Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = queuing discipline

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 788 KiB  
Article
Peak Age of Information Analysis in Systems with Multiple Time-Correlated Traffic Streams
by Varvara Manaeva, Elena Zhbankova, Ekaterina Markova and Konstantin Samouylov
Sensors 2025, 25(5), 1440; https://doi.org/10.3390/s25051440 - 26 Feb 2025
Viewed by 656
Abstract
Nowadays, Internet of Things (IoT) is one of the most dynamically evolving services in the 5G ecosystem. In industrial IoT (IIoT), this service can be utilized to deliver state updates of various equipment to the remote control center for further coordination and maintenance. [...] Read more.
Nowadays, Internet of Things (IoT) is one of the most dynamically evolving services in the 5G ecosystem. In industrial IoT (IIoT), this service can be utilized to deliver state updates of various equipment to the remote control center for further coordination and maintenance. As a result, one of the critical metrics of interest for such a service is the Age of Information (AoI) and its upper bound—peak AoI (AoI)—characterizing the freshness of information about the state of the systems. In spite of significant attention, these metrics received over the last decade, only little is known regarding the PAoI performance of a single source (e.g., sensor) in the presence of competing traffic from other sources in queuing systems. On top of this, models with batch arrivals and batch services that can be effectively used to represent service performance in modern cellular systems such as 5G New Radio are lacking. In our study, we consider a cellular air interface representing it as a queuing system (QS) in discrete-time with batch arrivals and service and investigate performance of a single (tagged) source in presence of competing traffic from other sources having the same priority, where all the sources are modeled using the switched Poisson process (SPP) characterized by sophisticated correlational properties. We also investigated the impact of several service disciplines on the performance of the tagged source including first-come–first-served (FCFS), last-come–first-served (LCFS), random, and priority-based service. Our results illustrate that, although the qualitative behavior of the mean PAoI is different for different service disciplines, the optimal value of PAoI is insensitive to the choice of the service order. On top of this, we observed that introducing a priority in service to one of the flows may drastically affect the performance of other flows even when the overall load contribution of a single flow is rather limited. Our observations can be utilized to design packet scheduling strategies for 4G/5G cellular systems carrying traffic of state update applications. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

21 pages, 666 KiB  
Article
An Innovative Priority Queueing Strategy for Mitigating Traffic Congestion in Complex Networks
by Ganhua Wu
Mathematics 2025, 13(3), 495; https://doi.org/10.3390/math13030495 - 2 Feb 2025
Cited by 2 | Viewed by 944
Abstract
Optimizing transportation in both natural and engineered systems, particularly within complex network environments, has become a pivotal area of research. Traditional methods for mitigating congestion primarily focus on routing strategies that utilize first-in-first-out (FIFO) queueing disciplines to determine the processing order of packets [...] Read more.
Optimizing transportation in both natural and engineered systems, particularly within complex network environments, has become a pivotal area of research. Traditional methods for mitigating congestion primarily focus on routing strategies that utilize first-in-first-out (FIFO) queueing disciplines to determine the processing order of packets in buffer queues. However, these approaches often fail to explore the benefits of incorporating priority mechanisms directly within the routing decision-making processes, leaving significant room for improvement in congestion management. This study introduces an innovative generalized priority queueing (GPQ) strategy, specifically designed as an enhancement to existing FIFO-based routing methods. It is important to note that GPQ is not a new queue scheduling algorithm (e.g., deficit round robin (DRR) or weighted fair queuing (WFQ)), which typically manage multiple queues in broader queue management scenarios. Instead, GPQ integrates a dynamic priority-based mechanism into the routing layer, allowing the routing function to adaptively prioritize packets within a single buffer queue based on network conditions and packet attributes. By focusing on the routing strategy itself, GPQ improves the process of selecting packets for forwarding, thereby optimizing congestion management across the network. The effectiveness of the GPQ strategy is evaluated through extensive simulations on single-layer, two-layer, and dynamic networks. The results demonstrate significant improvements in key performance metrics, such as network throughput and average packet delay, when compared to traditional FIFO-based routing methods. These findings underscore the versatility and robustness of the GPQ strategy, emphasizing its capability to enhance network efficiency across diverse topologies and configurations. By addressing the inherent limitations of FIFO-based routing strategies and proposing a generalized yet scalable enhancement, this study makes a notable contribution to network optimization. The GPQ strategy provides a practical and adaptable solution for improving transportation efficiency in complex networks, bridging the gap between conventional routing techniques and emerging demands for dynamic congestion management. Full article
(This article belongs to the Section E1: Mathematics and Computer Science)
Show Figures

