QCNN_BaOpt: Multi-Dimensional Data-Based Traffic-Volume Prediction in Cyber–Physical Systems
Abstract
:1. Introduction
2. Literature Review
3. Proposed Methodology
3.1. Data Pre-Processing
3.2. Feature Selection and Scaling Figures, Tables and Schemes
3.2.1. Target Variable
3.2.2. Feature Scaling
3.3. Traffic-Volume Prediction Using QCNN_BaOpt
3.3.1. Architecture of the Proposed System
3.3.2. Model Creation and Training
Algorithm 1 BO—Algorithm |
Step 1: For u = 1, 2, 3, 4 …. Step 2: The acquisition function is optimized and represented as v over fu function to find yt. Step 3: Objective function sampling with the equation—. Step 4: Data augmentation— Step 5: Update the posterior function fu Step 6: Quantum data encoding function. |
4. Results and Discussion
4.1. Experimental Setup
4.2. Dataset Description
4.3. Performance Measures
4.4. Performance Analysis
4.4.1. Training and Validation–Accuracy and Loss
4.4.2. Classification Report
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, C.; Liu, X.; Qiu, T.; Sangaiah, A.K. A short-term traffic prediction model in the vehicular cyber–physical systems. Future Gener. Comput. Syst. 2020, 105, 894–903. [Google Scholar] [CrossRef]
- Duan, Z.; Yang, Y.; Zhang, K.; Ni, Y.; Bajgain, S. Improved deep hybrid networks for urban traffic flow prediction using trajectory data. IEEE Access 2018, 6, 31820–31827. [Google Scholar] [CrossRef]
- Wei, W.; Wu, H.; Ma, H. An autoencoder and LSTM-based traffic flow prediction method. Sensors 2019, 19, 2946. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Wu, J.; Ben-Akiva, M.; Seshadri, R.; Du, Y. Rainfall-integrated traffic speed prediction using deep learning method. IET Intell. Transp. Syst. 2017, 11, 531–536. [Google Scholar] [CrossRef]
- Zang, D.; Ling, J.; Wei, Z.; Tang, K.; Cheng, J. Long-term traffic speed prediction based on multiscale spatio-temporal feature learning network. IEEE Trans. Intell. Transp. Syst. 2018, 20, 3700–3709. [Google Scholar] [CrossRef]
- Luo, X.; Niu, L.; Zhang, S. An algorithm for traffic flow prediction based on improved SARIMA and GA. KSCE J. Civ. Eng. 2018, 22, 4107–4115. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, H.; Yuan, D.; Zhang, M. Citywide cellular traffic prediction based on densely connected convolutional neural networks. IEEE Commun. Lett. 2018, 22, 1656–1659. [Google Scholar] [CrossRef]
- Boukerche, A.; Wang, J. Machine Learning-based traffic prediction models for Intelligent Transportation Systems. Comput. Netw. 2020, 181, 107530. [Google Scholar] [CrossRef]
- Lee, C.; Kim, Y.; Jin, S.; Kim, D.; Maciejewski, R.; Ebert, D.; Ko, S. A visual analytics system for exploring, monitoring, and forecasting road traffic congestion. IEEE Trans. Vis. Comput. Graph. 2019, 26, 3133–3146. [Google Scholar] [CrossRef]
- Hao, W.; Yang, T.; Yang, Q. Hybrid statistical-machine learning for real-time anomaly detection in industrial cyber-physical systems. IEEE Trans. Autom. Sci. Eng. 2020, 20, 1–15. [Google Scholar] [CrossRef]
- Xu, H.; Yu, W.; Griffith, D.; Golmie, N. A survey on industrial Internet of Things: A cyber-physical systems perspective. IEEE Access 2018, 6, 78238–78259. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Li, D.; Zhang, S. Traffic flow prediction during the holidays based on DFT and SVR. J. Sens. 2019, 2019, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Lu, W.; Xu, X.; Qin, L.; Shao, Z.; Zhang, H. An improved Bayesian combination model for short-term traffic prediction with deep learning. IEEE Trans. Intell. Transp. Syst. 2019, 21, 1332–1342. [Google Scholar] [CrossRef]
