Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = quantum sieving

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 2231 KiB  
Article
A Hybrid Key Generator Model Based on Multiscale Prime Sieve and Quantum-Inspired Approaches
by Gerardo Iovane and Elmo Benedetto
Appl. Sci. 2025, 15(14), 7660; https://doi.org/10.3390/app15147660 - 8 Jul 2025
Viewed by 283
Abstract
This article examines a hybrid generation of cryptographic keys, whose novelty lies in the fusion of a multiscale subkey generation with prime sieve and subkeys inspired by quantum mechanics. It combines number theory with techniques emulated and inspired by quantum mechanics, also based [...] Read more.
This article examines a hybrid generation of cryptographic keys, whose novelty lies in the fusion of a multiscale subkey generation with prime sieve and subkeys inspired by quantum mechanics. It combines number theory with techniques emulated and inspired by quantum mechanics, also based on two demons capable of dynamically modifying the cryptographic model. The integration is structured through the JDL. In fact, a specific information fusion model is used to improve security. As a result, the resulting key depends not only on the individual components, but also on the fusion path itself, allowing for dynamic and cryptographically agile configurations that remain consistent with quantum mechanics-inspired logic. The proposed approach, called quantum and prime information fusion (QPIF), couples a simulated quantum entropy source, derived from the numerical solution of the Schrödinger equation, with a multiscale prime number sieve to construct multilevel cryptographic keys. The multiscale sieve, based on recent advances, is currently among the fastest available. Designed to be compatible with classical computing environments, the method aims to contribute to cryptography from a different perspective, particularly during the coexistence of classical and quantum computers. Among the five key generation algorithms implemented here, the ultra-optimised QRNG offers the most effective trade-off between performance and randomness. The results are validated using standard NIST statistical tests. This hybrid framework can also provide a conceptual and practical basis for future work on PQC aimed at addressing the challenges posed by the quantum computing paradigm. Full article
Show Figures

Figure 1

23 pages, 5981 KiB  
Review
A Mini Review of Advances in Porous Materials Designing for Hydrogen Isotope Separation
by Huafeng Zhu, Liangbo Xu, Jia Li, Duanwei He and Jingchuan Wang
Materials 2024, 17(23), 5708; https://doi.org/10.3390/ma17235708 - 22 Nov 2024
Viewed by 1289
Abstract
The separation of mixtures of hydrogen isotopes is one of the greatest challenges of modern separation technology. A newly proposed separation mechanism, the quantum sieving (QS) effect, is expected to achieve high separation factors, the main desired properties for hydrogen isotope separation (HIS). [...] Read more.
The separation of mixtures of hydrogen isotopes is one of the greatest challenges of modern separation technology. A newly proposed separation mechanism, the quantum sieving (QS) effect, is expected to achieve high separation factors, the main desired properties for hydrogen isotope separation (HIS). Metal–organic frameworks (MOFs) and zeolites are excellent candidates to study these quantum effects because of their well-defined and tunable pore structure and the potential to introduce strong adsorption sites directly into the framework structure. This paper briefly discusses the fundamentals of QS of hydrogen isotopes in nanoporous materials, mainly including kinetic quantum sieving (KQS) and chemical affinity quantum sieving (CAQS). Recent experimental advances in the separation of hydrogen isotopes from MOFs and zeolites are highlighted. Full article
(This article belongs to the Collection Porous Materials and Nanozeolites)
Show Figures

