Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = pullorum disease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2666 KiB  
Article
Intergenerational Transmission of Gut Microbiome from Infected and Non-Infected Salmonella pullorum Hens
by Qing Niu, Kaixuan Yang, Zhenxiang Zhou, Qizhong Huang and Junliang Wang
Microorganisms 2025, 13(3), 640; https://doi.org/10.3390/microorganisms13030640 - 11 Mar 2025
Viewed by 861
Abstract
Pullorum disease (PD) is one of the common infectious diseases in the poultry industry in the world. Our previous study showed that gut bacterial structure has a significant difference between positive and negative hens. However, the gut bacterial basis of intergenerational transmission of [...] Read more.
Pullorum disease (PD) is one of the common infectious diseases in the poultry industry in the world. Our previous study showed that gut bacterial structure has a significant difference between positive and negative hens. However, the gut bacterial basis of intergenerational transmission of PD continues to elude a scientific explanation. The present study carried out fecal microbiota transplantation (FMT) in chicks of a negative group, then fecal samples of the chicks in the control team (CT), Salmonella pullorum (S. pullorum)-negative transplantation team (PN) and S. pullorum-positive transplantation team (PP) were separately collected to be analyzed for microbial structure and prediction functions. Microbial diversity results revealed that there was a large difference in the gut microbiota of these three groups. Prevotella and Parasutterella with higher abundance in PN (p < 0.05) were transplanted from gut bacteria of S. pullorum-negative hens. Furthermore, the differences of the most major microbial functions (top 100) were similar in hens and chicks, including a pentose phosphate pathway and oxidative phosphorylation. The data provided a reference for exploring the intergenerational transmission and genetic mechanisms of gut microbiota associated with S. pullorum in poultry, as well as a theoretical basis for improving intestinal health through the rational regulation of microbiota-host interactions. Full article
(This article belongs to the Collection Feature Papers in Gut Microbiota Research)
Show Figures

Figure 1

21 pages, 18953 KiB  
Article
Cinnamaldehyde Alleviates Salmonellosis in Chicks by Regulating Gut Health
by Lizi Yin, Luxin Li, Xue Lv, Fengsheng Sun, Yuyun Dai, Yingzi Guo, Shihao Peng, Chenyu Ye, Xiaoxia Liang, Changliang He, Gang Shu and Ping Ouyang
Vet. Sci. 2025, 12(3), 237; https://doi.org/10.3390/vetsci12030237 - 3 Mar 2025
Viewed by 1059
Abstract
Due to the high mortality rate in chicks caused by pullorum disease (PD) and the drawbacks of antibiotic resistance, the poultry industry is increasingly interested in using natural herbal antimicrobial agents as alternatives, with cinnamaldehyde (CA) being a focus due to its multitarget [...] Read more.
Due to the high mortality rate in chicks caused by pullorum disease (PD) and the drawbacks of antibiotic resistance, the poultry industry is increasingly interested in using natural herbal antimicrobial agents as alternatives, with cinnamaldehyde (CA) being a focus due to its multitarget and synergistic effects. This study aimed to evaluate the effects of oral administration of CA on restoring intestinal physical integrity, intestinal microbial barrier, and intestinal metabolism in a laboratory model of Salmonella pullorum (S. pullorum) infection in chicks. Thirty-six chicks were divided into six groups. The S.P and CA groups were infected with 5 × 108 CFU/mL, 0.5 mL S. pullorum, while the CON group received an equal-volume saline injection. The CA group was treated with 100 mg/kg CA, and the others received phosphate buffer saline (PBS). Samples were collected 24 h after the last treatment. Intestinal physical integrity was assessed by H&E staining, and ELISA was used to measure inflammatory factors. In situ hybridization (ISH) and RT-qPCR were used to measure the expression of tight-junction protein mRNA. The microbiota was analyzed by 16S rRNA gene sequencing of the ileal contents, and metabolite analysis was performed on the intestinal contents. After CA treatment, the expression of IL-1β and TNF-α was reduced, and IL-10 was increased (p < 0.05). H&E staining showed that the intestinal structure was partially restored after treatment. ISH results showed that the fluorescence intensity indicating gene expression status was low in the S.P group and high in the CA group, indicating reduced intestinal permeability. RT-qPCR showed that CA up-regulated the mRNA expression of tight-junction proteins (claudin-1, occludin-1, and zo-1, p < 0.05). The 16S rRNA gene sequence analysis showed that Salmonella was significantly enriched in the S.P group (LDA score > 2.0, p < 0.05), while specific genera were significantly more abundant in the treated groups. Untargeted sequencing of intestinal contents showed that key metabolites (butyrate, alanine, glutamate, cholesterol, and propionate) in the CA group were significantly changed compared with the S.P group (p < 0.05). CA treatment was the most effective method for reducing PD intestinal colonization and maintaining better intestinal homeostasis, possibly by regulating intestinal microbiota and metabolic functions. Full article
Show Figures