Figure 1

24 pages, 333 KiB  
Article
Discrete-Time Retrial Queuing Systems with Last-Come-First-Served (LCFS) and First-Come-First-Served (FCFS) Disciplines: Negative Customer Impact and Stochastic Analysis
by Iván Atencia-Mckillop, Sixto Sánchez-Merino, Inmaculada Fortes-Ruiz and José Luis Galán-García
Mathematics 2025, 13(1), 107; https://doi.org/10.3390/math13010107 - 30 Dec 2024
Viewed by 640
Abstract
This paper examines a discrete-time retrial queuing system that incorporates negative customers, system breakdowns, and repairs. In this model, an arriving customer has the option to go directly to the server, pushing the currently served customer, if any, to the front of the [...] Read more.
This paper examines a discrete-time retrial queuing system that incorporates negative customers, system breakdowns, and repairs. In this model, an arriving customer has the option to go directly to the server, pushing the currently served customer, if any, to the front of the orbit queue, or to join the orbit based on a First-Come-First-Served (FCFS) discipline. The study also considers negative customers who not only remove the customer currently being served but also cause a server breakdown. An in-depth analysis of the model is conducted using a generating function approach, leading to the determination of the distribution and expected values of the number of customers in the orbit and the entire system. The paper explores the stochastic decomposition law and provides bounds for the difference between the steady-state distribution of this system and a comparable standard system. Recursive formulas for the steady-state distributions of the orbit and the system are developed. Additionally, it is shown that the studied discrete-time system can approximate the M/G/1 continuous-time version of the model. The research includes a detailed examination of the customer’s sojourn time distribution in the orbit and the system, utilizing the busy period of an auxiliary system. The paper concludes with numerical examples that highlight how different system parameters affect various performance characteristics, and a section summarizing the key research contributions. Full article
(This article belongs to the Special Issue Recent Research in Queuing Theory and Stochastic Models, 2nd Edition)
Show Figures

Figure 1

20 pages, 946 KiB  
Article
AoI Analysis of Satellite–UAV Synergy Real-Time Remote Sensing System
by Libo Wang, Xiangyin Zhang, Kaiyu Qin, Zhuwei Wang, Jiayi Zhou and Deyu Song
Remote Sens. 2024, 16(17), 3305; https://doi.org/10.3390/rs16173305 - 5 Sep 2024
Cited by 2 | Viewed by 1812
Abstract
With the rapid development of space–air–ground integrated networks (SAGIN), the synergy between the satellite and unmanned aerial vehicles (UAVs) in sensing environmental status information reveals substantial potential. In SAGIN, applications such as disaster response and military operations require fresh status information to respond [...] Read more.
With the rapid development of space–air–ground integrated networks (SAGIN), the synergy between the satellite and unmanned aerial vehicles (UAVs) in sensing environmental status information reveals substantial potential. In SAGIN, applications such as disaster response and military operations require fresh status information to respond effectively. The freshness of information, quantified by the age of information (AoI) metric, is crucial for an effective response. Therefore, it is urgent to investigate the AoI in real-time remote sensing systems leveraging satellite–UAV synergy. To this end, we first establish a comprehensive system model, corresponding to the satellite–UAV “multiscale explanation” synergy remote sensing system in SAGIN, in which we focus on the typical information transmission and fusion strategies of the system, the analysis framework of AoI, and the temporal evolution of AoI. Subsequently, the time-varying process of the system model is transformed into a corresponding finite-states continuous-time Markov chain, enabling a precise analysis of its stochastic behavior. By employing the stochastic hybrid system (SHS) approach, the moment generating functions (MGFs) and mean AoI, offering quantitative insights into the freshness of status information, are derived. Following this, a comparative analysis of AoI under different queuing disciplines, highlighting their respective performance characteristics, is conducted. Furthermore, considering transmit power and bandwidth constraints of the system, the AoI performances under full frequency reuse (FFR), and frequency division multiple access (FDMA) strategies are analyzed. The energy advantage and spectrum advantage associated with AoI are also examined to explore the superior AoI-related performance of the FFR strategy in SAGIN. Full article
Show Figures

Figure 1

14 pages, 558 KiB  
Article
Evaluation of the Accuracy of the Analytical Model of a Queuing System with a Finite-Compression Mechanism in Relation to Real Service Disciplines
by Sławomir Hanczewski and Joanna Weissenberg
Electronics 2023, 12(15), 3343; https://doi.org/10.3390/electronics12153343 - 4 Aug 2023
Viewed by 1102
Abstract
The article presents the findings of a study that evaluates the feasibility of using an analytical model for a multi-service queuing system with a SDFIFO queuing service discipline and finite compression mechanism to approximate queuing systems with different queuing service disciplines (e.g., FIFO, [...] Read more.
The article presents the findings of a study that evaluates the feasibility of using an analytical model for a multi-service queuing system with a SDFIFO queuing service discipline and finite compression mechanism to approximate queuing systems with different queuing service disciplines (e.g., FIFO, cFIFO) while also incorporating finite compression. The evaluation involves comparing results obtained from an analytical model with those of simulation studies. The study considers the blocking probability and average queue length as factors. Additionally, two types of compressed traffic were analysed: elastic and adaptive. These are characteristic of modern telecommunications networks, particularly in multimedia applications. This paper is an extended version of our paper published in 4th CoBCom 2022. Full article
Show Figures

