Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = quantum Bayesian networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 382 KiB  
Review
Physics-Informed Neural Networks: A Review of Methodological Evolution, Theoretical Foundations, and Interdisciplinary Frontiers Toward Next-Generation Scientific Computing
by Zhiyuan Ren, Shijie Zhou, Dong Liu and Qihe Liu
Appl. Sci. 2025, 15(14), 8092; https://doi.org/10.3390/app15148092 - 21 Jul 2025
Viewed by 882
Abstract
Physics-informed neural networks (PINNs) have emerged as a transformative methodology integrating deep learning with scientific computing. This review establishes a three-dimensional analytical framework to systematically decode PINNs’ development through methodological innovation, theoretical breakthroughs, and cross-disciplinary convergence. The contributions include threefold: First, identifying the [...] Read more.
Physics-informed neural networks (PINNs) have emerged as a transformative methodology integrating deep learning with scientific computing. This review establishes a three-dimensional analytical framework to systematically decode PINNs’ development through methodological innovation, theoretical breakthroughs, and cross-disciplinary convergence. The contributions include threefold: First, identifying the co-evolutionary path of algorithmic architectures from adaptive optimization (neural tangent kernel-guided weighting achieving 230% convergence acceleration in Navier-Stokes solutions) to hybrid numerical-deep learning integration (5× speedup via domain decomposition) and second, constructing bidirectional theory-application mappings where convergence analysis (operator approximation theory) and generalization guarantees (Bayesian-physical hybrid frameworks) directly inform engineering implementations, as validated by 72% cost reduction compared to FEM in high-dimensional spaces (p<0.01,n=15 benchmarks). Third, pioneering cross-domain knowledge transfer through application-specific architectures: TFE-PINN for turbulent flows (5.12±0.87% error in NASA hypersonic tests), ReconPINN for medical imaging (SSIM=+0.18±0.04 on multi-institutional MRI), and SeisPINN for seismic systems (0.52±0.18 km localization accuracy). We further present a technological roadmap highlighting three critical directions for PINN 2.0: neuro-symbolic, federated physics learning, and quantum-accelerated optimization. This work provides methodological guidelines and theoretical foundations for next-generation scientific machine learning systems. Full article
Show Figures

Figure 1

31 pages, 6177 KiB  
Article
Transforming Neural Networks into Quantum-Cognitive Models: A Research Tutorial with Novel Applications
by Milan Maksimovic and Ivan S. Maksymov
Technologies 2025, 13(5), 183; https://doi.org/10.3390/technologies13050183 - 4 May 2025
Viewed by 1744
Abstract
Quantum technologies are increasingly pervasive, underpinning the operation of numerous electronic, optical and medical devices. Today, we are also witnessing rapid advancements in quantum computing and communication. However, access to quantum technologies in computation remains largely limited to professionals in research organisations and [...] Read more.
Quantum technologies are increasingly pervasive, underpinning the operation of numerous electronic, optical and medical devices. Today, we are also witnessing rapid advancements in quantum computing and communication. However, access to quantum technologies in computation remains largely limited to professionals in research organisations and high-tech industries. This paper demonstrates how traditional neural networks can be transformed into neuromorphic quantum models, enabling anyone with a basic understanding of undergraduate-level machine learning to create quantum-inspired models that mimic the functioning of the human brain—all using a standard laptop. We present several examples of these quantum machine learning transformations and explore their potential applications, aiming to make quantum technology more accessible and practical for broader use. The examples discussed in this paper include quantum-inspired analogues of feedforward neural networks, recurrent neural networks, Echo State Network reservoir computing, and Bayesian neural networks, demonstrating that a quantum approach can both optimise the training process and equip the models with certain human-like cognitive characteristics. Full article
(This article belongs to the Topic Quantum Information and Quantum Computing, 2nd Volume)
Show Figures

