Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = pulp degeneration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 8172 KB  
Article
Differentiation of Spiral Ganglion Neurons from Human Dental Pulp Stem Cells: A Further Step towards Autologous Auditory Nerve Recovery
by Yassine Messat, Marta Martin-Fernandez, Said Assou, Keshi Chung, Frederic Guérin, Csilla Gergely, Frederic Cuisinier and Azel Zine
Int. J. Mol. Sci. 2024, 25(16), 9115; https://doi.org/10.3390/ijms25169115 - 22 Aug 2024
Cited by 1 | Viewed by 2149
Abstract
The degeneration of spiral ganglion neurons (SGNs), which convey auditory signals from hair cells to the brain, can be a primary cause of sensorineural hearing loss (SNHL) or can occur secondary to hair cell loss. Emerging therapies for SNHL include the replacement of [...] Read more.
The degeneration of spiral ganglion neurons (SGNs), which convey auditory signals from hair cells to the brain, can be a primary cause of sensorineural hearing loss (SNHL) or can occur secondary to hair cell loss. Emerging therapies for SNHL include the replacement of damaged SGNs using stem cell-derived otic neuronal progenitors (ONPs). However, the availability of renewable, accessible, and patient-matched sources of human stem cells is a prerequisite for successful replacement of the auditory nerve. In this study, we derived ONP and SGN-like cells by a reliable and reproducible stepwise guidance differentiation procedure of self-renewing human dental pulp stem cells (hDPSCs). This in vitro differentiation protocol relies on the modulation of BMP and TGFβ pathways using a free-floating 3D neurosphere method, followed by differentiation on a Geltrex-coated surface using two culture paradigms to modulate the major factors and pathways involved in early otic neurogenesis. Gene and protein expression analyses revealed efficient induction of a comprehensive panel of known ONP and SGN-like cell markers during the time course of hDPSCs differentiation. Atomic force microscopy revealed that hDPSC-derived SGN-like cells exhibit similar nanomechanical properties as their in vivo SGN counterparts. Furthermore, spiral ganglion neurons from newborn rats come in close contact with hDPSC-derived ONPs 5 days after co-culturing. Our data demonstrate the capability of hDPSCs to generate SGN-like neurons with specific lineage marker expression, bipolar morphology, and the nanomechanical characteristics of SGNs, suggesting that the neurons could be used for next-generation cochlear implants and/or inner ear cell-based strategies for SNHL. Full article
(This article belongs to the Special Issue Hearing Loss: Molecular Biological Insights)
Show Figures