Figure 1

13 pages, 2459 KiB  
Article
Application of mRNA-Seq and Metagenomic Sequencing to Study Salmonella pullorum Infections in Chickens
by Xiaohuan Chao, Zhexia Fan, Jiongwen Wu, Chutian Ye, Xiaomeng Wang, Ruina Li, Shuya Chen, Xiquan Zhang, Cheng Fang and Qingbin Luo
Int. J. Mol. Sci. 2025, 26(4), 1448; https://doi.org/10.3390/ijms26041448 - 9 Feb 2025
Viewed by 1014
Abstract
The disease caused by Salmonella pullorum has been demonstrated to exert a deleterious effect on the performance of poultry, giving rise to elevated mortality and considerable economic losses within the breeding industry. However, there is a paucity of research investigating the relationship between [...] Read more.
The disease caused by Salmonella pullorum has been demonstrated to exert a deleterious effect on the performance of poultry, giving rise to elevated mortality and considerable economic losses within the breeding industry. However, there is a paucity of research investigating the relationship between cecal gene expression and different isomer and Salmonella pullorum infection, and research on the relationship between intestinal microbiota and Salmonella pullorum infection is also limited. In this study, mRNA-Seq and metagenomic sequencing were performed on the cecal tissues and fresh feces of individuals who tested positive (n = 4) and negative (n = 4) for Salmonella pullorum, with the aim of exploring the chickens infected with Salmonella pullorum from two perspectives: the gene transcription level and the microbial level. The mRNA sequencing results revealed 1560 differentially expressed genes (DEGs), of which 380 genes were found to be up-regulated and 1180 genes were down-regulated. A number of genes were reported to be associated with immunity, including AQP8, SLC26A3, CBS, IFI6, DDX60, IL8L1 and IL8L2. Furthermore, a total of 1047 differentially expressed alternative splicings (DEASs) were identified through alternative splicing analysis, including CBS, SLC6A9, ILDR2, OCRL, etc. The joint analysis of DEGs and DEASs revealed 70 genes that exhibited both differentially expressed alternative splicings and differential expression, including CTNND1, TPM1, SPPL2A, etc. The results of metagenomic sequencing demonstrated that the abundances of Bacteroides, Firmicutes, and Verrucobacteria underwent a significant alteration subsequent to the infection of Salmonella pullorum. In summary, the present study conducted a preliminary exploration of the genetic basis of chickens infected with Salmonella pullorum. TPM1 and SPPL2A were found to be differentially expressed by mRNA-Seq, and differences in alternative splicing events. Furthermore, metagenomic sequencing revealed significant changes in the microbial communities of Bacteroidetes, Firmicutes, and Verrucobacteria during infection with Salmonella pullorum. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

