Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = push-up stance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2271 KiB  
Article
Scaling Mechanical Knee Joints for Pediatric Transfemoral Prostheses: Does a Linear Geometric Factor Work?
by Pratisthit Lal Shrestha, Bhola Thapa and S. Sujatha
Prosthesis 2025, 7(4), 72; https://doi.org/10.3390/prosthesis7040072 - 26 Jun 2025
Viewed by 1288
Abstract
Introduction: Pediatric prosthetic knee joints must be appropriately scaled from adult designs to ensure proper gait biomechanics. However, direct dimensional scaling without considering the biomechanical implications may lead to functional discrepancies. This study aimed to evaluate whether using a linear scaling factor can [...] Read more.
Introduction: Pediatric prosthetic knee joints must be appropriately scaled from adult designs to ensure proper gait biomechanics. However, direct dimensional scaling without considering the biomechanical implications may lead to functional discrepancies. This study aimed to evaluate whether using a linear scaling factor can effectively adapt a knee for pediatric use. The study assessed whether such an approach yields a viable pediatric prosthetic knee joint by applying a fixed scaling factor and analyzing the resultant knee geometry. Methods: The linear scaling factor was determined based on the pylon tube diameter, a key constraint in compact pediatric knee design. Given a pediatric pylon diameter of 22 mm, the length of the tibial link was set to 22 mm, yielding a scaling factor of 0.6875 when compared to the adult-sized knee. This scaling factor was used to determine the dimensions of the pediatric four-bar (scaled) knee joint. Static geometric analysis was conducted using GeoGebra® to model the lower-body segment lengths. The knee joint’s performance was evaluated based on stance and swing phase parameters. These metrics were compared between the scaled knee and a commercial pediatric knee. Results: The geometric analysis revealed that while using the linear scaling factor maintained proportional relationships, certain biomechanical parameters deviated from the expected pediatric norms. The scaled knee achieved a toe clearance of 13.5 mm compared to 19.7 mm in the commercial design and demonstrated a swing-phase heel clearance of 11.6 mm versus 13.3 mm, maintaining negative x/y ratios at heel contact and showing significant stability in push-off moments, while the stance flexion angle remained within an acceptable range. The heel contact and push-off ratios (x/y) were found to be comparable, with the scaled model achieving values of −1.21 and −0.59, respectively. The stance flexion angle measured 10.6°, closely aligning with the commercial reference. Conclusions: Using a linear scaling factor provides a straightforward method for adapting adult prosthetic knee designs to pediatric use. However, deviations in key biomechanical parameters indicate that further experimental study may be required to validate the applicability of the scaled knee joint for pediatric users. Future work should explore dynamic simulations and experimental validations to refine the design further and ensure optimal gait performance. Full article
Show Figures

Figure 1

10 pages, 1124 KiB  
Article
Energetics of a Novel 3D-Printed Custom Ankle Foot Orthosis in a Population of Individuals with Foot Drop: A Pilot Study
by Paolo Caravaggi, Giulia Rogati, Massimiliano Baleani, Roberta Fognani, Luca Zamagni, Maurizio Ortolani, Alessandro Zomparelli, Franco Cevolini, Zimi Sawacha and Alberto Leardini
Appl. Sci. 2025, 15(11), 5885; https://doi.org/10.3390/app15115885 - 23 May 2025
Viewed by 621
Abstract
Passive Dynamic Ankle–Foot Orthoses (PD-AFOs) are medical devices prescribed to individuals with foot drop, a condition characterized by weakness of the ankle dorsiflexor muscles. PD-AFOs can store and release energy during the stance phase of the gait cycle, while supporting the foot in [...] Read more.
Passive Dynamic Ankle–Foot Orthoses (PD-AFOs) are medical devices prescribed to individuals with foot drop, a condition characterized by weakness of the ankle dorsiflexor muscles. PD-AFOs can store and release energy during the stance phase of the gait cycle, while supporting the foot in the swing phase. This study aimed at estimating the energetics of a novel fiberglass-reinforced polyamide custom PD-AFO in a population of mild foot drop patients. Eight PD-AFOs were designed and 3D-printed via selective laser sintering for eight participants with a unilateral foot drop condition. Lower limb kinematics and AFO flexion/extension were recorded during comfortable walking speed via skin marker-based stereophotogrammetry. The stiffness of each AFO was measured via an ad hoc experimental setup. The elastic work performed by the PD-AFO during gait was calculated as the dot product of the calf-shell resisting moment and the rotation angle. The average maximum energy stored by the calf-shell across all PD-AFOs was 0.013 ± 0.005 J/kg. According to this study, 3D-printed custom PD-AFOs made with fiberglass-reinforced polyamide can store some elastic energy, which is released to the ankle during push-off. Further studies should be conducted to assess the effect of this energy return mechanism in improving the gait of individuals with deficits of the ankle plantarflexor muscles. Full article
(This article belongs to the Special Issue 3D Printing Technologies in Biomedical Engineering)
Show Figures