Figure 1

14 pages, 278 KB  
Article
Dental DNA Mutations Occurring after Death: A Novel Method for Post-Mortem Interval (PMI) Estimation
by Ilenia Bianchi, Simone Grassi, Eleonora Nardi, Francesca Castiglione and Martina Focardi
Int. J. Mol. Sci. 2024, 25(16), 8832; https://doi.org/10.3390/ijms25168832 - 14 Aug 2024
Cited by 2 | Viewed by 1794
Abstract
Post-mortem interval (PMI) estimation remains one of the major challenges in forensic practice, especially for late PMIs beyond 7–10 days after the death of the subject. In 2022, an innovative method to investigate the occurrence of mutations induced by the death of a [...] Read more.
Post-mortem interval (PMI) estimation remains one of the major challenges in forensic practice, especially for late PMIs beyond 7–10 days after the death of the subject. In 2022, an innovative method to investigate the occurrence of mutations induced by the death of a subject in the DNA of post-mortem dental pulps at different PMIs was developed, applying a next-generation sequencing (NGS) analysis. The present study aims to apply the same method of analysis to a small sample of teeth belonging to the same subject and analyzed at different PMIs/accumulated degree days (ADDs), and of teeth extracted from different subjects but analyzed at the same PMI/ADD to verify the repeatability of the results obtained in relation to the time elapsed since death. A total of 10 teeth were collected from 6 patients (3 males and 3 females) with PMI varying from 8 to 35 days, and ADD from 157.4 to 753.8. We found 1754 mutations in 56 genes, with more than 700 mutations having a prevalence > 5% and more than 300 variants considered of interest for the purposes of the study. Mutations that were not present at lower PMIs but manifested in later PMIs in pulps belonging to the same subject demonstrate that they can only have been acquired by the subject after death and according to the time elapsed since death. In total, 67 somatic mutations in 29 out of the 56 genes of the used panel occurred in a fashion that allows an association with specific PMI/ADD ranges (within 8 days, between 17 and 28, and beyond 30 days after death). The results suggest that temperature and humidity could influence the rate of DNA degeneration in dental pulps, thus PMI should be estimated in ADD more than days. The preliminary validation supports the hypothesis that the innovative method could be a useful tool for estimating the post-mortem interval even beyond the first week after death, but further analyses are needed to customize a specific genetic panel for forensic investigations and verify the influence of degenerative processes of soft tissues surrounding dental elements on DNA degeneration of pulps. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
17 pages, 3220 KB  
Article
Glomerular Hypertrophy and Splenic Red Pulp Degeneration Concurrent with Oxidative Stress in 3xTg-AD Mice Model for Alzheimer’s Disease and Its Exacerbation with Sex and Social Isolation
by Juan Fraile-Ramos, Josep Reig-Vilallonga and Lydia Giménez-Llort
Int. J. Mol. Sci. 2024, 25(11), 6112; https://doi.org/10.3390/ijms25116112 - 1 Jun 2024
Cited by 2 | Viewed by 1708
Abstract
The continuously expanding field of Alzheimer’s disease (AD) research is now beginning to defocus the brain to take a more systemic approach to the disease, as alterations in the peripheral organs could be related to disease progression. One emerging hypothesis is organ involvement [...] Read more.
The continuously expanding field of Alzheimer’s disease (AD) research is now beginning to defocus the brain to take a more systemic approach to the disease, as alterations in the peripheral organs could be related to disease progression. One emerging hypothesis is organ involvement in the process of Aβ clearance. In the present work, we aimed to examine the status and involvement of the kidney as a key organ for waste elimination and the spleen, which is in charge of filtering the blood and producing lymphocytes, and their influence on AD. The results showed morphological and structural changes due to acute amyloidosis in the kidney (glomeruli area) and spleen (red pulp area and red/white pulp ratio) together with reduced antioxidant defense activity (GPx) in 16-month-old male and female 3xTg-AD mice when compared to their age- and sex-matched non-transgenic (NTg) counterparts. All these alterations correlated with the anxious-like behavioral phenotype of this mouse model. In addition, forced isolation, a cause of psychological stress, had a negative effect by intensifying genotype differences and causing differences to appear in NTg animals. This study further supports the relevance of a more integrative view of the complex interplay between systems in aging, especially at advanced stages of Alzheimer’s disease. Full article
Show Figures

