Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = pyridoxine-dependent epilepsy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 882 KiB  
Article
Advancing Neonatal Screening for Pyridoxine-Dependent Epilepsy-ALDH7A1 Through Combined Analysis of 2-OPP, 6-Oxo-Pipecolate and Pipecolate in a Butylated FIA-MS/MS Workflow
by Mylène Donge, Sandrine Marie, Amandine Pochet, Lionel Marcelis, Geraldine Luis, François Boemer, Clément Prouteau, Samir Mesli, Matthias Cuykx, Thao Nguyen-Khoa, David Guénet, Aurélie Empain, Magalie Barth, Benjamin Dauriat, Cécile Laroche-Raynaud, Corinne De Laet, Patrick Verloo, An I. Jonckheere, Manuel Schiff, Marie-Cécile Nassogne and Joseph P. Dewulfadd Show full author list remove Hide full author list
Int. J. Neonatal Screen. 2025, 11(3), 59; https://doi.org/10.3390/ijns11030059 - 30 Jul 2025
Viewed by 260
Abstract
Pyridoxine-dependent epilepsy (PDE) represents a group of rare developmental and epileptic encephalopathies. The most common PDE is caused by biallelic pathogenic variants in ALDH7A1 (PDE-ALDH7A1; OMIM #266100), which encodes α-aminoadipate semialdehyde (α-AASA) dehydrogenase, a key enzyme in lysine catabolism. Affected individuals present with [...] Read more.
Pyridoxine-dependent epilepsy (PDE) represents a group of rare developmental and epileptic encephalopathies. The most common PDE is caused by biallelic pathogenic variants in ALDH7A1 (PDE-ALDH7A1; OMIM #266100), which encodes α-aminoadipate semialdehyde (α-AASA) dehydrogenase, a key enzyme in lysine catabolism. Affected individuals present with seizures unresponsive to conventional anticonvulsant medications but responsive to high-dose of pyridoxine (vitamin B6). Adjunctive lysine restriction and arginine supplementation have also shown potential in improving neurodevelopmental outcomes. Given the significant benefit of early intervention, PDE-ALDH7A1 is a strong candidate for newborn screening (NBS). However, traditional biomarkers are biochemically unstable at room temperature (α-AASA and piperideine-6-carboxylate) or lack sufficient specificity (pipecolate), limiting their utility for biomarker-based NBS. The recent identification of two novel and stable biomarkers, 2S,6S-/2S,6R-oxopropylpiperidine-2-carboxylate (2-OPP) and 6-oxo-pipecolate (oxo-PIP), offers renewed potential for biochemical NBS. We evaluated the feasibility of incorporating 2-OPP, oxo-PIP, and pipecolate into routine butylated FIA-MS/MS workflows used for biochemical NBS. A total of 9402 dried blood spots (DBS), including nine confirmed PDE-ALDH7A1 patients and 9393 anonymized controls were analyzed using a single multiplex assay. 2-OPP emerged as the most sensitive biomarker, identifying all PDE-ALDH7A1 patients with 100% sensitivity and a positive predictive value (PPV) of 18.4% using a threshold above the 99.5th percentile. Combining elevated 2-OPP (above the 99.5th percentile) with either pipecolate or oxo-PIP (above the 85.0th percentile) as secondary marker detected within the same multiplex FIA-MS/MS assay further improved the PPVs to 60% and 45%, respectively, while maintaining compatibility with butanol-derivatized method. Notably, increasing the 2-OPP threshold above the 99.89th percentile, in combination with either pipecolate or oxo-PIP above the 85.0th percentile resulted in both 100% sensitivity and 100% PPV. This study supports the strong potential of 2-OPP-based neonatal screening for PDE-ALDH7A1 within existing NBS infrastructures. The ability to multiplex 2-OPP, pipecolate and oxo-PIP within a single assay offers a robust, practical, high-throughput and cost-effective approach. These results support the inclusion of PDE-ALDH7A1 in existing biochemical NBS panels. Further prospective studies in larger cohorts are needed to refine cutoffs and confirm clinical performance. Full article
Show Figures

