using the 5-aminopyrazole-4-carboxamide (AC) compound BKI-1748 and quinine columns coupled to epoxy-activated sepharose followed by mass spectrometry. BKI-binding proteins of interest were identified in eluates from columns coupled to BKI-1748, or in eluates from BKI-1748 as well as quinine columns. In N. caninum, 12 proteins were bound specifically to BKI-1748 alone, and 105 proteins, including NcCDPK1, were bound to both BKI-1748 and quinine. For D. rerio, the corresponding numbers were 13 and 98 binding proteins, respectively. In both organisms, a majority of BKI-1748 binding proteins was involved in RNA binding and modification, in particular, splicing. Moreover, both datasets contained proteins involved in DNA binding or modification and key steps of intermediate metabolism. These results suggest that BKI-1748 interacts with not only specific targets in apicomplexans, such as CDPK1, but also with targets in other eukaryotes, which are involved in common, essential pathways. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 1977 KiB  
Article
Carboxamide Derivatives Are Potential Therapeutic AHR Ligands for Restoring IL-4 Mediated Repression of Epidermal Differentiation Proteins
by Gijs Rikken, Noa J. M. van den Brink, Ivonne M. J. J. van Vlijmen-Willems, Piet E. J. van Erp, Lars Pettersson, Jos P. H. Smits and Ellen H. van den Bogaard
Int. J. Mol. Sci. 2022, 23(3), 1773; https://doi.org/10.3390/ijms23031773 - 4 Feb 2022
Cited by 11 | Viewed by 2984
Abstract
Atopic dermatitis (AD) is a common T-helper 2 (Th2) lymphocyte-mediated chronic inflammatory skin disease characterized by disturbed epidermal differentiation (e.g., filaggrin (FLG) expression) and diminished skin barrier function. Therapeutics targeting the aryl hydrocarbon receptor (AHR), such as coal tar and tapinarof, [...] Read more.
Atopic dermatitis (AD) is a common T-helper 2 (Th2) lymphocyte-mediated chronic inflammatory skin disease characterized by disturbed epidermal differentiation (e.g., filaggrin (FLG) expression) and diminished skin barrier function. Therapeutics targeting the aryl hydrocarbon receptor (AHR), such as coal tar and tapinarof, are effective in AD, yet new receptor ligands with improved potency or bioavailability are in demand to expand the AHR-targeting therapeutic arsenal. We found that carboxamide derivatives from laquinimod, tasquinimod, and roquinimex can activate AHR signaling at low nanomolar concentrations. Tasquinimod derivative (IMA-06504) and its prodrug (IMA-07101) provided full agonist activity and were most effective to induce FLG and other epidermal differentiation proteins, and counteracted IL-4 mediated repression of terminal differentiation. Partial agonist activity by other derivatives was less efficacious. The previously reported beneficial safety profile of these novel small molecules, and the herein reported therapeutic potential of specific carboxamide derivatives, provides a solid rationale for further preclinical assertation. Full article
(This article belongs to the Special Issue Filaggrin)
Show Figures