Graphical abstract

17 pages, 4004 KB  
Article
The Role of Sensory Nerves in Dental Pulp Homeostasis: Histological Changes and Cellular Consequences after Sensory Denervation
by Chunmeng Wang, Xiaochen Liu, Jiani Zhou and Qi Zhang
Int. J. Mol. Sci. 2024, 25(2), 1126; https://doi.org/10.3390/ijms25021126 - 17 Jan 2024
Cited by 5 | Viewed by 2827
Abstract
Homeostatic maintenance is essential for pulp function. Disrupting pulp homeostasis may lead to pulp degeneration, such as fibrosis and calcifications. Sensory nerves constitute a crucial component of the dental pulp. However, the precise involvement of sensory nerves in pulp homeostasis remains uncertain. In [...] Read more.
Homeostatic maintenance is essential for pulp function. Disrupting pulp homeostasis may lead to pulp degeneration, such as fibrosis and calcifications. Sensory nerves constitute a crucial component of the dental pulp. However, the precise involvement of sensory nerves in pulp homeostasis remains uncertain. In this study, we observed the short-term and long-term histological changes in the dental pulp after inferior alveolar nerve transection. Additionally, we cultured primary dental pulp cells (DPCs) from the innervated and denervated groups and compared indicators of cellular senescence and cellular function. The results revealed that pulp fibrosis occurred at 2 w after the operation. Furthermore, the pulp area, as well as the height and width of the pulp cavity, showed accelerated reductions after sensory denervation. Notably, the pulp area at 16 w after the operation was comparable to that of 56 w old rats. Sensory denervation induced excessive extracellular matrix (ECM) deposition and increased predisposition to mineralization. Furthermore, sensory denervation promoted the senescence of DPCs. Denervated DPCs exhibited decelerated cell proliferation, arrest in the G2/M phase of the cell cycle, imbalance in the synthesis and degradation of ECM, and enhanced mineralization. These findings indicate that sensory nerves play an essential role in pulp homeostasis maintenance and dental pulp cell fate decisions, which may provide novel insights into the prevention of pulp degeneration. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

27 pages, 7042 KB  
Article
Fabrication of a Smart Fibrous Biomaterial That Harbors an Active TGF-β1 Peptide: A Promising Approach for Cartilage Regeneration
by Aglaia Mantsou, Eleni Papachristou, Panagiotis Keramidas, Paraskevas Lamprou, Maria Pitou, Rigini M. Papi, Katerina Dimitriou, Amalia Aggeli and Theodora Choli-Papadopoulou
Biomedicines 2023, 11(7), 1890; https://doi.org/10.3390/biomedicines11071890 - 3 Jul 2023
Cited by 2 | Viewed by 2486
Abstract
The regeneration of articular cartilage remains a serious problem in various pathological conditions such as osteoarthritis, due to the tissue’s low self-healing capacity. The latest therapeutic approaches focus on the construction of biomaterials that induce cartilage repair. This research describes the design, synthesis, [...] Read more.
The regeneration of articular cartilage remains a serious problem in various pathological conditions such as osteoarthritis, due to the tissue’s low self-healing capacity. The latest therapeutic approaches focus on the construction of biomaterials that induce cartilage repair. This research describes the design, synthesis, and investigation of a safe, “smart”, fibrous scaffold containing a genetically incorporated active peptide for chondrogenic induction. While possessing specific sequences and the respective mechanical properties from natural fibrous proteins, the fibers also incorporate a Transforming Growth Factor-β1 (TGF-β1)-derived peptide (YYVGRKPK) that can promote chondrogenesis. The scaffold formed stable porous networks with shear-thinning properties at 37 °C, as shown by SEM imaging and rheological characterization, and were proven to be non-toxic to human dental pulp stem cells (hDPSCs). Its chondrogenic capacity was evidenced by a strong increase in the expression of specific chondrogenesis gene markers SOX9, COL2, ACAN, TGFBR1A, and TGFBR2 in cells cultured on “scaffold-TGFβ1” for 21 days and by increased phosphorylation of intracellular signaling proteins Smad-2 and Erk-1/2. Additionally, intense staining of glycosaminoglycans was observed in these cells. According to our results, “scaffold-TGFβ1” is proposed for clinical studies as a safe, injectable treatment for cartilage degeneration. Full article
(This article belongs to the Special Issue Advanced Research on Nanomaterials for Regenerative Medicine)
Show Figures