Figure 1

11 pages, 1450 KiB  
Article
Small Changes in Patient Arrival and Consultation Times Have Large Effects on Patients’ Waiting Times: Simulation Analyses for Primary Care
by Matthias Grot, Simon Kugai, Lukas Degen, Isabel Wiemer, Brigitte Werners and Birgitta M. Weltermann
Int. J. Environ. Res. Public Health 2023, 20(3), 1767; https://doi.org/10.3390/ijerph20031767 - 18 Jan 2023
Cited by 4 | Viewed by 4045
Abstract
(1) Background: Workflows are a daily challenge in general practices. The desired smooth work processes and patient flows are not easy to achieve. This study uses an operational research approach to illustrate the general effects of patient arrival and consultation times on waiting [...] Read more.
(1) Background: Workflows are a daily challenge in general practices. The desired smooth work processes and patient flows are not easy to achieve. This study uses an operational research approach to illustrate the general effects of patient arrival and consultation times on waiting times. (2) Methods: Stochastic simulations were used to model complex daily workflows of general practice. Following classical queuing models, patient arrivals, queuing discipline, and physician consultation times are three key factors influencing work processes. (3) Results: In the first scenario, with patients arriving every 7.6 min and random consultation times, the individual patients’ maximum waiting time increased to more than 200 min. The second scenario with random patient arrivals and random consultation times increased the average waiting time by up to 30 min compared to patients arriving on schedule. A busy morning session based on the second scenario was investigated to compare two alternative intervention strategies to reduce subsequent waiting times. Both could reduce waiting times by a multiple for each minute of reduced consultation time. (4) Conclusions: Aiming to improve family physicians’ awareness of strategies for improving workflows, this simulation study illustrates the effects of strategies that address consultation times and patient arrivals. Full article
Show Figures

Figure 1

22 pages, 559 KiB  
Article
On the Value of Information in Status Update Systems
by Peng Zou and Suresh Subramaniam
Entropy 2022, 24(4), 449; https://doi.org/10.3390/e24040449 - 24 Mar 2022
Cited by 2 | Viewed by 2120
Abstract
The age of information (AoI) is now well established as a metric that measures the freshness of information delivered to a receiver from a source that generates status updates. This paper is motivated by the inherent value of packets arising in many cyber-physical [...] Read more.
The age of information (AoI) is now well established as a metric that measures the freshness of information delivered to a receiver from a source that generates status updates. This paper is motivated by the inherent value of packets arising in many cyber-physical applications (e.g., due to precision of the information content or an alarm message). In contrast to AoI, which considers all packets are of equal importance or value, we consider status update systems with update packets carrying values as well as their generated time stamps. A status update packet has a random initial value at the source and a deterministic deadline after which its value vanishes (called ultimate staleness). In our model, the value of a packet either remains constant until the deadline or decreases in time (even after reception) starting from its generation to the deadline when it vanishes. We consider two metrics for the value of information (VoI) at the receiver: sum VoI is the sum of the current values of all packets held by the receiver, whereas packet VoI is the value of a packet at the instant it is delivered to the receiver. We investigate various queuing disciplines under potential dependence between value and service time and provide closed form expressions for both average sum VoI and packet VoI at the receiver. Numerical results illustrate the average VoI for different scenarios and relations between average sum VoI and average packet VoI. Full article
(This article belongs to the Special Issue Age of Information: Concept, Metric and Tool for Network Control)
Show Figures