Figure 1

26 pages, 2393 KiB  
Article
The Thiazole-5-Carboxamide GPS491 Inhibits HIV-1, Adenovirus, and Coronavirus Replication by Altering RNA Processing/Accumulation
by Subha Dahal, Ran Cheng, Peter K. Cheung, Terek Been, Ramy Malty, Melissa Geng, Sarah Manianis, Lulzim Shkreta, Shahrazad Jahanshahi, Johanne Toutant, Rose Chan, Sean Park, Mark A. Brockman, Mohan Babu, Samira Mubareka, Karen Mossman, Arinjay Banerjee, Scott Gray-Owen, Martha Brown, Walid A. Houry, Benoit Chabot, David Grierson and Alan Cochraneadd Show full author list remove Hide full author list
Viruses 2022, 14(1), 60; https://doi.org/10.3390/v14010060 - 30 Dec 2021
Cited by 16 | Viewed by 5124
Abstract
Medicinal chemistry optimization of a previously described stilbene inhibitor of HIV-1, 5350150 (2-(2-(5-nitro-2-thienyl)vinyl)quinoline), led to the identification of the thiazole-5-carboxamide derivative (GPS491), which retained potent anti-HIV-1 activity with reduced toxicity. In this report, we demonstrate that the block of HIV-1 replication by GPS491 [...] Read more.
Medicinal chemistry optimization of a previously described stilbene inhibitor of HIV-1, 5350150 (2-(2-(5-nitro-2-thienyl)vinyl)quinoline), led to the identification of the thiazole-5-carboxamide derivative (GPS491), which retained potent anti-HIV-1 activity with reduced toxicity. In this report, we demonstrate that the block of HIV-1 replication by GPS491 is accompanied by a drastic inhibition of viral gene expression (IC50 ~ 0.25 µM), and alterations in the production of unspliced, singly spliced, and multiply spliced HIV-1 RNAs. GPS491 also inhibited the replication of adenovirus and multiple coronaviruses. Low µM doses of GPS491 reduced adenovirus infectious yield ~1000 fold, altered virus early gene expression/viral E1A RNA processing, blocked viral DNA amplification, and inhibited late (hexon) gene expression. Loss of replication of multiple coronaviruses (229E, OC43, SARS-CoV2) upon GPS491 addition was associated with the inhibition of viral structural protein expression and the formation of virus particles. Consistent with the observed changes in viral RNA processing, GPS491 treatment induced selective alterations in the accumulation/phosphorylation/function of splicing regulatory SR proteins. Our study establishes that a compound that impacts the activity of cellular factors involved in RNA processing can prevent the replication of several viruses with minimal effect on cell viability. Full article
(This article belongs to the Topic Broad-Spectrum Antiviral Agents)
Show Figures

Figure 1

18 pages, 6536 KiB  
Article
Highly Selective Synthesis of 6-Glyoxylamidoquinoline Derivatives via Palladium-Catalyzed Aminocarbonylation
by Sami Chniti, László Kollár, Attila Bényei and Attila Takács
Molecules 2022, 27(1), 4; https://doi.org/10.3390/molecules27010004 - 21 Dec 2021
Cited by 5 | Viewed by 3655
Abstract
The aminocarbonylation of 6-iodoquinoline has been investigated in the presence of large series of amine nucleophiles, providing an efficient synthetic route for producing various quinoline-6-carboxamide and quinoline-6-glyoxylamide derivatives. It was shown, after detailed optimization study, that the formation of amides and ketoamides is [...] Read more.
The aminocarbonylation of 6-iodoquinoline has been investigated in the presence of large series of amine nucleophiles, providing an efficient synthetic route for producing various quinoline-6-carboxamide and quinoline-6-glyoxylamide derivatives. It was shown, after detailed optimization study, that the formation of amides and ketoamides is strongly influenced by the reaction conditions. Performing the reactions at 40 bar of carbon monoxide pressure in the presence of Pd(OAc)2/2 PPh3, the corresponding 2-ketocarboxamides were formed as major products (up to 63%). When the monodentate triphenylphosphine was replaced by the bidentate XantPhos, the quinoline-6-carboxamide derivatives were synthesized almost exclusively under atmospheric conditions (up to 98%). The isolation and characterization of the new carbonylated products of various structures were also accomplished. Furthermore, the structure of three new mono- and double-carbonylated compounds were unambiguously established by using a single-crystal XRD study. Full article
Show Figures