13 pages, 1613 KiB  
Article
Genome-Based Analysis of Genetic Diversity, Antimicrobial Susceptibility, and Virulence Gene Distribution in Salmonella Pullorum Isolates from Poultry in China
by Yiluo Cheng, Jigao Zhang, Qi Huang, Qingping Luo, Tengfei Zhang and Rui Zhou
Animals 2024, 14(18), 2675; https://doi.org/10.3390/ani14182675 - 14 Sep 2024
Cited by 1 | Viewed by 1449
Abstract
Pullorum disease, caused by Salmonella enterica serovar Pullorum (S. Pullorum) infection, is a major pathogenic threat to the poultry industry. In this study, 40 S. Pullorum isolates from seven provinces of China were comprehensively analyzed in terms of antigenic type [...] Read more.
Pullorum disease, caused by Salmonella enterica serovar Pullorum (S. Pullorum) infection, is a major pathogenic threat to the poultry industry. In this study, 40 S. Pullorum isolates from seven provinces of China were comprehensively analyzed in terms of antigenic type and antimicrobial susceptibility, and their drug-resistance genes and virulence genes were identified with whole-genome sequencing (WGS). We show that all these isolates were standard antigenic types, with ST92 the predominant genotype (92.5%). Disk diffusion assays revealed high resistance rates to streptomycin (92.5%), ciprofloxacin (82.5%), and ampicillin (80%), and the resistance rates to streptomycin, gentamicin, ampicillin, and cefotaxime were higher in isolates from sick chickens than in those from healthy chickens. In addition, gyrA mutations and eight acquired resistance genes were identified, with aac(6′)-Iaa the most prevalent, followed by blaTEM1β, sul2, and the GyrA S83F mutation. The resistance phenotypes to streptomycin, ampicillin, and ciprofloxacin correlated strongly with the presence of the aac(6′)-Iaa resistance gene, blaTEM1β resistance gene, and gyrA mutations, respectively. Analysis of the virulence genes showed that the isolates expressed numerous factors associated with secretion systems, including SPI-1 and SPI-2. Overall, this study extends our understanding of the epidemiology and antibiotic resistance of S. Pullorum in China. Full article
Show Figures

Figure 1

7 pages, 704 KiB  
Brief Report
Dual-Emission Fluorescence Resonance Energy Transfer (FRET) PCR Discriminates Salmonella Pullorum and Gallinarum
by Jiansen Gong, Nneka Vivian Iduu, Di Zhang, Kelly Chenoweth, Lanjing Wei, Yi Yang, Xinhong Dou and Chengming Wang
Microorganisms 2024, 12(9), 1815; https://doi.org/10.3390/microorganisms12091815 - 2 Sep 2024
Cited by 1 | Viewed by 1185
Abstract
Salmonella Pullorum (S. Pullorum) and Salmonella Gallinarum (S. Gallinarum) are two biovars of Salmonella enterica serovar Gallinarum, responsible for pullorum disease and fowl typhoid, which are the most prevalent and pathogenic forms of salmonellosis in poultry in developing countries. Traditional differentiation methods [...] Read more.
Salmonella Pullorum (S. Pullorum) and Salmonella Gallinarum (S. Gallinarum) are two biovars of Salmonella enterica serovar Gallinarum, responsible for pullorum disease and fowl typhoid, which are the most prevalent and pathogenic forms of salmonellosis in poultry in developing countries. Traditional differentiation methods for S. Pullorum and S. Gallinarum are based on distinct clinical manifestations and biochemical traits, given their indistinguishable nature via serological assays alone. Molecular differentiation methods such as allele-specific PCR and dual PCR combined with gel electrophoresis or enzyme digestion have also been used to discriminate S. Pullorum and S. Gallinarum, but the detection efficiency is not high. This investigation introduces a Fluorescence Resonance Energy Transfer (FRET) PCR assay targeting the pegB gene, exclusively found in specific Salmonella serovars such as S. Pullorum and S. Gallinarum, and exhibiting conserved single-nucleotide polymorphisms across these two biovars. High-resolution melting curve analysis demonstrates distinct dissolution profiles, facilitating the precise discrimination of S. Pullorum and S. Gallinarum. This FRET-PCR assay exhibits a detection limit of 10 copies per reaction and has been rigorously validated utilizing 17 reference strains and 39 clinical isolates. The innovation presented herein provides a valuable tool for the rapid differentiation of S. Pullorum and S. Gallinarum, thereby enhancing diagnostic efficiency and molecular surveillance of poultry Salmonella. The developed pegB-targeting FRET-PCR assay presents a promising alternative to current cumbersome and time-consuming diagnostic modalities, offering significant potential for expedited identification and control of Salmonella in poultry and mitigating economic losses associated with Salmonella contamination in poultry production. Full article
(This article belongs to the Special Issue Detection and Identification of Pathogenic Bacteria and Viruses)
Show Figures