Figure 1

14 pages, 1649 KiB  
Article
Establishing Reference Data for Electromyographic Activity in Gait: Age and Gender Variations
by Mehrdad Davoudi, Firooz Salami, Cornelia Putz and Sebastian I. Wolf
Appl. Sci. 2025, 15(7), 3472; https://doi.org/10.3390/app15073472 - 21 Mar 2025
Cited by 1 | Viewed by 906
Abstract
Instrumented gait analysis provides objective data for clinical assessment, with surface electromyography (EMG) serving as a key tool in identifying abnormal muscle activation. However, reliable reference data considering both age and gender remain limited. Age- and gender-related differences in lower-limb EMG during gait [...] Read more.
Instrumented gait analysis provides objective data for clinical assessment, with surface electromyography (EMG) serving as a key tool in identifying abnormal muscle activation. However, reliable reference data considering both age and gender remain limited. Age- and gender-related differences in lower-limb EMG during gait in typically developing individuals were examined in this study using statistical parametric mapping (SPM). We also determined the minimum sample size required for robust clinical reference data. Our findings revealed significant differences in muscle activation patterns across age and gender. Children exhibited increased rectus femoris activation in initial swing and greater hamstring activation in the midstance, whereas adults demonstrated greater semimembranosus activity at initial contact, increased soleus activation at push-off, and greater rectus femoris activity in late swing. Gender-based differences included greater tibialis anterior activation in females during the terminal stance and increased vastus lateralis activity during swing, whereas males showed greater vastus lateralis and biceps femoris activation during terminal swing. Additionally, significant age–gender interaction effects were observed in the biceps femoris and semimembranosus, with gender-related differences becoming more pronounced in adulthood. Power analysis indicates that at least 47 participants, with a minimum of 12 per subgroup (male children, female children, male adults, and female adults), are required to detect age–gender interactions reliably. We strongly recommend incorporating both age and gender in clinical norm bands to enhance the accuracy of gait assessments and improve clinical and research comparisons. Full article
(This article belongs to the Special Issue Human Biomechanics and EMG Signal Processing)
Show Figures

Figure 1

22 pages, 9133 KiB  
Article
A Robust Disturbance Rejection Whole-Body Control Framework for Bipedal Robots Using a Momentum-Based Observer
by Shuai Heng, Xizhe Zang, Yan Liu, Chao Song, Boyang Chen, Yue Zhang, Yanhe Zhu and Jie Zhao
Biomimetics 2025, 10(3), 189; https://doi.org/10.3390/biomimetics10030189 - 19 Mar 2025
Viewed by 786
Abstract
This paper presents a complete planner and controller scheme for bipedal robots, designed to enhance robustness against external disturbances. The high-level planner utilizes model predictive control (MPC) to optimize both the foothold location and step duration based on the divergent component of motion [...] Read more.
This paper presents a complete planner and controller scheme for bipedal robots, designed to enhance robustness against external disturbances. The high-level planner utilizes model predictive control (MPC) to optimize both the foothold location and step duration based on the divergent component of motion (DCM) to increase the robustness of generated gaits. For low-level control, we employ a momentum-based observer capable of estimating external forces acting on both stance and swing legs. The full-body dynamics, incorporating estimated disturbances, are integrated into a weighted whole-body control (WBC) to obtain more accurate ground reaction forces needed by the momentum-based observer. This approach eliminates the dependency on foot-mounted sensors for ground reaction force measurement, distinguishing our method from other disturbance estimation methods that rely on direct sensor measurements. Additionally, the controller incorporates trajectory compensation mechanisms to mitigate the effects of external disturbances. The effectiveness of the proposed framework is validated through comprehensive simulations and experimental evaluations conducted on BRUCE, a miniature bipedal robot developed by Westwood Robotics (Los Angeles, CA, USA). These tests include walking under swing leg disturbances, traversing uneven terrain, and simultaneously resisting upper-body pushes. Full article
(This article belongs to the Special Issue Recent Advances in Robotics and Biomimetics)
Show Figures