- Yao, H.; Tang, X.; Wei, H.; Zheng, G.; Li, Z. Revisiting spatial-temporal similarity: A deep learning framework for traffic prediction. Proc. AAAI Conf. Artif. Intell. 2019, 33, 5668–5675. [Google Scholar] [CrossRef] [Green Version]
- Jia, T.; Yan, P. Predicting Citywide Road Traffic Flow Using Deep Spatiotemporal Neural Networks. IEEE Trans. Intell. Transp. Syst. 2021, 22, 3101–3111. [Google Scholar] [CrossRef]
- Zheng, C.; Fan, X.; Wang, C.; Qi, J. Gman: A graph multi-attention network for traffic prediction. Proc. AAAI Conf. Artif. Intell. 2020, 34, 1234–1241. [Google Scholar] [CrossRef]
- Zhao, L.; Song, Y.; Zhang, C.; Liu, Y.; Wang, P.; Lin, T.; Li, H. T-gcn: A temporal graph convolutional network for traffic prediction. IEEE Trans. Intell. Transp. Syst. 2019, 21, 3848–3858. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Tan, H.; Qin, L.; Ran, B.; Jiang, Z. A hybrid deep learning based traffic flow prediction method and its understanding. Transp. Res. Part C Emerg. Technol. 2018, 90, 166–180. [Google Scholar] [CrossRef]
- Mackenzie, J.; Roddick, J.F.; Zito, R. An evaluation of HTM and LSTM for short-term arterial traffic flow prediction. IEEE Trans. Intell. Transp. Syst. 2018, 20, 1847–1857. [Google Scholar] [CrossRef]
- Do, L.N.; Vu, H.L.; Vo, B.Q.; Liu, Z.; Phung, D. An effective spatial-temporal attention based neural network for traffic flow prediction. Transp. Res. Part C Emerg. Technol. 2019, 108, 12–28. [Google Scholar] [CrossRef]
- Guo, K.; Hu, Y.; Qian, Z.; Liu, H.; Zhang, K.; Sun, Y.; Yin, B. Optimized graph convolution recurrent neural network for traffic prediction. IEEE Trans. Intell. Transp. Syst. 2020, 22, 1138–1149. [Google Scholar] [CrossRef]
- Chen, W.; An, J.; Li, R.; Fu, L.; Xie, G.; Bhuiyan, M.Z.A.; Li, K. A novel fuzzy deep-learning approach to traffic flow prediction with uncertain spatial–temporal data features. Future Gener. Comput. Syst. 2018, 89, 78–88. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, S. Noisy data elimination using mutual k-nearest neighbor for classification mining. J. Syst. Softw. 2012, 85, 1067–1074. [Google Scholar] [CrossRef]
- Obilor, E.I.; Amadi, E.C. Test for significance of Pearson’s correlation coefficient. Int. J. Innov. Math. Stat. Energy Policies 2018, 6, 11–23. [Google Scholar]
- Cong, I.; Choi, S.; Lukin, M.D. Quantum convolutional neural networks. Nat. Phys. 2019, 15, 1273–1278. [Google Scholar] [CrossRef]
Precision | Recall | F1-Score | Support | |
---|---|---|---|---|
0 | 0.50 | 0.99 | 0.66 | 657 |
1 | 1.00 | 0.72 | 0.83 | 2343 |
5 | 0.00 | 0.00 | 0.00 | 0 |
Accuracy | - | - | 0.78 | 3000 |
Macro_avg | 0.30 | 0.34 | 0.30 | 3000 |
Weighted_avg | 0.89 | 0.78 | 0.80 | 3000 |
Precision | Recall | F1-Score | Support | |
---|---|---|---|---|
0 | 1.00 | 0.99 | 0.98 | 657 |
1 | 0.99 | 1.00 | 1.00 | 2343 |
Accuracy | - | - | 0.99 | 3000 |
Macro_avg | 0.99 | 0.99 | 0.99 | 3000 |
Weighted_avg | 0.99 | 0.99 | 0.59 | 3000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nandhini, R.S.; Lakshmanan, R. QCNN_BaOpt: Multi-Dimensional Data-Based Traffic-Volume Prediction in Cyber–Physical Systems. Sensors 2023, 23, 1485. https://doi.org/10.3390/s23031485
Nandhini RS, Lakshmanan R. QCNN_BaOpt: Multi-Dimensional Data-Based Traffic-Volume Prediction in Cyber–Physical Systems. Sensors. 2023; 23(3):1485. https://doi.org/10.3390/s23031485
Chicago/Turabian StyleNandhini, Ramesh Sneka, and Ramanathan Lakshmanan. 2023. "QCNN_BaOpt: Multi-Dimensional Data-Based Traffic-Volume Prediction in Cyber–Physical Systems" Sensors 23, no. 3: 1485. https://doi.org/10.3390/s23031485
APA StyleNandhini, R. S., & Lakshmanan, R. (2023). QCNN_BaOpt: Multi-Dimensional Data-Based Traffic-Volume Prediction in Cyber–Physical Systems. Sensors, 23(3), 1485. https://doi.org/10.3390/s23031485