Figure 1

18 pages, 708 KiB  
Review
Quantum Tomography: From Markovianity to Non-Markovianity
by Tian Luan, Zetong Li, Congcong Zheng, Xueheng Kuang, Xutao Yu and Zaichen Zhang
Symmetry 2024, 16(2), 180; https://doi.org/10.3390/sym16020180 - 2 Feb 2024
Viewed by 2269
Abstract
The engineering of quantum computers requires the reliable characterization of qubits, quantum operations, and even the entire hardware. Quantum tomography is an indispensable framework in quantum characterization, verification, and validation (QCVV), which has been widely accepted by researchers. According to the tomographic target, [...] Read more.
The engineering of quantum computers requires the reliable characterization of qubits, quantum operations, and even the entire hardware. Quantum tomography is an indispensable framework in quantum characterization, verification, and validation (QCVV), which has been widely accepted by researchers. According to the tomographic target, quantum tomography can be categorized into quantum state tomography (QST), quantum process tomography (QPT), gate set tomography (GST), process tensor tomography (PTT), and instrument set tomography (IST). Standard quantum tomography toolkits generally consist of basic linear inverse methods and statistical maximum likelihood estimation (MLE)-based methods. Furthermore, the performance of standard methods, including effectiveness and efficiency, has been further developed by exploiting Bayesian estimation, neural networks, matrix completion techniques, etc. In this review, we introduce the fundamental quantum tomography techniques, including QST, QPT, GST, PTT, and IST. We first introduce the details of basic linear inverse methods. Then, the framework of MLE methods with constraints is summarized. Finally, we briefly introduce recent further research in developing the performance of tomography, utilizing some symmetry properties of the target. This review provides a primary getting-start in developing quantum tomography, which promotes quantum computer development. Full article
(This article belongs to the Special Issue Symmetry in Quantum Optics and Quantum Information Research)
Show Figures

Figure 1

16 pages, 3651 KiB  
Article
QCNN_BaOpt: Multi-Dimensional Data-Based Traffic-Volume Prediction in Cyber–Physical Systems
by Ramesh Sneka Nandhini and Ramanathan Lakshmanan
Sensors 2023, 23(3), 1485; https://doi.org/10.3390/s23031485 - 29 Jan 2023
Cited by 4 | Viewed by 2167
Abstract
The rapid growth of industry and the economy has contributed to a tremendous increase in traffic in all urban areas. People face the problem of traffic congestion frequently in their day-to-day life. To alleviate congestion and provide traffic guidance and control, several types [...] Read more.
The rapid growth of industry and the economy has contributed to a tremendous increase in traffic in all urban areas. People face the problem of traffic congestion frequently in their day-to-day life. To alleviate congestion and provide traffic guidance and control, several types of research have been carried out in the past to develop suitable computational models for short- and long-term traffic. This study developed an effective multi-dimensional dataset-based model in cyber–physical systems for more accurate traffic-volume prediction. The integration of quantum convolutional neural network and Bayesian optimization (QCNN_BaOpt) constituted the proposed model in this study. Furthermore, optimal tuning of hyperparameters was carried out using Bayesian optimization. The constructed model was evaluated using the US accident dataset records available in Kaggle, which comprise 1.5 million records. The dataset consists of 47 attributes describing spatial and temporal behavior, accidents, and weather characteristics. The efficiency of the proposed model was evaluated by calculating various metrics. The performance of the proposed model was assessed as having an accuracy of 99.3%. Furthermore, the proposed model was compared against the existing state-of-the-art models to demonstrate its superiority. Full article
(This article belongs to the Special Issue Image Processing and Pattern Recognition Based on Deep Learning)
Show Figures