Figure 1

14 pages, 1087 KiB  
Article
Simulation-Based Design of a Cam-Driven Hydraulic Prosthetic Ankle
by Anna Pace, James Gardiner and David Howard
Prosthesis 2025, 7(1), 14; https://doi.org/10.3390/prosthesis7010014 - 28 Jan 2025
Viewed by 973
Abstract
Background/Objectives: A cam-driven hydraulic prosthetic ankle was designed to overcome the weaknesses of commercial prostheses and research prototypes, which largely fail to mimic the energy-recycling behaviour of an intact ankle, resulting in poor walking performance for lower-limb prosthesis users. Methods: This novel device [...] Read more.
Background/Objectives: A cam-driven hydraulic prosthetic ankle was designed to overcome the weaknesses of commercial prostheses and research prototypes, which largely fail to mimic the energy-recycling behaviour of an intact ankle, resulting in poor walking performance for lower-limb prosthesis users. Methods: This novel device exploits miniature hydraulics to capture the negative work performed during stance, prior to push-off, in a hydraulic accumulator, and return positive work during push-off for forward body propulsion. Two cams are used to replicate intact ankle torque profiles based on experimental data. The design process for the new prosthesis used a design programme, implemented in MATLAB, based on a simulation of the main components of the prosthetic ankle. Results: In this paper, we present the design programme and explain how it is used to determine the cam profiles required to replicate intact ankle torque, as well as to size the cam follower return springs. Moreover, a constraint-based preliminary design investigation is described, which was conducted to size other key components affecting the device’s size, performance, and energy efficiency. Finally, the feasible design alternatives are compared in terms of their energy losses to determine the best design with regard to minimising both energy losses and device size. Conclusions: Such a design approach not only documents the design of a particular novel prosthetic ankle, but can also provide a systematic framework for decomposing complex design challenges into a series of sub-problems, providing a more effective alternative to heuristic approaches in prosthetic design. Full article
(This article belongs to the Special Issue Recent Advances in Foot Prosthesis and Orthosis)
Show Figures