Figure 1

11 pages, 3995 KB  
Article
Histological Aspects Regarding Dental Pulp of Diabetic Patients
by Cristina Gabriela Puşcaşu, Corina Laura Ștefănescu, Rodica Maria Murineanu, Mircea Grigorian, Lucian Cristian Petcu, Elena Dumea, Liliana Sachelarie and Radu Andrei Puşcaşu
Appl. Sci. 2021, 11(20), 9440; https://doi.org/10.3390/app11209440 - 11 Oct 2021
Cited by 8 | Viewed by 4297
Abstract
Background: The possible histological changes in dental pulp in teeth of diabetic patients are important to be understood, as the clinician will consider the best treatment choice for those teeth, especially if they are affected by decay. The aim of this paper is [...] Read more.
Background: The possible histological changes in dental pulp in teeth of diabetic patients are important to be understood, as the clinician will consider the best treatment choice for those teeth, especially if they are affected by decay. The aim of this paper is to assess if there are effects of diabetes-associated hyperglycemia on the nervous and vascular system of the dental pulp. Methods: Twenty-three dental pulp specimens of patients aged 36–70 years old were analyzed. All patients had been diagnosed with type 2 diabetes for at least 5 years. Results: Most of the patients had poorly controlled hyperglycemia, deep caries, but no clinical signs of pulpitis. The histological aspects of pulp specimens included frequently seen inflammatory infiltrate, degeneration of the nerves, thickened blood vessel walls, pulp sclerosis and frequent pulp calcifications, and even small necrotic areas. Conclusion: The analyzed dental pulp specimens of carious teeth of type 2 diabetic patients show fibrotic transformation of the dental pulp, with the presence of calcifications, arteriosclerosis and inflammatory infiltrate. In this situation, the attitude of the dentist in pulp vitality preservation in the case of carious teeth of diabetic patients should be limited. Full article
(This article belongs to the Special Issue Clinical Applications for Dentistry and Oral Health)
Show Figures

Figure 1

10 pages, 3635 KB  
Article
Pulpal Response to the Combined Use of Mineral Trioxide Aggregate and Iloprost for Direct Pulp Capping
by AlAnoud Almeshari, Rita Khounganian, Wael Mahdi, Fahd Aljarbou, Shilpa Bhandi and Sara Alsubait
Appl. Sci. 2021, 11(8), 3702; https://doi.org/10.3390/app11083702 - 20 Apr 2021
Cited by 2 | Viewed by 3270
Abstract
Purpose: The present study aims to assess the combined effects of mineral trioxide aggregate (MTA) and iloprost when used as a pulp capping material on pulpal inflammation and tertiary dentin formation compared with MTA and iloprost alone in rat molar teeth. Methods: Eighty [...] Read more.
Purpose: The present study aims to assess the combined effects of mineral trioxide aggregate (MTA) and iloprost when used as a pulp capping material on pulpal inflammation and tertiary dentin formation compared with MTA and iloprost alone in rat molar teeth. Methods: Eighty maxillary first molar rat teeth were exposed and capped with iloprost solution, MTA, or MTA mixed with iloprost (MTA-iloprost). The cavities were then filled with resin-modified glass ionomer. The cavity was restored with glass ionomer without the use of pulp capping agent in the control group. The rats were sacrificed after one and four weeks. Block sections of the molar specimens were prepared and subjected to hematoxylin and eosin staining for evaluation. Statistical analysis was done using the Kruskal–Wallis test, followed by Dunnett’s test. Results: At week one, the control group showed significantly more severe pulpal inflammatory reactions than the iloprost (p = 0.00), MTA (p = 0.04), and MTA-iloprost (p = 0.00) groups. Hard tissue formation was commonly found in the iloprost, MTA, and MTA-iloprost groups. After four weeks, pulpal tissue degeneration was observed in the control group. Complete hard tissue barriers were found in 50%, 72.7%, and 77.8% of the specimens in iloprost, MTA, and MTA-iloprost groups, respectively, with no significant differences among the experimental groups. The dentinal tubule patterns were mostly regular in the MTA-iloprost group and irregular in the iloprost and MTA groups. Conclusions: The application of iloprost, MTA, and MTA-iloprost as a pulp capping material resulted in similar pulpal responses in the mechanically exposed pulp of rat molars. Therefore, mixing MTA with iloprost might not be clinically significant. Full article
(This article belongs to the Special Issue Innovative Techniques in Endodontics)
Show Figures