Graphical abstract

19 pages, 4887 KiB  
Review
Current Progress in the Development of Hepatitis B Virus Capsid Assembly Modulators: Chemical Structure, Mode-of-Action and Efficacy
by Hyejin Kim, Chunkyu Ko, Joo-Youn Lee and Meehyein Kim
Molecules 2021, 26(24), 7420; https://doi.org/10.3390/molecules26247420 - 7 Dec 2021
Cited by 33 | Viewed by 6484
Abstract
Hepatitis B virus (HBV) is a major causative agent of human hepatitis. Its viral genome comprises partially double-stranded DNA, which is complexed with viral polymerase within an icosahedral capsid consisting of a dimeric core protein. Here, we describe the effects of capsid assembly [...] Read more.
Hepatitis B virus (HBV) is a major causative agent of human hepatitis. Its viral genome comprises partially double-stranded DNA, which is complexed with viral polymerase within an icosahedral capsid consisting of a dimeric core protein. Here, we describe the effects of capsid assembly modulators (CAMs) on the geometric or kinetic disruption of capsid construction and the virus life cycle. We highlight classical, early-generation CAMs such as heteroaryldihydropyrimidines, phenylpropenamides or sulfamoylbenzamides, and focus on the chemical structure and antiviral efficacy of recently identified non-classical CAMs, which consist of carboxamides, aryl ureas, bithiazoles, hydrazones, benzylpyridazinones, pyrimidines, quinolines, dyes, and antimicrobial compounds. We summarize the therapeutic efficacy of four representative classical compounds with data from clinical phase 1 studies in chronic HBV patients. Most of these compounds are in phase 2 trials, either as monotherapy or in combination with approved nucleos(t)ides drugs or other immunostimulatory molecules. As followers of the early CAMs, the therapeutic efficacy of several non-classical CAMs has been evaluated in humanized mouse models of HBV infection. It is expected that these next-generation HBV CAMs will be promising candidates for a series of extended human clinical trials. Full article
Show Figures

Figure 1

14 pages, 6743 KiB  
Article
Molecular Docking and Molecular Dynamics Simulation Studies of Quinoline-3-Carboxamide Derivatives with DDR Kinases–Selectivity Studies towards ATM Kinase
by Srimadhavi Ravi, Bhanu Priya, Pankaj Dubey, Vijay Thiruvenkatam and Sivapriya Kirubakaran
Chemistry 2021, 3(2), 511-524; https://doi.org/10.3390/chemistry3020036 - 11 Apr 2021
Cited by 9 | Viewed by 6353
Abstract
Quinoline-3-carboxamides are an essential class of drug-like small molecules that are known to inhibit the phosphatidylinositol 3-kinase-related kinases (PIKK) family kinases. The quinoline nitrogen is shown to bind to the hinge region of the kinases, making them competitive inhibitors of adenosine triphosphate (ATP). [...] Read more.
Quinoline-3-carboxamides are an essential class of drug-like small molecules that are known to inhibit the phosphatidylinositol 3-kinase-related kinases (PIKK) family kinases. The quinoline nitrogen is shown to bind to the hinge region of the kinases, making them competitive inhibitors of adenosine triphosphate (ATP). We have previously designed and synthesized quinoline-3-carboxamides as potential ataxia telangiectasia mutated (ATM) kinase inhibitors to function as an adjuvant treatment with DNA damaging agents. This article discusses the molecular docking studies performed with these derivatives with the DNA damage and response (DDR) kinases-ATM, ataxia telangiectasia and rad3 related (ATR), and DNA dependent protein kinase catalytic subunit (DNA-PKcs) and highlights their selectivity towards ATM kinase. Docking studies were also performed with mTOR and PI3Kγ, which are close homologs of the DDR kinases. Molecular dynamics simulations were performed for one of the inhibitors against all the enzymes to establish the stability of the interactions involved. Finally, the absorption, distribution, metabolism, and excretion (ADME) properties of the inhibitors were predicted using the QikProp manual in Maestro. In conclusion, the molecules synthesized showed high selectivity towards the ATM kinase in comparison with the other kinases, though the sequence similarity between them was relatively high. Full article
(This article belongs to the Special Issue Molecular Docking in Drug Discovery)
Show Figures