Figure 1

22 pages, 10735 KiB  
Systematic Review
The Role of Ankle–Foot Orthoses in Improving Gait in Children and Adolescents with Neuromotor Disability: A Systematic Review and Meta-Analysis
by Silvia Faccioli, Giulia Tonini, Elena Vinante, Alessandro Ehsani, Eleonora Pellarin, Giuliano Cassanelli, Francesca Malvicini, Silvia Perazza, Francesco Venturelli, Andrea Guida and Silvia Sassi
Prosthesis 2025, 7(1), 13; https://doi.org/10.3390/prosthesis7010013 - 28 Jan 2025
Viewed by 3217
Abstract
Background/Objectives: International guidelines recommend the use of orthoses in subjects with cerebral palsy (CP), even though there is limited evidence of their effectiveness. Little is known about their effectiveness in children and adolescents with other types of neuromotor disability. Methods: The [...] Read more.
Background/Objectives: International guidelines recommend the use of orthoses in subjects with cerebral palsy (CP), even though there is limited evidence of their effectiveness. Little is known about their effectiveness in children and adolescents with other types of neuromotor disability. Methods: The review protocol was recorded on the PROSPERO register (CRD42024509165) and conformed to the PRISMA guidelines. The inclusion criteria were any type of ankle–foot orthoses (AFOs); pediatric subjects with any non-acquired neuromotor disease; any type of outcome measure regarding gait performance; controlled studies; and those in the English language. Screening, selection, risk of bias assessment, and data extraction were performed by a group of independent researchers. Results: Fifty-seven reports were included, with most regarding CP; three involved subjects with Charcot–Marie–Tooth disease or Duchenne dystrophy. Nine were RCTs. A meta-analysis was performed for studies including subjects with CP. The meta-analysis demonstrated the effectiveness of AFOs in increasing stride length (MD −10.21 [−13.92, −6.51]), ankle dorsiflexion at IC (MD 9.66 [7.05, 12.27]), and peak ankle DF in stance (MD 5.72 [2.34, 9.09]) while reducing cadence (MD 0.13 [0.06, 0.17]) and the energy cost of walking (MD −0.02 [−0.03, −0.00]). The peak ankle power generated at push-off was significantly increased with flexible AFOs compared to rigid AFOs (MD 0.38 [0.30, 0.46]), but it decreased with both compared to walking barefoot or with shoes (MD −0.35 [−0.49, −0.22]). Evidence regarding DMD and CMT was limited but suggested opting for individualized flexible AFOs, which preserved peak ankle power generation. Conclusions: AFOs improve gait performance in CP. Flexible AFOs are preferable because they preserve the peak ankle power generated at push-off compared to rigid AFOs. Full article
(This article belongs to the Special Issue Recent Advances in Foot Prosthesis and Orthosis)
Show Figures

Figure 1

15 pages, 736 KiB  
Article
Strength Proxies Explain Balance Task Performance by Proximity to Peak Height Velocity in Young Acrobatic Gymnasts
by Ignacio Gómez-Dolader, Alejandro Martínez-Cruces, Pureza Leal-del-Ojo and Luis Arturo Gómez-Landero
J. Funct. Morphol. Kinesiol. 2024, 9(4), 255; https://doi.org/10.3390/jfmk9040255 - 4 Dec 2024
Cited by 1 | Viewed by 1033
Abstract
Background: Balance tasks are critical for performance in acrobatic gymnastics, where athletes often train and compete in mixed-age groups with varying maturational stages. To improve individualized training, in this cross-sectional study, the relationship was examined between strength capacity and balance task performance in [...] Read more.
Background: Balance tasks are critical for performance in acrobatic gymnastics, where athletes often train and compete in mixed-age groups with varying maturational stages. To improve individualized training, in this cross-sectional study, the relationship was examined between strength capacity and balance task performance in female gymnasts at two maturational stages based on peak height velocity (PHV). Methods: Circa-PHV (n = 17, 11.92 ± 1.7 years) and post-PHV (n = 17, 16.47 ± 1.8 years) participants performed static balance tasks (standing on blocks, tandem stance, headstand) while center of pressure (CoP) excursion was recorded, and a proactive balance task (time to stabilization after landing, TTS). Strength assessments included isometric mid-thigh pull, handgrip, countermovement jump (CMJ), and push-up tests. Results: Correlational, regression, and inter-group analyses highlighted differences in strength–balance relationships across groups. Maximal isometric strength and CMJ power were the strongest predictors of static standing balance, with greater predictive strength in the circa-PHV group, underscoring the role of maturation in strength–balance interactions. The results also revealed that strength parameters influenced balance differently depending on the task, suggesting that specific balance types (static–proactive) and tasks (standing–inverted) require distinct strength capacities. Conclusions: Strength’s influence on balance varies by maturational stage, emphasizing the need for tailored training programs to enhance balance and optimize performance in young gymnasts. Full article
Show Figures