Figure 1

14 pages, 2801 KiB  
Article
Confinement of a Styryl Dye into Nanoporous Aluminophosphates: Channels vs. Cavities
by Ainhoa Oliden-Sánchez, Rebeca Sola-Llano, Joaquín Pérez-Pariente, Luis Gómez-Hortigüela and Virginia Martínez-Martínez
Int. J. Mol. Sci. 2024, 25(7), 3577; https://doi.org/10.3390/ijms25073577 - 22 Mar 2024
Viewed by 1227
Abstract
Styryl dyes are generally poor fluorescent molecules inherited from their flexible molecular structures. However, their emissive properties can be boosted by restricting their molecular motions. A tight confinement into inorganic molecular sieves is a good strategy to yield highly fluorescent hybrid systems. In [...] Read more.
Styryl dyes are generally poor fluorescent molecules inherited from their flexible molecular structures. However, their emissive properties can be boosted by restricting their molecular motions. A tight confinement into inorganic molecular sieves is a good strategy to yield highly fluorescent hybrid systems. In this work, we compare the confinement effect of two Mg-aluminophosphate zeotypes with distinct pore systems (the AEL framework, a one-dimensional channeled structure with elliptical pores of 6.5 Å × 4.0 Å, and the CHA framework, composed of large cavities of 6.7 Å × 10.0 Å connected by eight-ring narrower windows) for the encapsulation of 4-DASPI styryl dye (trans-4-[4-(Dimethylamino)styryl]-1-methylpyridinium iodide). The resultant hybrid systems display significantly improved photophysical features compared to 4-DASPI in solution as a result of tight confinement in both host inorganic frameworks. Molecular simulations reveal a tighter confinement of 4-DASPI in the elliptical channels of AEL, explaining its excellent photophysical properties. On the other hand, a singular arrangement of 4-DASPI dye is found when confined within the cavity-based CHA framework, where the 4-DASPI molecule spans along two adjacent cavities, with each aromatic ring sitting on these adjacent cavities and the polymethine chain residing within the narrower eight-ring window. However, despite the singularity of this host–guest arrangement, it provides less tight confinement for 4-DASPI than AEL, resulting in a slightly lower quantum yield. Full article
Show Figures

Figure 1

14 pages, 3598 KiB  
Article
A Route to Understanding the Ethane Adsorption Selectivity of the Zeolitic Imidazolate Framework-8 in Ethane–Ethylene Mixtures
by Jaquebet Vargas-Bustamante, Roberto Salcedo and Jorge Balmaseda
Materials 2023, 16(19), 6587; https://doi.org/10.3390/ma16196587 - 7 Oct 2023
Cited by 1 | Viewed by 1612
Abstract
Ethylene production has a negative environmental impact, with its separation step being one of the major contributors of pollution. This has encouraged the search for energy-efficient alternatives, among which the adsorptive separation of ethane and ethylene stands out. ZIF-8 is a molecular sieve [...] Read more.
Ethylene production has a negative environmental impact, with its separation step being one of the major contributors of pollution. This has encouraged the search for energy-efficient alternatives, among which the adsorptive separation of ethane and ethylene stands out. ZIF-8 is a molecular sieve that is potentially useful for this purpose. It is selective to ethane, an exceptional property that remains unexplained. Furthermore, the adsorption of ethane and ethylene above room temperature, such as at steam cracking process outlet temperatures, has not been addressed either. This work aims to fill this knowledge gap by combining experiments at very low volumetric fillings with density–functional theory modelling methods. Adsorption isotherms of ethane and ethylene on ZIF-8 at pressures below 0.3 bar and 311 K, 333 K, and 363 K were measured using zero-length column chromatography. The low-pressure domain of the isotherms contains information on the interactions between the adsorbate molecules and the adsorbent. This favors the understanding of their macroscopic behavior from simulations at the atomic level. The isosteric enthalpy of adsorption of ethane remained constant at approximately −10 kJ/mol. In contrast, the isosteric enthalpy of adsorption of ethylene decreased from −4 kJ/mol to values akin to those of ethane as temperature increased. ZIF-8 selectivity to ethane, estimated from ideal adsorbed solution theory, decreased from 2.8 to 2.0 with increasing pressure up to 0.19 bar. Quantum mechanical modelling suggested that ethylene had minimal interactions with ZIF-8, while ethane formed hydrogen bonds with nitrogen atoms within its structure. The findings of this research are a platform for designing new systems for the adsorptive separation of ethane and ethylene and thus, reducing the environmental impact of ethylene production. Full article
(This article belongs to the Section Porous Materials)
Show Figures