Figure 1

14 pages, 3575 KiB  
Article
Microbiome and Microbial Pure Culture Study Reveal Commensal Microorganisms Alleviate Salmonella enterica Serovar Pullorum Infection in Chickens
by Jianshen Zhu, Jinmei Ding, Kaixuan Yang, Hao Zhou, Wenhao Yang, Chao Qin, Liyuan Wang, Fuquan Xiao, Beibei Zhang, Qing Niu, Zhenxiang Zhou, Shengqing Yu, Qizhong Huang, Shaohui Wang and He Meng
Microorganisms 2024, 12(9), 1743; https://doi.org/10.3390/microorganisms12091743 - 23 Aug 2024
Cited by 1 | Viewed by 1706
Abstract
Pullorum disease, an intestinal disease in chickens caused by Salmonella enterica serovar pullorum (S. Pullorum), is a significant threat to the poultry industry and results in substantial economic losses. The bacteria’s transmission, both vertical and horizontal, makes it difficult to completely eliminate [...] Read more.
Pullorum disease, an intestinal disease in chickens caused by Salmonella enterica serovar pullorum (S. Pullorum), is a significant threat to the poultry industry and results in substantial economic losses. The bacteria’s transmission, both vertical and horizontal, makes it difficult to completely eliminate it. Control strategies for pullorum disease primarily involve stringent eradication programs that cull infected birds and employ antibiotics for treatment. However, eradication programs are costly, and antibiotic use is restricted. Therefore, developing alternative control strategies is essential. Increasingly, studies are focusing on modulating the gut microbiota to control intestinal diseases. Modulating the chicken gut microbiota may offer a novel strategy for preventing and controlling pullorum disease in poultry. However, the impact of S. Pullorum on the chicken gut microbiota has not been well established, prompting our exploration of the relationship between S. Pullorum and the chicken gut microbiota in this study. In this study, we initially analyzed the dynamic distribution of the gut microbiota in chickens infected with S. Pullorum. Alpha diversity analysis revealed a decrease in observed OTUs and the Shannon diversity index in the infected group, suggesting a reduction in the richness of the chicken gut microbiota due to S. Pullorum infection. Principal coordinate analysis (PCoA) showed distinct clusters between the gut microbiota of infected and uninfected groups, indicating S. Pullorum infection changed the chicken gut microbiota structure. Specifically, S. Pullorum infection enriched the relative abundance of the genera Escherichia-Shigella (65% in infected vs. 40.6% in uninfected groups) and Enterococcus (10.8% vs. 3.7%) while reducing the abundance of Lactobacillus (9.9% vs. 32%) in the chicken microbiota. Additionally, based on the observed changes in the chicken gut microbiota, we isolated microorganisms, including Bifidobacterium pseudolongum, Streptococcus equi and Lacticaseibacillus paracasei (L. paracasei), which were decreased by S. Pullorum infection. Notably, the L. paracasei Lp02 strain was found to effectively inhibit S. Pullorum proliferation in vitro and alleviate its infection in vivo. We found that S. Pullorum infection reduced the richness of the chicken gut microbiota and enriched the relative abundance of the genera Escherichia-Shigella and Enterococcus while decreasing the abundance of the anaerobic genus Lactobacillus. Furthermore, microbiota analysis enabled the isolation of several antimicrobial microorganisms from healthy chicken feces, with a L. paracasei strain notably inhibiting S. Pullorum proliferation in vitro and alleviating its infection in vivo. Overall, this research enhances our understanding of the interaction between gut microbiota and pathogen infection, as well as offers new perspectives and strategies for modulating the chicken gut microbiota to control pullorum disease. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