Figure 1

11 pages, 2575 KiB  
Article
Load Modulation Affects Pediatric Lower Limb Joint Moments During a Step-Up Task
by Vatsala Goyal, Keith E. Gordon and Theresa Sukal-Moulton
Biomechanics 2024, 4(4), 653-663; https://doi.org/10.3390/biomechanics4040047 - 6 Nov 2024
Viewed by 1098
Abstract
Introduction: Performance in a single step has been suggested to be a sensitive measure of movement quality in pediatric clinical populations. Although there is less information available in children with typical development, researchers have postulated the importance of analyzing the effect of body [...] Read more.
Introduction: Performance in a single step has been suggested to be a sensitive measure of movement quality in pediatric clinical populations. Although there is less information available in children with typical development, researchers have postulated the importance of analyzing the effect of body weight modulation on the initiation of stair ascent, especially during single-limb stance where upright stability is most critical. The purpose of this study was to investigate the effect of load modulation from −20% to +15% of body weight on typical pediatric lower limb joint moments during a step-up task. Methods: Fourteen participants between 5 and 21 years who did not have any neurological or musculoskeletal concerns were recruited to perform multiple step-up trials. Peak extensor support and hip abduction moments were identified during the push-off and pull-up stance phases. Linear regressions were used to determine the relationship between peak moments and load. Mixed-effects models were used to estimate the effect of load on hip, knee, and ankle percent contributions to peak support moments. Results: There was a positive linear relationship between peak support moments and load in both stance phases, where these moments scaled with load. There was no relationship between peak hip abduction moments and load. While the ankle and knee were the primary contributors to the support moments, the hip contributed more than expected in the pull-up phase. Discussion: Clinicians can use these results to contextualize movement differences in pediatric clinical populations, including in those with cerebral palsy, and highlight potential target areas for rehabilitation for populations such as adolescent athletes. Full article
(This article belongs to the Special Issue Personalized Biomechanics and Orthopedics of the Lower Extremity)
Show Figures

Figure 1

10 pages, 480 KiB  
Article
Investigation of Biomechanical Differences in Level Walking between Patients with Bilateral and Unilateral Total Knee Replacements
by Derek Yocum, Alejandro Ovispo-Martinez, Kevin A. Valenzuela, Chen Wen, Harold Cates and Songning Zhang
Bioengineering 2024, 11(8), 763; https://doi.org/10.3390/bioengineering11080763 - 28 Jul 2024
Cited by 1 | Viewed by 1594
Abstract
Due to the high risk of a bilateral total knee arthroplasty (TKR) following unilateral TKR, this study was performed to investigate bilateral TKR patients. Specifically, we examined biomechanical differences between the first replaced and second replaced limbs of bilateral patients. Furthermore, we examined [...] Read more.
Due to the high risk of a bilateral total knee arthroplasty (TKR) following unilateral TKR, this study was performed to investigate bilateral TKR patients. Specifically, we examined biomechanical differences between the first replaced and second replaced limbs of bilateral patients. Furthermore, we examined bilateral TKR effects on hip, knee, and ankle biomechanics, compared to the replaced and non-replaced limbs of unilateral patients. Eleven bilateral patients (70.09 ± 5.41 years, 1.71 ± 0.08 m, 91.78 ± 13.00 kg) and fifteen unilateral TKR patients (65.67 ± 6.18 years, 1.73 ± 0.10 m, 87.72 ± 15.70 kg) were analyzed while performing level walking. A repeated measures one-way ANOVA was performed to analyze between-limb differences within the bilateral TKR group. A 2 × 2 (limb × group) ANOVA was used to determine differences between bilateral and unilateral patients. Our results showed that the second replaced limb exhibited a lower peak initial-stance knee extension moment than the first replaced limb. No other kinematic or kinetic differences were found. Bilateral patients exhibited lower initial-stance knee extension moments, knee abduction moments, and dorsiflexion moments, compared to unilateral patients. Bilateral patients also exhibited lower push-off peak hip flexion moments and vertical GRF. The differences between the first and second replaced limbs of bilateral patients may indicate different adaptation strategies used following a second TKR. The significant group differences indicate that adaptations are different between these groups, and it is not recommended to use patients with unilateral and bilateral TKR together in gait analyses. Full article
(This article belongs to the Special Issue Biomechanics of Orthopaedic Rehabilitation)
Show Figures