Figure 1

12 pages, 3941 KiB  
Article
N-Doped Graphene Quantum Dots Confined within Silica Nanochannels for Enhanced Electrochemical Detection of Doxorubicin
by Chaoyan Zhang, Xiaoyu Zhou, Fei Yan and Jing Lin
Molecules 2023, 28(18), 6443; https://doi.org/10.3390/molecules28186443 - 5 Sep 2023
Cited by 39 | Viewed by 1939
Abstract
Herein, we describe a fast and highly sensitive electrochemical sensor for doxorubicin (DOX) detection based on the indium tin oxide (ITO) modified with a binary material consisting of vertically-ordered mesoporous silica films (VMSFs) and N-doped graphene quantum dots (NGQDs). VMSFs, with high permeability [...] Read more.
Herein, we describe a fast and highly sensitive electrochemical sensor for doxorubicin (DOX) detection based on the indium tin oxide (ITO) modified with a binary material consisting of vertically-ordered mesoporous silica films (VMSFs) and N-doped graphene quantum dots (NGQDs). VMSFs, with high permeability and efficient molecular transport capacity, is attached to the ITO electrode via a rapid and controllable electrochemical method, which can serve as a solid template for the confinement of numerous NGQDs through facile electrophoresis. By virtue of the excellent charge transfer capacity, π-π and electrostatic preconcentration effects of NGQDs, as well as the electrostatic enrichment ability of VMSF, the presented NGQDs@VMSF/ITO shows amplified electrochemical signal towards DOX with a positive charge, resulting in good analytical performance in terms of a wide linear range (5 nM~0.1 μM and 0.1~1 μM), high sensitivity (30.4 μA μM−1), and a low limit of detection (0.5 nM). Moreover, due to the molecular sieving property of VMSF, the developed NGQDs@VMSF/ITO sensor has good selectivity and works well in human serum and urine samples, with recoveries of 97.0~109%, thus providing a simple and reliable method for the direct electrochemical analysis of DOX without complex sample pretreatment procedures. Full article
Show Figures

Graphical abstract

15 pages, 3075 KiB  
Article
Determination of β2-Agonist Residues in Meat Samples by Gas Chromatography-Mass Spectrometry with N-Doped Carbon Dots in Molecular Sieves
by Shanshan Zhu, Binglin Mou, Liao Zheng, Luhong Wen, Ning Gan and Lin Zheng
Separations 2023, 10(8), 429; https://doi.org/10.3390/separations10080429 - 28 Jul 2023
Cited by 1 | Viewed by 1743
Abstract
A simple, effective, and highly sensitive analytical approach was created and applied in this study for the accurate measurement of three β2-agonist residues (clenbuterol, salbutamol, and ractopamine) in meat samples. In the course of the experiment, new adsorbent molecular sieves (ZMS)@nitrogen-doped [...] Read more.
A simple, effective, and highly sensitive analytical approach was created and applied in this study for the accurate measurement of three β2-agonist residues (clenbuterol, salbutamol, and ractopamine) in meat samples. In the course of the experiment, new adsorbent molecular sieves (ZMS)@nitrogen-doped carbon quantum dots (N-CQDs) composite materials were synthesized with the aid of hydrothermal synthesis. The composite adsorbent materials were prepared and characterized through scanning electron microscopy, transmission electron microscope, X-ray photoelectron spectroscopy, fluorescence, and zeta potential. Four determinants affecting the extraction and elution’s efficiency, such as the amount of adsorbent, the extraction time, desorption time, and the amount of extraction salt, were substantially optimized. The analytes were quantified by gas chromatography–mass spectrometry. Final results of the methodological validation reflected that the ZMS@N-CQDs composite materials were able to adsorb three β2-agonist residues well and had good reproducibility. In the meantime, all analytes indicated good linearity with coefficient of determination R2 ≥ 0.9908. The limit of detection was 0.7–2.0 ng·g−1, the limit of quantification varied from 2.4 to 5.0 ng·g−1, the precision was lower than 11.9%, and the spiked recoveries were in the range of 79.5–97.8%. To sum up, the proposed approach was quite effective, reliable, and convenient for the simultaneous analysis of multiple β2-agonist residues. Consequently, this kind of approach was successfully applied for the analysis of such compounds in meat samples. Full article
Show Figures