Figure 1

10 pages, 209 KiB  
Perspective
Is Precision Therapy in Infantile-Onset Epileptic Encephalopathies Still Too Far to Call Upon?
by Raffaele Falsaperla, Vincenzo Sortino and Piero Pavone
Appl. Sci. 2025, 15(5), 2372; https://doi.org/10.3390/app15052372 - 23 Feb 2025
Cited by 1 | Viewed by 760
Abstract
Epileptic and developmental encephalopathies (EDEs) are a group of severe, genetically various neurological conditions characterized by early-onset seizures and developmental impairments. Recent advances in molecular genetics and diagnostic tools have led to the development of precision therapies, aiming to address the deep causes [...] Read more.
Epileptic and developmental encephalopathies (EDEs) are a group of severe, genetically various neurological conditions characterized by early-onset seizures and developmental impairments. Recent advances in molecular genetics and diagnostic tools have led to the development of precision therapies, aiming to address the deep causes of these disorders. Examples, such as pyridoxine for pyridoxine-dependent epilepsy and the ketogenic diet for GLUT1 deficiency syndrome illustrate the potential of presumed tailored treatments. However, challenges persist, as current therapies often fail to fully mitigate neurodevelopmental impairments. Moreover, traditional phenotype-based management strategies, while effective for seizure control, do not address the root causes of these disorders, underscoring the limitations of existing approaches. This article explores the evolving landscape of precision medicine in EDEs, emphasizing the importance of genetic insights in therapy design and the need for a multidisciplinary approach. It also highlights the barriers to widespread implementation, including diagnostic delays, accessibility, and a lack of robust clinical evidence. To fully realize the potential of precision therapies, comprehensive genetic integration, innovation in treatment, and global collaboration are essential. The future of EDE management lies in therapies that not only control symptoms but also correct genetic and molecular defects, offering a more effective, individualized approach to care. Full article
(This article belongs to the Special Issue Brain Functional Connectivity: Prediction, Dynamics, and Modeling)
18 pages, 2543 KiB  
Systematic Review
Epilepsy Phenotypes of Vitamin B6-Dependent Diseases: An Updated Systematic Review
by Mario Mastrangelo, Valentina Gasparri, Katerina Bernardi, Silvia Foglietta, Georgia Ramantani and Francesco Pisani
Children 2023, 10(3), 553; https://doi.org/10.3390/children10030553 - 15 Mar 2023
Cited by 16 | Viewed by 4647
Abstract
Background: Vitamin B6-dependent epilepsies include treatable diseases responding to pyridoxine or pyridoxal-5Iphosphate (ALDH7A1 deficiency, PNPO deficiency, PLP binding protein deficiency, hyperprolinemia type II and hypophosphatasia and glycosylphosphatidylinositol anchor synthesis defects). Patients and methods: We conducted a systematic review of published pediatric cases with [...] Read more.
Background: Vitamin B6-dependent epilepsies include treatable diseases responding to pyridoxine or pyridoxal-5Iphosphate (ALDH7A1 deficiency, PNPO deficiency, PLP binding protein deficiency, hyperprolinemia type II and hypophosphatasia and glycosylphosphatidylinositol anchor synthesis defects). Patients and methods: We conducted a systematic review of published pediatric cases with a confirmed molecular genetic diagnosis of vitamin B6-dependent epilepsy according to PRISMA guidelines. Data on demographic features, seizure semiology, EEG patterns, neuroimaging, treatment, and developmental outcomes were collected. Results: 497 published patients fulfilled the inclusion criteria. Seizure onset manifested at 59.8 ± 291.6 days (67.8% of cases in the first month of life). Clonic, tonic-clonic, and myoclonic seizures accounted for two-thirds of the cases, while epileptic spasms were observed in 7.6%. Burst-suppression/suppression-burst represented the most frequently reported specific EEG pattern (14.4%), mainly in PLPB, ALDH7A1, and PNPO deficiency. Pyridoxine was administered to 312 patients (18.5% intravenously, 76.9% orally, 4.6% not specified), and 180 also received antiseizure medications. Pyridoxine dosage ranged between 1 and 55 mg/kg/die. Complete seizure freedom was achieved in 160 patients, while a significant seizure reduction occurred in 38. PLP, lysine-restricted diet, and arginine supplementation were used in a small proportion of patients with variable efficacy. Global developmental delay was established in 30.5% of a few patients in whom neurocognitive tests were performed. Conclusions: Despite the wide variability, the most frequent hallmarks of the epilepsy phenotype in patients with vitamin B6-dependent seizures include generalized or focal motor seizure semiology and a burst suppression/suppression burst pattern in EEG. Full article
(This article belongs to the Special Issue Neurological Diseases in Children and Adolescent)
Show Figures