Graphical abstract

17 pages, 2924 KiB  
Article
Balance and Walking Control for Biped Robot Based on Divergent Component of Motion and Contact Force Optimization
by Shuai Heng, Xizhe Zang, Chao Song, Boyang Chen, Yue Zhang, Yanhe Zhu and Jie Zhao
Mathematics 2024, 12(14), 2188; https://doi.org/10.3390/math12142188 - 12 Jul 2024
Cited by 1 | Viewed by 2751
Abstract
This paper presents a complete planner and controller scheme to achieve balance and walking for a biped robot, which does not need to distinguish the robot’s dynamic model parameters. The high-level planner utilizes model predictive control to optimize both the foothold location and [...] Read more.
This paper presents a complete planner and controller scheme to achieve balance and walking for a biped robot, which does not need to distinguish the robot’s dynamic model parameters. The high-level planner utilizes model predictive control to optimize both the foothold location and step duration based on the Divergent Component of Motion (DCM) model to enhance the robustness of generated gaits. For low-level control, we use quadratic programming (QP) to optimize the contact force distribution under the contact constraints to achieve the virtual wrench exerted on the base of the robot. Then, the joint torques sent to the robot are derived from three parts: first, the torques mapped from the contact force; second, the swing leg tracking; and third, the stance foot stabilization. The simulation and experiment on BRUCE, a miniature bipedal robot from Westwood Robotics (Los Angeles, CA, USA), testify to the performance of the control scheme, including push recovery, Center of Mass (CoM) tracking, and omnidirectional walking. Full article
(This article belongs to the Special Issue Dynamics and Control of Complex Systems and Robots)
Show Figures

Figure 1

15 pages, 2682 KiB  
Article
The Influence of Medial and Lateral Forefoot Height Discrepancy on Lower Limb Biomechanical Characteristics during the Stance Phase of Running
by Jiachao Cai, Dong Sun, Yining Xu, Hairong Chen, Qiaolin Zhang, Julien S. Baker and Yaodong Gu
Appl. Sci. 2024, 14(13), 5807; https://doi.org/10.3390/app14135807 - 3 Jul 2024
Cited by 2 | Viewed by 2115
Abstract
Previous research has predominantly focused on the biomechanical effects of anterior–posterior foot motion during running, with comparatively less attention given to medial–lateral foot motion and its impact on lower limb biomechanical characteristics. We recruited 18 healthy runners who wore five different types of [...] Read more.
Previous research has predominantly focused on the biomechanical effects of anterior–posterior foot motion during running, with comparatively less attention given to medial–lateral foot motion and its impact on lower limb biomechanical characteristics. We recruited 18 healthy runners who wore five different types of running shoes: regular shoes (NS), those with a 6 mm and 9 mm medial–lateral height difference in the forefoot (M6, M9), and those with a 6 mm and 9 mm lateral–medial height difference (L6, L9). Biomechanical parameters of lower limb joints during the stance phase of running, including range of motion, peak angular velocity, peak moment, power, and work, were analyzed. We used paired-sample t-tests and one-dimensional statistical parametric mapping (SPM1D) to compare joint biomechanics between shoes with varying height differences and NS. Under the L6 condition, notable differences occurred in the hip and knee flexion–extension moments during landing and push-off, accompanied by a significant increase in ankle dorsiflexion work and a significant decrease in inversion–eversion work. In contrast, the M9 condition resulted in decreased hip flexion–extension peak moment, power, and work in the sagittal plane. These findings indicate that varying forefoot medial–lateral height differences in running shoes significantly impact lower limb joint dynamics during the stance phase, particularly the L6 condition, potentially reducing knee injury risk and aiding gait improvement for overpronators. The findings offer valuable insights for sports injury prevention and athletic footwear design. However, further research is needed to understand the underlying mechanisms and practical implications for sports injury prevention and performance enhancement. Full article
(This article belongs to the Special Issue Exercise Physiology and Biomechanics in Human Health)
Show Figures