Figure 1

24 pages, 399 KiB  
Article
Improvements on Making BKW Practical for Solving LWE
by Alessandro Budroni, Qian Guo, Thomas Johansson, Erik Mårtensson and Paul Stankovski Wagner
Cryptography 2021, 5(4), 31; https://doi.org/10.3390/cryptography5040031 - 28 Oct 2021
Cited by 6 | Viewed by 4210
Abstract
The learning with errors (LWE) problem is one of the main mathematical foundations of post-quantum cryptography. One of the main groups of algorithms for solving LWE is the Blum–Kalai–Wasserman (BKW) algorithm. This paper presents new improvements of BKW-style algorithms for solving LWE instances. [...] Read more.
The learning with errors (LWE) problem is one of the main mathematical foundations of post-quantum cryptography. One of the main groups of algorithms for solving LWE is the Blum–Kalai–Wasserman (BKW) algorithm. This paper presents new improvements of BKW-style algorithms for solving LWE instances. We target minimum concrete complexity, and we introduce a new reduction step where we partially reduce the last position in an iteration and finish the reduction in the next iteration, allowing non-integer step sizes. We also introduce a new procedure in the secret recovery by mapping the problem to binary problems and applying the fast Walsh Hadamard transform. The complexity of the resulting algorithm compares favorably with all other previous approaches, including lattice sieving. We additionally show the steps of implementing the approach for large LWE problem instances. We provide two implementations of the algorithm, one RAM-based approach that is optimized for speed, and one file-based approach which overcomes RAM limitations by using file-based storage. Full article
(This article belongs to the Special Issue Public-Key Cryptography in the Post-quantum Era)
Show Figures

Figure 1

38 pages, 10612 KiB  
Review
A Review: Ion Transport of Two-Dimensional Materials in Novel Technologies from Macro to Nanoscopic Perspectives
by Nawapong Unsuree, Sorasak Phanphak, Pongthep Prajongtat, Aritsa Bunpheng, Kulpavee Jitapunkul, Pornpis Kongputhon, Pannaree Srinoi, Pawin Iamprasertkun and Wisit Hirunpinyopas
Energies 2021, 14(18), 5819; https://doi.org/10.3390/en14185819 - 14 Sep 2021
Cited by 9 | Viewed by 5568
Abstract
Ion transport is a significant concept that underlies a variety of technologies including membrane technology, energy storages, optical, chemical, and biological sensors and ion-mobility exploration techniques. These applications are based on the concepts of capacitance and ion transport, so a prior understanding of [...] Read more.
Ion transport is a significant concept that underlies a variety of technologies including membrane technology, energy storages, optical, chemical, and biological sensors and ion-mobility exploration techniques. These applications are based on the concepts of capacitance and ion transport, so a prior understanding of capacitance and ion transport phenomena is crucial. In this review, the principles of capacitance and ion transport are described from a theoretical and practical point of view. The review covers the concepts of Helmholtz capacitance, diffuse layer capacitance and space charge capacitance, which is also referred to as quantum capacitance in low-dimensional materials. These concepts are attributed to applications in the electrochemical technologies such as energy storage and excitable ion sieving in membranes. This review also focuses on the characteristic role of channel heights (from micrometer to angstrom scales) in ion transport. Ion transport technologies can also be used in newer applications including biological sensors and multifunctional microsupercapacitors. This review improves our understanding of ion transport phenomena and demonstrates various applications that is applicable of the continued development in the technologies described. Full article
(This article belongs to the Special Issue Functional Materials for Electrochemical Water Desalination)
Show Figures