Figure 1

26 pages, 1161 KB  
Review
Is There Such a Thing as a Genuine Cancer Stem Cell Marker? Perspectives from the Gut, the Brain and the Dental Pulp
by Crende Olatz, García-Gallastegui Patricia, Luzuriaga Jon, Badiola Iker, de la Hoz Carmen, Unda Fernando, Ibarretxe Gaskon and Pineda Jose Ramon
Biology 2020, 9(12), 426; https://doi.org/10.3390/biology9120426 - 27 Nov 2020
Cited by 6 | Viewed by 11863
Abstract
The conversion of healthy stem cells into cancer stem cells (CSCs) is believed to underlie tumor relapse after surgical removal and fuel tumor growth and invasiveness. CSCs often arise from the malignant transformation of resident multipotent stem cells, which are present in most [...] Read more.
The conversion of healthy stem cells into cancer stem cells (CSCs) is believed to underlie tumor relapse after surgical removal and fuel tumor growth and invasiveness. CSCs often arise from the malignant transformation of resident multipotent stem cells, which are present in most human tissues. Some organs, such as the gut and the brain, can give rise to very aggressive types of cancers, contrary to the dental pulp, which is a tissue with a very remarkable resistance to oncogenesis. In this review, we focus on the similarities and differences between gut, brain and dental pulp stem cells and their related CSCs, placing a particular emphasis on both their shared and distinctive cell markers, including the expression of pluripotency core factors. We discuss some of their similarities and differences with regard to oncogenic signaling, telomerase activity and their intrinsic propensity to degenerate to CSCs. We also explore the characteristics of the events and mutations leading to malignant transformation in each case. Importantly, healthy dental pulp stem cells (DPSCs) share a great deal of features with many of the so far reported CSC phenotypes found in malignant neoplasms. However, there exist literally no reports about the contribution of DPSCs to malignant tumors. This raises the question about the particularities of the dental pulp and what specific barriers to malignancy might be present in the case of this tissue. These notable differences warrant further research to decipher the singular properties of DPSCs that make them resistant to transformation, and to unravel new therapeutic targets to treat deadly tumors. Full article
(This article belongs to the Special Issue Stem and Cancer Stem Cells, Same Pathways for Different Malignancy)
Show Figures

Figure 1

26 pages, 940 KB  
Review
Extracellular Vesicles as Innovative Tool for Diagnosis, Regeneration and Protection against Neurological Damage
by Pavle Andjus, Maja Kosanović, Katarina Milićević, Mukesh Gautam, Seppo J. Vainio, Denis Jagečić, Elena N. Kozlova, Augustas Pivoriūnas, Juan-Carlos Chachques, Mirena Sakaj, Giulia Brunello, Dinko Mitrecic and Barbara Zavan
Int. J. Mol. Sci. 2020, 21(18), 6859; https://doi.org/10.3390/ijms21186859 - 18 Sep 2020
Cited by 70 | Viewed by 9178
Abstract
Extracellular vesicles (EVs) have recently attracted a great deal of interest as they may represent a new biosignaling paradigm. According to the mode of biogenesis, size and composition, two broad categories of EVs have been described, exosomes and microvesicles. EVs have been shown [...] Read more.
Extracellular vesicles (EVs) have recently attracted a great deal of interest as they may represent a new biosignaling paradigm. According to the mode of biogenesis, size and composition, two broad categories of EVs have been described, exosomes and microvesicles. EVs have been shown to carry cargoes of signaling proteins, RNA species, DNA and lipids. Once released, their content is selectively taken up by near or distant target cells, influencing their behavior. Exosomes are involved in cell–cell communication in a wide range of embryonic developmental processes and in fetal–maternal communication. In the present review, an outline of the role of EVs in neural development, regeneration and diseases is presented. EVs can act as regulators of normal homeostasis, but they can also promote either neuroinflammation/degeneration or tissue repair in pathological conditions, depending on their content. Since EV molecular cargo constitutes a representation of the origin cell status, EVs can be exploited in the diagnosis of several diseases. Due to their capability to cross the blood–brain barrier (BBB), EVs not only have been suggested for the diagnosis of central nervous system disorders by means of minimally invasive procedures, i.e., “liquid biopsies”, but they are also considered attractive tools for targeted drug delivery across the BBB. From the therapeutic perspective, mesenchymal stem cells (MSCs) represent one of the most promising sources of EVs. In particular, the neuroprotective properties of MSCs derived from the dental pulp are here discussed. Full article
Show Figures