Figure 1

22 pages, 2998 KiB  
Article
Novel Amino Acid Derivatives of Quinolines as Potential Antibacterial and Fluorophore Agents
by Oussama Moussaoui, Rajendra Bhadane, Riham Sghyar, El Mestafa El Hadrami, Soukaina El Amrani, Abdeslem Ben Tama, Youssef Kandri Rodi, Said Chakroune and Outi M. H. Salo-Ahen
Sci. Pharm. 2020, 88(4), 57; https://doi.org/10.3390/scipharm88040057 - 1 Dec 2020
Cited by 17 | Viewed by 7057
Abstract
A new series of amino acid derivatives of quinolines was synthesized through the hydrolysis of amino acid methyl esters of quinoline carboxamides with alkali hydroxide. The compounds were purified on silica gel by column chromatography and further characterized by TLC, NMR and ESI-TOF [...] Read more.
A new series of amino acid derivatives of quinolines was synthesized through the hydrolysis of amino acid methyl esters of quinoline carboxamides with alkali hydroxide. The compounds were purified on silica gel by column chromatography and further characterized by TLC, NMR and ESI-TOF mass spectrometry. All compounds were screened for in vitro antimicrobial activity against different bacterial strains using the microdilution method. Most of the synthesized amino acid-quinolines show more potent or equipotent inhibitory action against the tested bacteria than their correspond esters. In addition, many of them exhibit fluorescent properties and could possibly be utilized as fluorophores. Molecular docking and simulation studies of the compounds at putative bacterial target enzymes suggest that the antimicrobial potency of these synthesized analogues could be due to enzyme inhibition via their favorable binding at the fluoroquinolone binding site at the GyrA subunit of DNA gyrase and/or the ParC subunit of topoisomerase-IV. Full article
Show Figures

Graphical abstract

18 pages, 2450 KiB  
Article
Structural Modifications of the Quinolin-4-yloxy Core to Obtain New Staphylococcus aureus NorA Inhibitors
by Rolando Cannalire, Gianmarco Mangiaterra, Tommaso Felicetti, Andrea Astolfi, Nicholas Cedraro, Serena Massari, Giuseppe Manfroni, Oriana Tabarrini, Salvatore Vaiasicca, Maria Letizia Barreca, Violetta Cecchetti, Francesca Biavasco and Stefano Sabatini
Int. J. Mol. Sci. 2020, 21(19), 7037; https://doi.org/10.3390/ijms21197037 - 24 Sep 2020
Cited by 11 | Viewed by 3701
Abstract
Tackling antimicrobial resistance (AMR) represents a social responsibility aimed at renewing the antimicrobial armamentarium and identifying novel therapeutical approaches. Among the possible strategies, efflux pumps inhibition offers the advantage to contrast the resistance against all drugs which can be extruded. Efflux pump inhibitors [...] Read more.
Tackling antimicrobial resistance (AMR) represents a social responsibility aimed at renewing the antimicrobial armamentarium and identifying novel therapeutical approaches. Among the possible strategies, efflux pumps inhibition offers the advantage to contrast the resistance against all drugs which can be extruded. Efflux pump inhibitors (EPIs) are molecules devoid of any antimicrobial activity, but synergizing with pumps-substrate antibiotics. Herein, we performed an in silico scaffold hopping approach starting from quinolin-4-yloxy-based Staphylococcus aureus NorA EPIs by using previously built pharmacophore models for NorA inhibition activity. Four scaffolds were identified, synthesized, and modified with appropriate substituents to obtain new compounds, that were evaluated for their ability to inhibit NorA and synergize with the fluoroquinolone ciprofloxacin against resistant S. aureus strains. The two quinoline-4-carboxamide derivatives 3a and 3b showed the best results being synergic (4-fold MIC reduction) with ciprofloxacin at concentrations as low as 3.13 and 1.56 µg/mL, respectively, which were nontoxic for human THP-1 and A549 cells. The NorA inhibition was confirmed by SA-1199B ethidium bromide efflux and checkerboard assays against the isogenic pair SA-K2378 (norA++)/SA-K1902 (norA-). These in vitro results indicate the two compounds as valuable structures for designing novel S. aureus NorA inhibitors to be used in association with fluoroquinolones. Full article
(This article belongs to the Special Issue Drug Resistance Mechanisms in Bacteria)
Show Figures