Figure 1

16 pages, 8452 KiB  
Article
Ion-Imprinted Polymer Modified with Carbon Quantum Dots as a Highly Sensitive Copper(II) Ion Probe
by Zhiming Wang, Cuo Zhou, Shunwei Wu and Chunyan Sun
Polymers 2021, 13(9), 1376; https://doi.org/10.3390/polym13091376 - 23 Apr 2021
Cited by 33 | Viewed by 3851
Abstract
Fluorescence analysis technology and ion imprinting technology are combined to prepare a copper ion fluorescence sensor. Carbon quantum dots (CQDs), with a quantum yield of 79%, were synthesized by a hydrothermal process using citric acid as the carbon source. The prepared CQDs, acting [...] Read more.
Fluorescence analysis technology and ion imprinting technology are combined to prepare a copper ion fluorescence sensor. Carbon quantum dots (CQDs), with a quantum yield of 79%, were synthesized by a hydrothermal process using citric acid as the carbon source. The prepared CQDs, acting as the fluorophore, were grafted onto the surface of an SBA-15 mesoporous molecular sieve by an amidation reaction. Then, the fluorescent sensor CQDs@Cu-IIP was prepared using a surface imprinting technique with the modified SBA-15 as the substrate, copper ions as a template, tetraethoxysilane as the crosslinker, and 3-aminopropyl-3-ethoxysilane as the functional monomers. The sensor showed strong fluorescence from CQDs and high selectivity due to the presence of Cu(II)-IIP. After the detection conditions were optimized, the fluorescence intensity of the sensor had good linearity with Cu(II) concentration in a linear range of 0.25–2 mg/L and 3–10 mg/L. This CQDs@Cu-IIP was applied to the determination of traces Cu(II) in real water samples and good recoveries of 99.29–105.42% were obtained. The present study provides a general strategy for fabricating materials based on CQDs for selective fluorescence detection of heavy metals. Full article
Show Figures

Graphical abstract

11 pages, 19327 KiB  
Article
Impact of Residual Water Vapor on the Simultaneous Measurements of Trace CH4 and N2O in Air with Cavity Ring-Down Spectroscopy
by Qianhe Wei, Bincheng Li, Jing Wang, Binxing Zhao and Ping Yang
Atmosphere 2021, 12(2), 221; https://doi.org/10.3390/atmos12020221 - 6 Feb 2021
Cited by 10 | Viewed by 3224
Abstract
Methane (CH4) and nitrous oxide (N2O) are among the most important atmospheric greenhouse gases. A gas sensor based on a tunable 7.6 μm continuous-wave external-cavity mode-hop-free (EC-MHF) quantum cascade laser (from 1290 to 1350 cm−1) cavity ring-down [...] Read more.
Methane (CH4) and nitrous oxide (N2O) are among the most important atmospheric greenhouse gases. A gas sensor based on a tunable 7.6 μm continuous-wave external-cavity mode-hop-free (EC-MHF) quantum cascade laser (from 1290 to 1350 cm−1) cavity ring-down spectroscopy (CRDS) technique was developed for the simultaneous detection of CH4 and N2O in ambient air with water vapor (H2O) mostly removed via molecular sieve drying to minimize the impact of H2O on the simultaneous measurements. Still, due to the broad and strong absorption spectrum of H2O in the entire mid-infrared (mid-IR) spectral range, residual H2O in the dried ambient air due to incomplete drying and leakage, if not properly accounted for, could cause a significant influence on the measurement accuracy of the simultaneous CH4 and N2O detection. In this paper, the impact of residual H2O on the simultaneous CH4 and N2O measurements were analyzed by comparing the CH4 and N2O concentrations determined from the measured spectrum in the spectral range from 1311 to 1312.1 cm−1 via simultaneous CH4 and N2O measurements and that determined from the measured spectrum in the spectral range from 1311 to 1313 cm−1 via simultaneous CH4, N2O, and H2O measurements. The measured dependence of CH4 and N2O concentration errors on the simultaneously determined H2O concentration indicated that the residual H2O caused an under-estimation of CH4 concentration and over-estimation of N2O concentration. The H2O induced CH4 and N2O concentration errors were approximately linearly proportional to the residual H2O concentration. For the measurement of air flowing at 3 L per min, the residual H2O concentration was stabilized to approximately 14 ppmv, and the corresponding H2O induced errors were −1.3 ppbv for CH4 and 3.7 ppbv for N2O, respectively. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