Figure 1

11 pages, 936 KiB  
Article
Impact of Obesity on Foot Kinematics: Greater Arch Compression and Metatarsophalangeal Joint Dorsiflexion despite Similar Joint Coupling Ratios
by Freddy Sichting, Alexandra Zenner, Lutz Mirow, Robert Luck, Lydia Globig and Nico Nitzsche
Biomechanics 2024, 4(2), 235-245; https://doi.org/10.3390/biomechanics4020013 - 16 Apr 2024
Cited by 1 | Viewed by 2130
Abstract
This study investigates the sagittal plane dynamics of the foot, particularly the metatarsophalangeal (MTP) joint and medial longitudinal arch (MLA) movements, in relation to obesity and foot health. The kinematics of the MTP and arch joints were measured in 17 individuals with class [...] Read more.
This study investigates the sagittal plane dynamics of the foot, particularly the metatarsophalangeal (MTP) joint and medial longitudinal arch (MLA) movements, in relation to obesity and foot health. The kinematics of the MTP and arch joints were measured in 17 individuals with class 2–3 obesity (BMI > 35 kg/m²) and 10 normal-weight individuals (BMI ≤ 24.9 kg/m²) using marker-based tracking. Analysis was conducted during heel lifting while seated and during walking at self-selected speeds. The results indicated that obese participants exhibited 20.92% greater MTP joint dorsiflexion at the end of the push-off phase and 19.84% greater MLA compression during the stance phase compared to normal-weight controls. However, no significant differences were found in the kinematic joint coupling ratio. While these findings reveal the different biomechanical behaviors of the MTP joint and MLA in obese compared to normal-weight individuals, it is important to interpret the implications of these differences with caution. This study identifies specific biomechanical variations that could be further explored to understand their potential impact on foot health in obese populations. Full article
(This article belongs to the Special Issue Personalized Biomechanics and Orthopedics of the Lower Extremity)
Show Figures

Figure 1

10 pages, 3537 KiB  
Article
Control of Tibial Advancement by the Plantar Flexors during the Stance Phase of Gait Depends on Knee Flexion with Respect to the Ground Reaction Force
by Reinald Brunner and Carlo Albino Frigo
Bioengineering 2024, 11(1), 41; https://doi.org/10.3390/bioengineering11010041 - 31 Dec 2023
Cited by 6 | Viewed by 3418
Abstract
During the stance phase of a normal gait, the triceps surae muscle controls the advancement of the tibia, which contributes to knee extension. Plantar flexor weakness results in excessive dorsiflexion, and consequently, the knee loses this contribution. However, increasing knee flexion is also [...] Read more.
During the stance phase of a normal gait, the triceps surae muscle controls the advancement of the tibia, which contributes to knee extension. Plantar flexor weakness results in excessive dorsiflexion, and consequently, the knee loses this contribution. However, increasing knee flexion is also seen in patients with cerebral palsy who do not have plantar flexor weakness. We aimed to understand this mechanism through the use of a musculoskeletal dynamic model. The model consists of solid segments connected with rotatory joints and springs to represent individual muscles. It was positioned at different degrees of ankle plantarflexion, knee flexion, and hip flexion. The soleus muscle was activated concentrically to produce plantarflexion and push the foot against the ground. The resulting knee extension was analyzed. The principal determinant of knee flexion or extension associated with ankle plantarflexion was the position of the knee joint center. When this was anterior to the line of action of the ground reaction force (GRF), the soleus contraction resulted in increased knee flexion. The knee extension was obtained when the knee was flexed less than approximately 25°. The relation between joint angles, anthropometric parameters, and the position of the GRF was expressed in a mathematical formulation. The clinical relevance of this model is that it explains the failure of plantar flexor control on knee extension in patients with cerebral palsy, when increased knee flexion can occur even if there is a normal or plantarflexed foot position. Full article
(This article belongs to the Special Issue Technologies for Monitoring and Rehabilitation of Motor Disabilities)
Show Figures