Figure 1

16 pages, 4543 KiB  
Article
Fatigue Detection of Air Traffic Controllers Based on Radiotelephony Communications and Self-Adaption Quantum Genetic Algorithm Optimization Ensemble Learning
by Nan Wu and Jingjuan Sun
Appl. Sci. 2022, 12(20), 10252; https://doi.org/10.3390/app122010252 - 12 Oct 2022
Cited by 25 | Viewed by 2823
Abstract
Air traffic controller (ATC) fatigue has become a major cause of air traffic accidents. Speech-based fatigue-state detection is proposed in this paper. The speech signal is preprocessed to further extract the Mel frequency cepstrum coefficient (MFCC) from speech discourse. The machine learning method [...] Read more.
Air traffic controller (ATC) fatigue has become a major cause of air traffic accidents. Speech-based fatigue-state detection is proposed in this paper. The speech signal is preprocessed to further extract the Mel frequency cepstrum coefficient (MFCC) from speech discourse. The machine learning method is used in fatigue detection. However, single machine learning fatigue detection methods often have low detection accuracy. To solve this problem, an ensemble learning method based on self-adaption quantum genetic algorithm (SQGA) heterogeneous learning methods is proposed. Pattern-level and feature-level resampling are used to increase the differences in the base learner’s training dataset. To enlarge the diversity of single learners, k-nearest neighbor (KNN), Bayesian network (BN), back propagation neural network (BPNN) and support vector machine (SVM) are adopted for the heterogeneous ensemble. On this basis, finally, the detection result is obtained by weighted summation. The weight of each base learner was determined by SQGA. The SQGA method combines the quantum genetic algorithm with the adaptive strategy. The adaptive strategy includes adaptive adjustment of the quantum rotation gate, adaptive generation of crossover probability and adaptive generation of mutation probability. The experiments on real civil aviation radio land–air communication show that the proposed method can obtain 98.5% detection accuracy, with a 1.2% false and 3.0% missing report rate, whereas the SVM only obtains 94.0% detection accuracy, with a 5.4% false and 9.0% missing report rate. Full article
(This article belongs to the Special Issue Machine Learning Applications in Transportation Engineering)
Show Figures

Figure 1

18 pages, 3144 KiB  
Article
Establishing a New Link between Fuzzy Logic, Neuroscience, and Quantum Mechanics through Bayesian Probability: Perspectives in Artificial Intelligence and Unconventional Computing
by Pier Luigi Gentili
Molecules 2021, 26(19), 5987; https://doi.org/10.3390/molecules26195987 - 2 Oct 2021
Cited by 53 | Viewed by 8395
Abstract
Human interaction with the world is dominated by uncertainty. Probability theory is a valuable tool to face such uncertainty. According to the Bayesian definition, probabilities are personal beliefs. Experimental evidence supports the notion that human behavior is highly consistent with Bayesian probabilistic inference [...] Read more.
Human interaction with the world is dominated by uncertainty. Probability theory is a valuable tool to face such uncertainty. According to the Bayesian definition, probabilities are personal beliefs. Experimental evidence supports the notion that human behavior is highly consistent with Bayesian probabilistic inference in both the sensory and motor and cognitive domain. All the higher-level psychophysical functions of our brain are believed to take the activities of interconnected and distributed networks of neurons in the neocortex as their physiological substrate. Neurons in the neocortex are organized in cortical columns that behave as fuzzy sets. Fuzzy sets theory has embraced uncertainty modeling when membership functions have been reinterpreted as possibility distributions. The terms of Bayes’ formula are conceivable as fuzzy sets and Bayes’ inference becomes a fuzzy inference. According to the QBism, quantum probabilities are also Bayesian. They are logical constructs rather than physical realities. It derives that the Born rule is nothing but a kind of Quantum Law of Total Probability. Wavefunctions and measurement operators are viewed epistemically. Both of them are similar to fuzzy sets. The new link that is established between fuzzy logic, neuroscience, and quantum mechanics through Bayesian probability could spark new ideas for the development of artificial intelligence and unconventional computing. Full article
Show Figures