Figure 1

13 pages, 2884 KB  
Article
Deciduous DPSCs Ameliorate MPTP-Mediated Neurotoxicity, Sensorimotor Coordination and Olfactory Function in Parkinsonian Mice
by Christopher Simon, Quan Fu Gan, Premasangery Kathivaloo, Nur Afiqah Mohamad, Jagadeesh Dhamodharan, Arulmoli Krishnan, Bharathi Sengodan, Vasanth Raj Palanimuthu, Kasi Marimuthu, Heera Rajandas, Manickam Ravichandran and Sivachandran Parimannan
Int. J. Mol. Sci. 2019, 20(3), 568; https://doi.org/10.3390/ijms20030568 - 29 Jan 2019
Cited by 32 | Viewed by 5217
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder defined by progressive deterioration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Dental pulp stem cells (DPSCs) have been proposed to replace the degenerated dopaminergic neurons due to its inherent neurogenic and regenerative potential. [...] Read more.
Parkinson’s disease (PD) is a neurodegenerative disorder defined by progressive deterioration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Dental pulp stem cells (DPSCs) have been proposed to replace the degenerated dopaminergic neurons due to its inherent neurogenic and regenerative potential. However, the effective delivery and homing of DPSCs within the lesioned brain has been one of the many obstacles faced in cell-based therapy of neurodegenerative disorders. We hypothesized that DPSCs, delivered intranasally, could circumvent these challenges. In the present study, we investigated the therapeutic efficacy of intranasally administered DPSCs in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. Human deciduous DPSCs were cultured, pre-labelled with PKH 26, and intranasally delivered into PD mice following MPTP treatment. Behavioural analyses were performed to measure olfactory function and sensorimotor coordination, while tyrosine hydroxylase (TH) immunofluorescence was used to evaluate MPTP neurotoxicity in SNpc neurons. Upon intranasal delivery, degenerated TH-positive neurons were ameliorated, while deterioration in behavioural performances was significantly enhanced. Thus, the intranasal approach enriched cell delivery to the brain, optimizing its therapeutic potential through its efficacious delivery and protection against dopaminergic neuron degeneration. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