Graphical abstract

15 pages, 2008 KiB  
Article
5-Oxo-hexahydroquinoline Derivatives and Their Tetrahydroquinoline Counterparts as Multidrug Resistance Reversal Agents
by Omolbanin Shahraki, Mehdi Khoshneviszadeh, Mojtaba Dehghani, Maryam Mohabbati, Marjan Tavakkoli, Luciano Saso, Najmeh Edraki and Omidreza Firuzi
Molecules 2020, 25(8), 1839; https://doi.org/10.3390/molecules25081839 - 16 Apr 2020
Cited by 9 | Viewed by 3052
Abstract
Cancer is a leading cause of death worldwide. Multidrug resistance (MDR) is a main reason of chemotherapy failure in many patients and is often related to overexpression of ATP-binding cassette (ABC) transporters, including P-glycoprotein (P-gp/ABCB1). Agents that are capable of modulation of the [...] Read more.
Cancer is a leading cause of death worldwide. Multidrug resistance (MDR) is a main reason of chemotherapy failure in many patients and is often related to overexpression of ATP-binding cassette (ABC) transporters, including P-glycoprotein (P-gp/ABCB1). Agents that are capable of modulation of the activity of these transporters might be effective in overcoming MDR. In this study, a new set of 1,4,5,6,7,8-hexahydro 5-oxo quinoline-3-carboxamide derivatives bearing 4-methylthiazole moiety and their tetrahydroquinoline counterparts were synthesized. MDR reversal activity of these 16 newly synthesized derivatives was tested in P-gp overexpressing MES-SA-DX5 human uterine sarcoma cells by flow cytometric determination of Rhodamine123 efflux. The effect of the most potent compounds in induction of apoptosis and alterations of cell cycle was examined in these cells by a flow cytometric method. Inherent cytotoxicity of the synthesized compounds was evaluated against MCF-7, A-549 and K562 cancer cell lines, as well as MES-SA-DX5 and their parental non-resistant MES-SA and also HEK-293 non-cancerous cells by MTT assay. Compounds A1 and A2 with 5-oxo-hexahydroquinoline structure bearing 2,4-dichlorophenyl and 4-bromophenyl moieties, respectively, and their tetrahydroquinoline counterparts B1 and B2 significantly blocked P-gp efflux, induced apoptosis and showed the highest cytotoxicities against MES-SA-DX5 cells. However, only A2 and B2 compounds were relatively selective against cancer and MDR cells as compared to non-resistant and non-cancerous cells. These findings demonstrate that 5-oxo-hexahydroquinoline and 5-oxo-tetrahydroquinoline derivatives represent promising agents with therapeutic potential in drug resistant cancers. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

21 pages, 5890 KiB  
Article
The Study of the Structure—Diuretic Activity Relationship in a Series of New N-(Arylalkyl)-6-hydroxy-2-methyl-4-oxo-2,4-dihydro-1H-pyrrolo-[3,2,1-ij]quinoline-5-carboxamides
by Igor V. Ukrainets, Mykola Y. Golik, Lyudmila V. Sidorenko, Valentina I. Korniyenko, Lina A. Grinevich, Galina Sim and Olga V. Kryvanych
Sci. Pharm. 2018, 86(3), 31; https://doi.org/10.3390/scipharm86030031 - 29 Aug 2018
Cited by 6 | Viewed by 4586
Abstract
In accordance with the principles of “me-too” technique, the preparative method for obtaining has been proposed, and the synthesis of a large series of new N-(arylalkyl)-6-hydroxy-2-methyl-4-oxo-2,4-dihydro-1H-pyrrolo[3,2,1-ij]quinoline-5-carboxamides as structurally close analogs of tricyclic pyrrolo- and pyridoquinoline diuretics has been [...] Read more.
In accordance with the principles of “me-too” technique, the preparative method for obtaining has been proposed, and the synthesis of a large series of new N-(arylalkyl)-6-hydroxy-2-methyl-4-oxo-2,4-dihydro-1H-pyrrolo[3,2,1-ij]quinoline-5-carboxamides as structurally close analogs of tricyclic pyrrolo- and pyridoquinoline diuretics has been carried out. All target compounds were obtained with high yields and purity by amidation of ethyl ester of the corresponding 2-methyl-pyrroloquinoline-5-carboxylic acid with arylalkylamines in boiling ethanol. Their structure was confirmed by the data of elemental analysis, nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry and polarimetry. Moreover, interpretations of their 1H and 13C-NMR spectra, their mass spectrometric behavior, as well as peculiarities of the polarimetric studies were discussed. The effect of N-(arylalkyl)-6-hydroxy-2-methyl-4-oxo-2,4-dihydro-1H-pyrrolo[3,2,1-ij]quinoline-5-carboxamides on the urinary function of the kidneys was studied in white rats by the standard method of oral administration in the dose of 10 mg/kg compared to hydrochlorothiazide. According to the results of the primary pharmacological screening, the structural and biological regularities that were unexpected, but interesting for further studies were revealed. Among the substances studied, the samples, which by their diuretic effect are not inferior and even superior to both the known hydrochlorothiazide and the lead structure of the pyrroloquinoline group, have been found. On this basis, it can be argued that the introduction of the methyl group made by us in position 2 of pyrrolo[3,2,1-ij]quinoline nucleus can be considered as a successful and promising implementation of the “me-too” cloning of tricyclic 4-hydroxyquinoline-2-one diuretics. Full article
Show Figures