Figure 1

12 pages, 737 KiB  
Article
Gait Pattern in Charcot-Marie-Tooth Disease Type 1A According to Disease Severity
by Jihyun Park, So Young Joo, Byung-Ok Choi, Dae-Hyun Kim, Jong Bum Park, Jong Weon Lee and Deog Young Kim
J. Pers. Med. 2023, 13(10), 1473; https://doi.org/10.3390/jpm13101473 - 8 Oct 2023
Cited by 2 | Viewed by 2257
Abstract
The aim of this study was to evaluate the characteristics of gait patterns in Charcot-Marie-Tooth disease type 1A (CMT1A) patients according to disease severity. Twenty-two CMT1A patients were enrolled and classified into two groups, according to the disease severity. The healthy control group [...] Read more.
The aim of this study was to evaluate the characteristics of gait patterns in Charcot-Marie-Tooth disease type 1A (CMT1A) patients according to disease severity. Twenty-two CMT1A patients were enrolled and classified into two groups, according to the disease severity. The healthy control group consisted of 22 subjects with no gait impairment. Full barefoot three-dimensional gait analysis with temporospatial, kinematic, and kinetic data was performed among the mild and moderate CMT1A group and the control group. Minimal hip abduction, maximal hip extension generation, peak knee flexion moment at stance, ankle dorsiflexion at initial contact, maximal ankle plantarflexion at push-off and maximal ankle rotation moment at stance in the CMT1A group showed a significant difference compared to the control group (p < 0.05). In the moderate group, there were greater maximal hip flexion angles in swing, and smaller dorsiflexion angles at initial contact compared to the control group and mild group. CMT patients had typical gait characteristics and their gait patterns were different according to severity. The analysis of gait patterns in patients with CMT1A will help to understand gait function and provide important information for the treatment of patients with CMT in the future. Full article
(This article belongs to the Special Issue Advances in Neuromuscular Care and Treatments)
Show Figures

Figure 1

11 pages, 1284 KiB  
Article
Do Interlimb Knee Joint Loading Asymmetries Persist throughout Stance during Uphill Walking Following Total Knee Arthroplasty?
by Tanner Thorsen, Chen Wen, Jared Porter, Jeffery A. Reinbolt, Joshua T. Weinhandl and Songning Zhang
Int. J. Environ. Res. Public Health 2023, 20(14), 6341; https://doi.org/10.3390/ijerph20146341 - 11 Jul 2023
Cited by 4 | Viewed by 1790
Abstract
The purpose of this study was to determine differences in total (TCF), medial compartment (MCF), and lateral compartment (LCF) tibiofemoral joint compressive forces and related muscle forces between replaced and non-replaced limbs during level and uphill walking at an incline of 10°. A [...] Read more.
The purpose of this study was to determine differences in total (TCF), medial compartment (MCF), and lateral compartment (LCF) tibiofemoral joint compressive forces and related muscle forces between replaced and non-replaced limbs during level and uphill walking at an incline of 10°. A musculoskeletal modeling and simulation approach using static optimization was used to determine the muscle forces and TCF, MCF, and LCF for 25 patients with primary TKA. A statistical parametric mapping repeated-measures ANOVA was conducted on knee compressive forces and muscle forces using statistical parametric mapping. Greater TCF, MCF, and LCF values were observed throughout the loading response, mid-stance, and late stance during uphill walking. During level walking, knee extensor muscle forces were greater throughout the first 50% of the stance during level walking, yet greater during uphill walking during the last 50% of the stance. Conversely, knee flexor muscle forces were greater through the loading response and push-off phases of the stance. No between-limb differences were observed for compressive or muscle forces, suggesting that uphill walking may promote a more balanced loading of replaced and non-replaced limbs. Additionally, patients with TKA appear to rely on the hamstrings muscle group during the late stance for knee joint control, thus supporting uphill walking as an effective exercise modality to improve posterior chain muscle strength. Full article
(This article belongs to the Special Issue Joint Injury and Rehabilitation in Sports)
Show Figures

Figure 1

Back to TopTop