Figure 1

14 pages, 4216 KiB  
Communication
Quantum JIDOKA. Integration of Quantum Simulation on a CNC Machine for In–Process Control Visualization
by Javier Villalba-Diez, Miguel Gutierrez, Mercedes Grijalvo Martín, Tomas Sterkenburgh, Juan Carlos Losada and Rosa María Benito
Sensors 2021, 21(15), 5031; https://doi.org/10.3390/s21155031 - 24 Jul 2021
Cited by 10 | Viewed by 4333
Abstract
With the advent of the Industry 4.0 paradigm, the possibilities of controlling manufacturing processes through the information provided by a network of sensors connected to work centers have expanded. Real-time monitoring of each parameter makes it possible to determine whether the values yielded [...] Read more.
With the advent of the Industry 4.0 paradigm, the possibilities of controlling manufacturing processes through the information provided by a network of sensors connected to work centers have expanded. Real-time monitoring of each parameter makes it possible to determine whether the values yielded by the corresponding sensor are in their normal operating range. In the interplay of the multitude of parameters, deterministic analysis quickly becomes intractable and one enters the realm of “uncertain knowledge”. Bayesian decision networks are a recognized tool to control the effects of conditional probabilities in such systems. However, determining whether a manufacturing process is out of range requires significant computation time for a decision network, thus delaying the triggering of a malfunction alarm. From its origins, JIDOKA was conceived as a means to provide mechanisms to facilitate real-time identification of malfunctions in any step of the process, so that the production line could be stopped, the cause of the disruption identified for resolution, and ultimately the number of defective parts minimized. Our hypothesis is that we can model the internal sensor network of a computer numerical control (CNC) machine with quantum simulations that show better performance than classical models based on decision networks. We show a successful test of our hypothesis by implementing a quantum digital twin that allows for the integration of quantum computing and Industry 4.0. This quantum digital twin simulates the intricate sensor network within a machine and permits, due to its high computational performance, to apply JIDOKA in real time within manufacturing processes. Full article
Show Figures

Figure 1

20 pages, 3415 KiB  
Article
EcoQBNs: First Application of Ecological Modeling with Quantum Bayesian Networks
by Bruce G. Marcot
Entropy 2021, 23(4), 441; https://doi.org/10.3390/e23040441 - 9 Apr 2021
Cited by 3 | Viewed by 3185
Abstract
A recent advancement in modeling was the development of quantum Bayesian networks (QBNs). QBNs generally differ from BNs by substituting traditional Bayes calculus in probability tables with the quantum amplification wave functions. QBNs can solve a variety of problems which are unsolvable by, [...] Read more.
A recent advancement in modeling was the development of quantum Bayesian networks (QBNs). QBNs generally differ from BNs by substituting traditional Bayes calculus in probability tables with the quantum amplification wave functions. QBNs can solve a variety of problems which are unsolvable by, or are too complex for, traditional BNs. These include problems with feedback loops and temporal expansions; problems with non-commutative dependencies in which the order of the specification of priors affects the posterior outcomes; problems with intransitive dependencies constituting the circular dominance of the outcomes; problems in which the input variables can affect each other, even if they are not causally linked (entanglement); problems in which there may be >1 dominant probability outcome dependent on small variations in inputs (superpositioning); and problems in which the outcomes are nonintuitive and defy traditional probability calculus (Parrondo’s paradox and the violation of the Sure Thing Principle). I present simple examples of these situations illustrating problems in prediction and diagnosis, and I demonstrate how BN solutions are infeasible, or at best require overly-complex latent variable structures. I then argue that many problems in ecology and evolution can be better depicted with ecological QBN (EcoQBN) modeling. The situations that fit these kinds of problems include noncommutative and intransitive ecosystems responding to suites of disturbance regimes with no specific or single climax condition, or that respond differently depending on the specific sequence of the disturbances (priors). Case examples are presented on the evaluation of habitat conditions for a bat species, representing state-transition models of a boreal forest under disturbance, and the entrainment of auditory signals among organisms. I argue that many current ecological analysis structures—such as state-and-transition models, predator–prey dynamics, the evolution of symbiotic relationships, ecological disturbance models, and much more—could greatly benefit from a QBN approach. I conclude by presenting EcoQBNs as a nascent field needing the further development of the quantum mathematical structures and, eventually, adjuncts to existing BN modeling shells or entirely new software programs to facilitate model development and application. Full article
Show Figures