Figure 1

12 pages, 1924 KiB  
Article
N-Aryl-7-hydroxy-5-oxo-2,3-dihydro-1H,5H-pyrido-[3,2,1-ij]quinoline-6-carboxamides. The Synthesis and Effects on Urinary Output
by Igor V. Ukrainets, Lyudmila V. Sidorenko, Mykola Y. Golik, Igor M. Chernenok, Lina A. Grinevich and Alexandra A. Davidenko
Sci. Pharm. 2018, 86(2), 12; https://doi.org/10.3390/scipharm86020012 - 9 Apr 2018
Cited by 4 | Viewed by 4598
Abstract
Continuing a targeted search for new leading structures with diuretic action among tricyclic derivatives of hydroxyquinolines, which are of interest as potential inhibitors of aldosterone synthase, the synthesis of a series of the corresponding pyrido[3,2,1-ij]quinoline-6-carboxanilides was carried out by amidation of [...] Read more.
Continuing a targeted search for new leading structures with diuretic action among tricyclic derivatives of hydroxyquinolines, which are of interest as potential inhibitors of aldosterone synthase, the synthesis of a series of the corresponding pyrido[3,2,1-ij]quinoline-6-carboxanilides was carried out by amidation of ethyl-7-hydroxy-5-oxo-2,3-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-6-carboxylate with aniline, aminophenols and O-alkylsubstituted analogs with high yields and purity. The optimal conditions of this reaction are proposed; they make it possible to prevent partial destruction of the original heterocyclic ester and thereby avoid formation of specific impurities of 7-hydroxy-2,3-dihydro-1H,5H-pyrido[3,2,1-ij]quinolin-5-one. To confirm the structure of all substances obtained, elemental analysis, nuclear magnetic resonance (NMR) spectroscopy, and mass spectrometry were used. Moreover, the peculiarities of their 1H and 13C-NMR spectra, as well as their mass spectrometric behavior under conditions of electron impact ionization, were discussed. The effect of pyrido[3,2,1-ij]quinoline-6-carboxanilides on the urinary function of the kidneys was studied in white rats of both genders by the standard method of oral administration at a dose of 10 mg/kg. Testing was conducted in comparison with hydrochlorothiazide, as well as with structurally close pyrrolo[3,2,1-ij] quinoline-5-carboxanilides studied earlier with the same substituents in the anilide fragments. It was found that addition of one methylene unit to the heterocycle partially hydrogenated and annelated with the quinolone core has a positive impact on biological properties—most of the substances studied exhibit a statistically significant diuretic effect exceeding the activity of not only hydrochlorothiazide, in some cases, but also the action of the structural analogs. The important structural and biological regularities, which are common with pyrroloquinolines and introduced by a chemical modification, were revealed. The importance of the presence in the structure of terminal amide fragments of tricyclic quinoline-3-carboxamides of a 4-methoxy-substituted aromatic ring was particularly marked. The expediency of further study of pyridoquinolines as promising diuretic agents has been shown. Full article
Show Figures

Figure 1

Back to TopTop