Load Modulation Affects Pediatric Lower Limb Joint Moments During a Step-Up Task
Abstract
1. Introduction
2. Methods
2.1. Participant Summary
2.2. Experimental Set-Up
2.3. Experimental Protocol
2.4. Data Processing and Analysis
2.5. Statistical Analysis
3. Results
3.1. Participant Metrics
3.2. Push-Off Phase
3.3. Pull-Up Phase
3.4. Secondary Analyses: Age and Leg Length
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cherng, R.J.; Liu, C.F.; Lau, T.W.; Hong, R.B. Effect of treadmill training with body weight support on gait and gross motor function in children with spastic cerebral palsy. Am. J. Phys. Med. Rehabil. 2007, 86, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.P.; Sullivan, K.J.; A Burtner, P.; Caprihan, A.; Provost, B.; Bernitsky-Beddingfield, A. Ankle dorsiflexion fMRI in children with cerebral palsy undergoing intensive body-weight-supported treadmill training: A pilot study. Dev. Med. Child Neurol. 2007, 49, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Provost, B.; Dieruf, K.P.; Burtner, P.A.P.; Phillips, J.P.; Bernitsky-Beddingfield, A.; Sullivan, K.J.; Bowen, C.A.M.; Toser, L.M. Endurance and gait in children with cerebral palsy after intensive body weight-supported treadmill training. Pediatr. Phys. Ther. 2007, 19, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Kurz, M.J.; Stuberg, W.; Dejong, S.L. Body weight supported treadmill training improves the regularity of the stepping kinematics in children with cerebral palsy. Dev. Neurorehabil. 2011, 14, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Celestino, M.L.; Gama, G.L.; Longuinho, G.S.C.; Fugita, M.; Barela, A.M.F. Influence of body weight unloading and support surface during walking of children with cerebral palsy. Fisioter. Em Mov. 2014, 27, 591–599. [Google Scholar] [CrossRef]
- Simão, C.R.; Galvão, R.V.P.; Fonseca, D.O.d.S.; Bezerra, D.A.; de Andrade, A.C.; Lindquist, A.R.R. Effects of adding load to the gait of children with cerebral palsy: A three-case report. Fisioter. Pesqui. 2014, 21, 67–73. [Google Scholar] [CrossRef]
- Dodd, K.J.; Taylor, N.F.; Graham, H.K. A randomized clinical trial of strength training in young people with cerebral palsy. Dev. Med. Child Neurol. 2003, 45, 652–657. [Google Scholar] [CrossRef]
- McBurney, H.; Taylor, N.F.; Dodd, K.J.; Graham, H.K. A qualitative analysis of the benefits of strength training for young people with cerebral palsy. Dev. Med. Child Neurol. 2003, 45, 658–663. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gillette, J.C. Carrying asymmetric loads during stair negotiation: Loaded limb stance vs. unloaded limb stance. Gait Posture 2018, 64, 213–219. [Google Scholar] [CrossRef]
- Stania, M.; Sarat-Spek, A.; Blacha, T.; Kazek, B.; Słomka, K.J.; Emich-Widera, E.; Juras, G. Step-initiation deficits in children with faulty posture diagnosed with neurodevelopmental disorders during infancy. Front. Pediatr. 2017, 5, 239. [Google Scholar] [CrossRef]
- Goyal, V.; Dragunas, A.; Askew, R.L.; Sukal-Moulton, T.; López-Rosado, R. Altered biomechanical strategies of the paretic hip and knee joints during a step-up task. Top. Stroke Rehabil. 2022, 30, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Novak, A.; Brouwer, B. Sagittal and frontal lower limb joint moments during stair ascent and descent in young and older adults. Gait Posture 2011, 33, 54–60. [Google Scholar] [CrossRef]
- Kaufman, K.; Miller, E.; Kingsbury, T.; Esposito, E.R.; Wolf, E.; Wilken, J.; Wyatt, M. Reliability of 3D gait data across multiple laboratories. Gait Posture 2016, 49, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Bryant, B.P.; Bryant, J.B. Relative Weights of the Backpacks of Elementary-Aged Children. J. Sch. Nurs. 2014, 30, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Perrone, M.; Orr, R.; Hing, W.; Milne, N.; Pope, R. The impact of backpack loads on school children: A critical narrative review, Int. J. Environ. Res. Public Health 2018, 15, 2529. [Google Scholar] [CrossRef] [PubMed]
- Elias, L.J.; Bryden, M.; Bulman-Fleming, M. Footedness is a better predictor than is handedness of emotional lateralization. Neuropsychologia 1998, 36, 37–43. [Google Scholar] [CrossRef]
- Novak, A.C.; Brouwer, B. Kinematic and kinetic evaluation of the stance phase of stair ambulation in persons with stroke and healthy adults: A pilot study. J. Appl. Biomech. 2013, 29, 443–452. [Google Scholar] [CrossRef]
- Strutzenberger, G.; Richter, A.; Schneider, M.; Mündermann, A.; Schwameder, H. Effects of obesity on the biomechanics of stair-walking in children. Gait Posture 2011, 34, 119–125. [Google Scholar] [CrossRef]