Graphical abstract

13 pages, 16665 KiB  
Article
Global Metabolomics Discovers Two Novel Biomarkers in Pyridoxine-Dependent Epilepsy Caused by ALDH7A1 Deficiency
by Hans-Otto Böhm, Mazyar Yazdani, Elise Mørk Sandås, Anja Østeby Vassli, Erle Kristensen, Helge Rootwelt, Hanne Bendiksen Skogvold, Eylert Brodtkorb and Katja Benedikte Prestø Elgstøen
Int. J. Mol. Sci. 2022, 23(24), 16061; https://doi.org/10.3390/ijms232416061 - 16 Dec 2022
Cited by 4 | Viewed by 3165
Abstract
Pyridoxine-dependent epilepsy (PDE) is a rare autosomal recessive developmental and epileptic encephalopathy caused by pathogenic variants in the ALDH7A1 gene (PDE-ALDH7A1), which mainly has its onset in neonates and infants. Early diagnosis and treatment are crucial to prevent severe neurological sequelae or death. [...] Read more.
Pyridoxine-dependent epilepsy (PDE) is a rare autosomal recessive developmental and epileptic encephalopathy caused by pathogenic variants in the ALDH7A1 gene (PDE-ALDH7A1), which mainly has its onset in neonates and infants. Early diagnosis and treatment are crucial to prevent severe neurological sequelae or death. Sensitive, specific, and stable biomarkers for diagnostic evaluations and follow-up examinations are essential to optimize outcomes. However, most of the known biomarkers for PDE lack these criteria. Additionally, there is little discussion regarding the interdependence of biomarkers in the PDE-ALDH7A1 metabolite profile. Therefore, the aim of this study was to understand the underlying mechanisms in PDE-ALDH7A1 and to discover new biomarkers in the plasma of patients using global metabolomics. Plasma samples from 9 patients with genetically confirmed PDE-ALDH7A1 and 22 carefully selected control individuals were analyzed by ultra high performance liquid chromatography–high-resolution mass spectrometry (UHPLC-HRMS). Two novel and reliable pyridoxine-independent diagnostic markers, 6-hydroxy-2-aminocaproic acid (HACA) and an isomer of C9H11NO4, were identified. Furthermore, a possible reaction mechanism is proposed for HACA. This study demonstrates the capability of global metabolomics in disease screening to detect established and novel biomarkers. Full article
Show Figures

Figure 1

13 pages, 470 KiB  
Review
Pyridoxine-Dependent Epilepsy and Antiquitin Deficiency Resulting in Neonatal-Onset Refractory Seizures
by Konrad Kaminiów, Magdalena Pająk, Renata Pająk and Justyna Paprocka
Brain Sci. 2022, 12(1), 65; https://doi.org/10.3390/brainsci12010065 - 31 Dec 2021
Cited by 22 | Viewed by 7584
Abstract
Pyridoxine-dependent epilepsy (PDE) is an autosomal recessive neurometabolic disorder due to a deficiency of α-aminoadipic semialdehyde dehydrogenase (mutation in ALDH7A1 gene), more commonly known as antiquitin (ATQ). ATQ is one of the enzymes involved in lysine oxidation; thus, its deficiency leads to the [...] Read more.
Pyridoxine-dependent epilepsy (PDE) is an autosomal recessive neurometabolic disorder due to a deficiency of α-aminoadipic semialdehyde dehydrogenase (mutation in ALDH7A1 gene), more commonly known as antiquitin (ATQ). ATQ is one of the enzymes involved in lysine oxidation; thus, its deficiency leads to the accumulation of toxic metabolites in body fluids. PDE is characterized by persistent, recurrent neonatal seizures that cannot be well controlled by antiepileptic drugs but are responsive clinically and electrographically to daily pyridoxine (vitamin B6) supplementation. Although the phenotypic spectrum distinguishes between typical and atypical, pyridoxine-dependent is true for each. Diagnosis may pose a challenge mainly due to the rarity of the disorder and the fact that seizures may not occur until childhood or even late adolescence. Moreover, patients may not demonstrate an obvious clinical or electroencephalography response to the initial dose of pyridoxine. Effective treatment requires lifelong pharmacologic supplements of pyridoxine, and dietary lysine restriction and arginine enrichment should improve prognosis and avoid developmental delay and intellectual disability. The purpose of this review is to summarize briefly the latest reports on the etiology, clinical symptoms, diagnosis, and management of patients suffering from pyridoxine-dependent epilepsy. Full article
(This article belongs to the Section Neuropsychiatry)
Show Figures