12 pages, 606 KiB  
Article
Helium Isotopes Quantum Sieving through Graphtriyne Membranes
by Marta I. Hernández, Massimiliano Bartolomei and José Campos-Martínez
Nanomaterials 2021, 11(1), 73; https://doi.org/10.3390/nano11010073 - 31 Dec 2020
Cited by 8 | Viewed by 2412
Abstract
We report accurate quantum calculations of the sieving of Helium atoms by two-dimensional (2D) graphtriyne layers with a new interaction potential. Thermal rate constants and permeances in an ample temperature range are computed and compared for both Helium isotopes. With a pore larger [...] Read more.
We report accurate quantum calculations of the sieving of Helium atoms by two-dimensional (2D) graphtriyne layers with a new interaction potential. Thermal rate constants and permeances in an ample temperature range are computed and compared for both Helium isotopes. With a pore larger than graphdiyne, the most common member of the γ-graphyne family, it could be expected that the appearance of quantum effects were more limited. We find, however, a strong quantum behavior that can be attributed to the presence of selective adsorption resonances, with a pronounced effect in the low temperature regime. This effect leads to the appearance of some selectivity at very low temperatures and the possibility for the heavier isotope to cross the membrane more efficiently than the lighter, contrarily to what happened with graphdiyne membranes, where the sieving at low energy is predominantly ruled by quantum tunneling. The use of more approximate methods could be not advisable in these situations and prototypical transition state theory treatments might lead to large errors. Full article
(This article belongs to the Special Issue Novel Porous Materials Deriving from Graphene)
Show Figures

Graphical abstract

9 pages, 2308 KiB  
Article
Strategy for Encapsulation of CdS Quantum Dots into Zeolitic Imidazole Frameworks for Photocatalytic Activity
by Ye Rim Son, Minseok Kwak, Songyi Lee and Hyun Sung Kim
Nanomaterials 2020, 10(12), 2498; https://doi.org/10.3390/nano10122498 - 12 Dec 2020
Cited by 16 | Viewed by 4276
Abstract
Encapsulating CdS quantum dots (QDs) into zeolitic imidazole framework-8 (ZIF-8) can offer several advantages for photocatalysis. Various types of capping agents have been used to encapsulate QDs into ZIF-8 nanopores. An effective method for encapsulating CdS QDs into ZIF-8 is to use 2-mercaptoimidazole [...] Read more.
Encapsulating CdS quantum dots (QDs) into zeolitic imidazole framework-8 (ZIF-8) can offer several advantages for photocatalysis. Various types of capping agents have been used to encapsulate QDs into ZIF-8 nanopores. An effective method for encapsulating CdS QDs into ZIF-8 is to use 2-mercaptoimidazole as the capping agent. This is because 2-mercaptoimidazole is similar to the imidazolate ligands of ZIFs and can used for capping active species with simultaneous encapsulation during the crystal growth of ZIF-8. Compared to other widely used capping agents such as polyvinylpyrrolidone (PVP), using 2-mercaptoimidazole for encapsulating CdS QDs into ZIF-8 revealed photocatalytic effects along with the molecular sieving effect when using differently sized molecular redox mediators such as methyl viologen (MV2+) and diquat (DQ2+). Full article
(This article belongs to the Special Issue Design and Fabrication of Organic/Inorganic Nanocomposites)
Show Figures

Graphical abstract

Back to TopTop