19 pages, 5062 KB  
Article
Cholinergic Nerve Differentiation of Mesenchymal Stem Cells Derived from Long-Term Cryopreserved Human Dental Pulp In Vitro and Analysis of Their Motor Nerve Regeneration Potential In Vivo
by Soomi Jang, Young-Hoon Kang, Imran Ullah, Sharath Belame Shivakumar, Gyu-Jin Rho, Yeong-Cheol Cho, Iel-Yong Sung and Bong-Wook Park
Int. J. Mol. Sci. 2018, 19(8), 2434; https://doi.org/10.3390/ijms19082434 - 17 Aug 2018
Cited by 21 | Viewed by 4565
Abstract
The reduction of choline acetyltransferase, caused by the loss of cholinergic neurons, leads to the absence of acetylcholine (Ach), which is related to motor nerve degeneration. The aims of the present study were to evaluate the in vitro cholinergic nerve differentiation potential of [...] Read more.
The reduction of choline acetyltransferase, caused by the loss of cholinergic neurons, leads to the absence of acetylcholine (Ach), which is related to motor nerve degeneration. The aims of the present study were to evaluate the in vitro cholinergic nerve differentiation potential of mesenchymal stem cells from cryopreserved human dental pulp (hDPSCs-cryo) and to analyze the scale of in vivo motor nerve regeneration. The hDPSCs-cryo were isolated and cultured from cryopreserved dental pulp tissues, and thereafter differentiated into cholinergic neurons using tricyclodecane-9-yl-xanthogenate (D609). Differentiated cholinergic neurons (DF-chN) were transplanted into rats to address sciatic nerve defects, and the scale of in vivo motor nerve regeneration was analyzed. During in vitro differentiation, the cells showed neuron-like morphological changes including axonal fibers and neuron body development, and revealed high expression of cholinergic neuron-specific markers at both the messenger RNA (mRNA) and protein levels. Importantly, DF-chN showed significant Ach secretion ability. At eight weeks after DF-chN transplantation in rats with sciatic nerve defects, notably increased behavioral activities were detected with an open-field test, with enhanced low-affinity nerve growth factor receptor (p75NGFR) expression detected using immunohistochemistry. These results demonstrate that stem cells from cryopreserved dental pulp can successfully differentiate into cholinergic neurons in vitro and enhance motor nerve regeneration when transplanted in vivo. Additionally, this study suggests that long-term preservation of dental pulp tissue is worthwhile for use as an autologous cell resource in the field of nerve regeneration, including cholinergic nerves. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

12 pages, 2831 KB  
Article
Immunomodulatory Effect of Tremella Polysaccharides against Cyclophosphamide-Induced Immunosuppression in Mice
by Yalin Zhou, Xiaoyong Chen, Ruokun Yi, Guijie Li, Peng Sun, Yu Qian and Xin Zhao
Molecules 2018, 23(2), 239; https://doi.org/10.3390/molecules23020239 - 25 Jan 2018
Cited by 95 | Viewed by 9994
Abstract
Polysaccharides are closely associated with immune regulation, but there are different polysaccharide effects from different sources. In this study, the aim was to investigate the effect of tremella polysaccharides (TP) in cyclophosphamide-induced immunodeficient mice. We observed the thymus and spleen index, liver and [...] Read more.
Polysaccharides are closely associated with immune regulation, but there are different polysaccharide effects from different sources. In this study, the aim was to investigate the effect of tremella polysaccharides (TP) in cyclophosphamide-induced immunodeficient mice. We observed the thymus and spleen index, liver and spleen pathological changes, and the levels of IL-2, IL-12, INF-γ, TGF-β and Ig G in serum, and we also noted the mRNA expression of IL-1β, IL-4, IL-12 and TGF-β in liver and spleen. Besides, we also measured the best effects of different doses of TP (Low-TP was 20 mg/kg·BW, Middle-TP was 40 mg/kg·BW, and High-TP was 80 mg/kg·BW) on cyclophosphamide-induced immunosuppressed mice. The results were remarkable, and suggested that TP had a significant effect for enhancing immunity in cyclophosphamide-induced immunosuppression, and the immune enhancement of High-TP had the best results in TP-treated mice. It could significantly increase the thymus and spleen index, alleviate pathological features of immunosuppression such as the arrangement of liver sinusoid and hepatic plates was disordered, massive inflammatory cells infiltrated and fatty degeneration of hepatocytes in liver, and red pulp and white pulp were intermixed, splenic corpuscles demolished and disappeared, splenic sinusoid extended, and lymphocytes of spleen were reduced in spleen. Besides, it could also up-regulate serum levels of IL-2, IL-12, INF-γ and Ig G, reduce the level of TGF-β in serum, markedly promote mRNA expression of IL-1β, IL-4 and IL-12 in liver and spleen, and suppress mRNA expression of TGF-β. Above all, TP showed preventive effect for cyclophosphamide-induced immunosuppressed mice. Full article
Show Figures

Figure 1

Back to TopTop