Figure 1

35 pages, 4273 KiB  
Review
Animal Models of Metabolic Epilepsy and Epilepsy Associated Metabolic Dysfunction: A Systematic Review
by Uday Praful Kundap, Yam Nath Paudel and Mohd. Farooq Shaikh
Pharmaceuticals 2020, 13(6), 106; https://doi.org/10.3390/ph13060106 - 26 May 2020
Cited by 15 | Viewed by 6450
Abstract
Epilepsy is a serious neurological disorder affecting around 70 million people globally and is characterized by spontaneous recurrent seizures. Recent evidence indicates that dysfunction in metabolic processes can lead to the alteration of neuronal and network excitability, thereby contributing to epileptogenesis. Developing a [...] Read more.
Epilepsy is a serious neurological disorder affecting around 70 million people globally and is characterized by spontaneous recurrent seizures. Recent evidence indicates that dysfunction in metabolic processes can lead to the alteration of neuronal and network excitability, thereby contributing to epileptogenesis. Developing a suitable animal model that can recapitulate all the clinical phenotypes of human metabolic epilepsy (ME) is crucial yet challenging. The specific environment of many symptoms as well as the primary state of the applicable neurobiology, genetics, and lack of valid biomarkers/diagnostic tests are the key factors that hinder the process of developing a suitable animal model. The present systematic review summarizes the current state of available animal models of metabolic dysfunction associated with epileptic disorders. A systematic search was performed by using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) model. A range of electronic databases, including google scholar, Springer, PubMed, ScienceDirect, and Scopus, were scanned between January 2000 and April 2020. Based on the selection criteria, 23 eligible articles were chosen and are discussed in the current review. Critical analysis of the selected literature delineated several available approaches that have been modeled into metabolic epilepsy and pointed out several drawbacks associated with the currently available models. The result describes available models of metabolic dysfunction associated with epileptic disorder, such as mitochondrial respiration deficits, Lafora disease (LD) model-altered glycogen metabolism, causing epilepsy, glucose transporter 1 (GLUT1) deficiency, adiponectin responsive seizures, phospholipid dysfunction, glutaric aciduria, mitochondrial disorders, pyruvate dehydrogenase (PDH) α-subunit gene (PDHA1), pyridoxine dependent epilepsy (PDE), BCL2-associated agonist of cell death (BAD), Kcna1 knock out (KO), and long noncoding RNAs (lncRNA) cancer susceptibility candidate 2 (lncRNA CASC2). Finally, the review highlights certain focus areas that may increase the possibilities of developing more suitable animal models and underscores the importance of the rationalization of animal models and evaluation methods for studying ME. The review also suggests the pressing need of developing precise robust animal models and evaluation methods for investigating ME. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

26 pages, 1194 KiB  
Review
Inborn Errors of Metabolism and Epilepsy: Current Understanding, Diagnosis, and Treatment Approaches
by Suvasini Sharma and Asuri N. Prasad
Int. J. Mol. Sci. 2017, 18(7), 1384; https://doi.org/10.3390/ijms18071384 - 2 Jul 2017
Cited by 71 | Viewed by 16603
Abstract
Inborn errors of metabolism (IEM) are a rare cause of epilepsy, but seizures and epilepsy are frequently encountered in patients with IEM. Since these disorders are related to inherited enzyme deficiencies with resulting effects on metabolic/biochemical pathways, the term “metabolic epilepsy” can be [...] Read more.
Inborn errors of metabolism (IEM) are a rare cause of epilepsy, but seizures and epilepsy are frequently encountered in patients with IEM. Since these disorders are related to inherited enzyme deficiencies with resulting effects on metabolic/biochemical pathways, the term “metabolic epilepsy” can be used to include these conditions. These epilepsies can present across the life span, and share features of refractoriness to anti-epileptic drugs, and are often associated with co-morbid developmental delay/regression, intellectual, and behavioral impairments. Some of these disorders are amenable to specific treatment interventions; hence timely and appropriate diagnosis is critical to improve outcomes. In this review, we discuss those disorders in which epilepsy is a dominant feature and present an approach to the clinical recognition, diagnosis, and management of these disorders, with a greater focus on primarily treatable conditions. Finally, we propose a tiered approach that will permit a clinician to systematically investigate, identify, and treat these rare disorders. Full article
Show Figures

Figure 1

Back to TopTop