Figure 1

24 pages, 4131 KiB  
Article
Improved Deep Learning Based Method for Molecular Similarity Searching Using Stack of Deep Belief Networks
by Maged Nasser, Naomie Salim, Hentabli Hamza, Faisal Saeed and Idris Rabiu
Molecules 2021, 26(1), 128; https://doi.org/10.3390/molecules26010128 - 29 Dec 2020
Cited by 23 | Viewed by 3788
Abstract
Virtual screening (VS) is a computational practice applied in drug discovery research. VS is popularly applied in a computer-based search for new lead molecules based on molecular similarity searching. In chemical databases similarity searching is used to identify molecules that have similarities to [...] Read more.
Virtual screening (VS) is a computational practice applied in drug discovery research. VS is popularly applied in a computer-based search for new lead molecules based on molecular similarity searching. In chemical databases similarity searching is used to identify molecules that have similarities to a user-defined reference structure and is evaluated by quantitative measures of intermolecular structural similarity. Among existing approaches, 2D fingerprints are widely used. The similarity of a reference structure and a database structure is measured by the computation of association coefficients. In most classical similarity approaches, it is assumed that the molecular features in both biological and non-biologically-related activity carry the same weight. However, based on the chemical structure, it has been found that some distinguishable features are more important than others. Hence, this difference should be taken consideration by placing more weight on each important fragment. The main aim of this research is to enhance the performance of similarity searching by using multiple descriptors. In this paper, a deep learning method known as deep belief networks (DBN) has been used to reweight the molecule features. Several descriptors have been used for the MDL Drug Data Report (MDDR) dataset each of which represents different important features. The proposed method has been implemented with each descriptor individually to select the important features based on a new weight, with a lower error rate, and merging together all new features from all descriptors to produce a new descriptor for similarity searching. Based on the extensive experiments conducted, the results show that the proposed method outperformed several existing benchmark similarity methods, including Bayesian inference networks (BIN), the Tanimoto similarity method (TAN), adapted similarity measure of text processing (ASMTP) and the quantum-based similarity method (SQB). The results of this proposed multi-descriptor-based on Stack of deep belief networks method (SDBN) demonstrated a higher accuracy compared to existing methods on structurally heterogeneous datasets. Full article
(This article belongs to the Special Issue Molecular Docking in Drug Discovery)
Show Figures

Figure 1

26 pages, 2751 KiB  
Article
Balanced Quantum-Like Bayesian Networks
by Andreas Wichert, Catarina Moreira and Peter Bruza
Entropy 2020, 22(2), 170; https://doi.org/10.3390/e22020170 - 2 Feb 2020
Cited by 14 | Viewed by 4205
Abstract
Empirical findings from cognitive psychology indicate that, in scenarios under high levels of uncertainty, many people tend to make irrational decisions. To address this problem, models based on quantum probability theory, such as the quantum-like Bayesian networks, have been proposed. However, this model [...] Read more.
Empirical findings from cognitive psychology indicate that, in scenarios under high levels of uncertainty, many people tend to make irrational decisions. To address this problem, models based on quantum probability theory, such as the quantum-like Bayesian networks, have been proposed. However, this model makes use of a Bayes normalisation factor during probabilistic inference to convert the likelihoods that result from quantum interference effects into probability values. The interpretation of this operation is not clear and leads to extremely skewed intensity waves that make the task of prediction of these irrational decisions challenging. This article proposes the law of balance, a novel mathematical formalism for probabilistic inferences in quantum-like Bayesian networks, based on the notion of balanced intensity waves. The general idea is to balance the intensity waves resulting from quantum interference in such a way that, during Bayes normalisation, they cancel each other. With this representation, we also propose the law of maximum uncertainty, which is a method to predict these paradoxes by selecting the amplitudes of the wave with the highest entropy. Empirical results show that the law of balance together with the law of maximum uncertainty were able to accurately predict different experiments from cognitive psychology showing paradoxical or irrational decisions, namely in the Prisoner’s Dilemma game and the Two-Stage Gambling Game. Full article
(This article belongs to the Special Issue Quantum Information Revolution: Impact to Foundations)
Show Figures

Figure 1

Back to TopTop