Figure 1

22 pages, 23899 KiB  
Article
A QoS-Aware Dynamic Bandwidth Allocation Algorithm for Passive Optical Networks with Non-Zero Laser Tuning Time
by Mohammad Zehri, Adebanjo Haastrup, David Rincón, José Ramón Piney, Sebastià Sallent and Ali Bazzi
Photonics 2021, 8(5), 159; https://doi.org/10.3390/photonics8050159 - 10 May 2021
Cited by 8 | Viewed by 3289
Abstract
The deployment of new 5G services and future demands for 6G make it necessary to increase the performance of access networks. This challenge has prompted the development of new standardization proposals for Passive Optical access Networks (PONs) that offer greater bandwidth, greater reach [...] Read more.
The deployment of new 5G services and future demands for 6G make it necessary to increase the performance of access networks. This challenge has prompted the development of new standardization proposals for Passive Optical access Networks (PONs) that offer greater bandwidth, greater reach and a higher rate of aggregation of users per fiber, being Time- and Wavelength-Division Multiplexing (TWDM) a promising technological solution for increasing the capacity by up to 40 Gbps by using several wavelengths. This solution introduces tunable transceivers into the Optical Network Units (ONUs) for switching from one wavelength to the other, thus addressing the ever-increasing bandwidth demands in residential broadband and mobile fronthaul networks based on Fiber to the Home (FTTH) technology. This adds complexity and sources of inefficiency, such as the laser tuning time (LTT) delay, which is often ignored when evaluating the performance of Dynamic Bandwidth Allocation (DBA) mechanisms. We present a novel DBA algorithm that dynamically handles the allocation of bandwidth and switches the ONUs’ lasers from one wavelength to the other while taking LTT into consideration. To optimize the packet delay, we introduce a scheduling mechanism that follows the Longest Processing Time first (LPT) scheduling discipline, which is implemented over the Interleaved Polling with Adaptive Cycle Time (IPACT) DBA. We also provide quality of service (QoS) differentiation by introducing the Max-Min Weighted Fair Share Queuing principle (WFQ) into the algorithm. The performance of our algorithm is evaluated through simulations against the original IPACT algorithm, which we have extended to support multi-wavelengths. With the introduction of LPT, we obtain an improved performance of up to 73% reduction in queue delay over IPACT while achieving QoS differentiation with WFQ. Full article
Show Figures

Figure 1

17 pages, 564 KiB  
Article
TCQG—Software-Defined Transmission Control Scheme in 5G Networks from Queuing Game Perspective
by Chao Guo, Cheng Gong, Juan Guo, Haitao Xu and Long Zhang
Sensors 2019, 19(19), 4170; https://doi.org/10.3390/s19194170 - 26 Sep 2019
Cited by 4 | Viewed by 2744
Abstract
The efficient processing and forwarding of big data is one of the key problems and challenges facing the next generation wireless communication network. Using a software definition method to virtualize the network can improve the efficiency of network operation and reduce the cost [...] Read more.
The efficient processing and forwarding of big data is one of the key problems and challenges facing the next generation wireless communication network. Using a software definition method to virtualize the network can improve the efficiency of network operation and reduce the cost of network operation and maintenance. A software-defined transmission control scheme was presented to solve the excessive controller flow problem for 5G networks. Based on the queuing game theory, a system model was built due to the competition among the requests of the switch. The transmission control platform was in charge of resource allocation. It got maximum social welfare under a profit-maximizing fee. In this model, the optimal queue length was calculated and discussed in a first-come-first-served and last-come-first-served with preemption discipline. The optimal queue length was obtained and the optimal admission fee was calculated. Then, the single switch single controller transmission control model was extended to the multi-switches single controller model. As a result, the social welfare of the system containing the controller’s profit and switch surplus reaches the maximum. Full article
Show Figures

Figure 1

17 pages, 965 KiB  
Article
Prediction of Aircraft Waiting Time at Airport During Immediate Response to Disaster
by Sunkyung Choi and Shinya Hanaoka
Aerospace 2019, 6(4), 40; https://doi.org/10.3390/aerospace6040040 - 3 Apr 2019
Cited by 2 | Viewed by 6781
Abstract
Air transportation is especially critical to the immediate response that must be provided after a natural disaster strikes a region. Airport operations are hindered by fluctuating waiting times across different operation types because of bottlenecks caused by unexpected amounts of aid goods, aircraft, [...] Read more.
Air transportation is especially critical to the immediate response that must be provided after a natural disaster strikes a region. Airport operations are hindered by fluctuating waiting times across different operation types because of bottlenecks caused by unexpected amounts of aid goods, aircraft, and emergency workers. To address this problem, this study proposes a model for estimating the waiting time of an aircraft at an airport during the immediate response phase after a disaster. The proposed framework was developed by applying an open Jackson network with first-come first-served, priority, and mixed-queuing disciplines. These disciplines are compared through a numerical example based on data acquired from the Great East Japan Earthquake of 2011. The results indicate that the mixed-queuing discipline reduces the waiting time for higher-priority operators, with permissible waiting times for lower-priority operators. The results of this study reveal that various disaster response operations should be prioritized ahead of a natural disaster occurring, such that the waiting times for those operators involved in life-saving activities can be reduced. Full article
(This article belongs to the Special Issue Aviation Logistics and Supply Chain Management)
Show Figures

Figure 1

Back to TopTop