- Mun, K.-R.; Bin Lim, S.; Guo, Z.; Yu, H. Biomechanical effects of body weight support with a novel robotic walker for over-ground gait rehabilitation. Med. Biol. Eng. Comput. 2017, 55, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Dragunas, A.C.; Gordon, K.E. Body weight support impacts lateral stability during treadmill walking. J. Biomech. 2016, 49, 2662–2668. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.; István, B.; Liang, M. The Relationship between Patellofemoral Pain Syndrome and Hip Biomechanics: A Systematic Review with Meta-Analysis. Healthcare 2023, 11, 99. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Li, J.X. Influence of load and carrying methods on gait phase and ground reactions in children’s stair walking. Gait Posture 2005, 22, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Bannwart, M.; Rohland, E.; Easthope, C.A.; Rauter, G.; Bolliger, M. Robotic body weight support enables safe stair negotiation in compliance with basic locomotor principles. J. Neuroeng. Rehabil. 2019, 16, 1–15. [Google Scholar] [CrossRef]
- Wiley, M.E.; Damiano, D.L. Lower-Extremity strength profiles in spastic cerebral palsy. Dev. Med. Child Neurol. 1998, 40, 100–107. [Google Scholar] [CrossRef] [PubMed]
- McFadyen, B.J.; Winter, D.A. An integrated biomechanical analysis of normal stair ascent and descent. J. Biomech. 1988, 21, 733–744. [Google Scholar] [CrossRef]
- Riener, R.; Rabuffetti, M.; Frigo, C. Stair ascent and descent at different inclinations. Gait Posture 2002, 15, 32–44. [Google Scholar] [CrossRef]
- Nadeau, S.; McFadyen, B.; Malouin, F. Frontal and sagittal plane analyses of the stair climbing task in healthy adults aged over 40 years: What are the challenges compared to level walking? Clin. Biomech. 2003, 18, 950–959. [Google Scholar] [CrossRef]
- Goldberg, S.R.; Stanhope, S.J. Sensitivity of joint moments to changes in walking speed and body-weight-support are interdependent and vary across joints. J. Biomech. 2013, 46, 1176–1183. [Google Scholar] [CrossRef]
- Costigan, P.A.; Deluzio, K.J.; Wyss, U.P. Knee and hip kinetics during normal stair climbing. Gait Posture 2002, 16, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Reeves, N.; Spanjaard, M.; Mohagheghi, A.; Baltzopoulos, V.; Maganaris, C. Older adults employ alternative strategies to operate within their maximum capabilities when ascending stairs. J. Electromyogr. Kinesiol. 2009, 19, e57–e68. [Google Scholar] [CrossRef]
- Fowler, E.G.; A Staudt, L.; Greenberg, M.B. Lower-extremity selective voluntary motor control in patients with spastic cerebral palsy: Increased distal motor impairment. Dev. Med. Child Neurol. 2010, 52, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.V.; Keimig, S.; Kelty-Stephen, D.; Hung, Y.-C.; DeSilva, J.M. The relationship between foot arch measurements and walking parameters in children. BMC Pediatr. 2016, 16, 2. [Google Scholar] [CrossRef] [PubMed]
- Henderson, E.R.; A Marulanda, G.; Cheong, D.; Temple, H.T.; Letson, G.D. Hip abductor moment arm-a mathematical analysis for proximal femoral replacement. J. Orthop. Surg. Res. 2011, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Vistamehr, A.; Neptune, R.R. Differences in balance control between healthy younger and older adults during steady-state walking. J. Biomech. 2021, 128, 110717. [Google Scholar] [CrossRef] [PubMed]
- Frost, G.; Dowling, J.; Dyson, K.; Bar-Or, O. Cocontraction in three age groups of children during treadmill locomotion. J. Electromyogr. Kinesiol. 1997, 7, 179–186. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goyal, V.; Gordon, K.E.; Sukal-Moulton, T. Load Modulation Affects Pediatric Lower Limb Joint Moments During a Step-Up Task. Biomechanics 2024, 4, 653-663. https://doi.org/10.3390/biomechanics4040047
Goyal V, Gordon KE, Sukal-Moulton T. Load Modulation Affects Pediatric Lower Limb Joint Moments During a Step-Up Task. Biomechanics. 2024; 4(4):653-663. https://doi.org/10.3390/biomechanics4040047
Chicago/Turabian StyleGoyal, Vatsala, Keith E. Gordon, and Theresa Sukal-Moulton. 2024. "Load Modulation Affects Pediatric Lower Limb Joint Moments During a Step-Up Task" Biomechanics 4, no. 4: 653-663. https://doi.org/10.3390/biomechanics4040047
APA StyleGoyal, V., Gordon, K. E., & Sukal-Moulton, T. (2024). Load Modulation Affects Pediatric Lower Limb Joint Moments During a Step-Up Task. Biomechanics, 4(4), 653-663. https://doi.org/10.3390/biomechanics4040047