10 pages, 1227 KiB  
Article
Occurrence of Helicobacter pullorum in Retail Chicken Meat: A One-Health Approach to Consumer Health Protection
by Nicoletta C. Quaglia, Flavia Capuozzo, Federica Ioanna, Michele De Rosa and Angela Dambrosio
Foods 2024, 13(6), 845; https://doi.org/10.3390/foods13060845 - 10 Mar 2024
Cited by 2 | Viewed by 2133
Abstract
Helicobacter pullorum is an emerging foodborne pathogen that commonly colonizes the gastrointestinal tract of poultry, causing gastroenteritis. It has been related to several clinically important infections, including colitis and hepatitis, inflammatory bowel disease, recurrent diarrhea, and bacteremia in the human population. The bacterium [...] Read more.
Helicobacter pullorum is an emerging foodborne pathogen that commonly colonizes the gastrointestinal tract of poultry, causing gastroenteritis. It has been related to several clinically important infections, including colitis and hepatitis, inflammatory bowel disease, recurrent diarrhea, and bacteremia in the human population. The bacterium may be transmitted to humans through undercooked poultry meat. In order to investigate the occurrence of H. pullorum in raw retail chicken meat (thighs and breasts), we analyzed 240 samples: 120 chicken thigh and 120 chicken breast samples. The samples were analyzed by means of an isolation protocol using Steele and McDermott’s modified filtration technique on Brucella agar supplemented with 5% of defibrinated sheep’s blood. The presumptive colonies were biochemically identified and analyzed using a previously described conventional PCR test based on the 16S rRNA gene. In total, 35% of analyzed samples were positive using the microbiological protocol and 45% were positive by PCR. These results suggest that H. pullorum can be transmitted to humans through the handling and consumption of raw poultry meat, representing a risk for food business operators and consumers. Efforts to control H. pullorum in broiler meat should prioritize the implementation of stringent hygienic practices across all stages of the food chain, from the farm to the consumer. Full article
Show Figures

Figure 1

20 pages, 373 KiB  
Review
Salmonella enterica Serovar Gallinarum Biovars Pullorum and Gallinarum in Poultry: Review of Pathogenesis, Antibiotic Resistance, Diagnosis and Control in the Genomic Era
by Mouad Farhat, Slimane Khayi, Jaouad Berrada, Mohamed Mouahid, Najia Ameur, Hosny El-Adawy and Siham Fellahi
Antibiotics 2024, 13(1), 23; https://doi.org/10.3390/antibiotics13010023 - 25 Dec 2023
Cited by 21 | Viewed by 4450
Abstract
Salmonella enterica subsp. enterica serovar Gallinarum (SG) has two distinct biovars, Pullorum and Gallinarum. They are bacterial pathogens that exhibit host specificity for poultry and aquatic birds, causing severe systemic diseases known as fowl typhoid (FT) and Pullorum disease (PD), respectively. [...] Read more.
Salmonella enterica subsp. enterica serovar Gallinarum (SG) has two distinct biovars, Pullorum and Gallinarum. They are bacterial pathogens that exhibit host specificity for poultry and aquatic birds, causing severe systemic diseases known as fowl typhoid (FT) and Pullorum disease (PD), respectively. The virulence mechanisms of biovars Gallinarum and Pullorum are multifactorial, involving a variety of genes and pathways that contribute to their pathogenicity. In addition, these serovars have developed resistance to various antimicrobial agents, leading to the emergence of multidrug-resistant strains. Due to their economic and public health significance, rapid and accurate diagnosis is crucial for effective control and prevention of these diseases. Conventional methods, such as bacterial culture and serological tests, have been used for screening and diagnosis. However, molecular-based methods are becoming increasingly important due to their rapidity, high sensitivity, and specificity, opening new horizons for the development of innovative approaches to control FT and PD. The aim of this review is to highlight the current state of knowledge on biovars Gallinarum and Pullorum, emphasizing the importance of continued research into their pathogenesis, drug resistance and diagnosis to better understand and control these pathogens in poultry farms. Full article
13 pages, 1342 KiB  
Article
Unveiling the Potential Ways to Apply Citrus Oil to Control Causative Agents of Pullorum Disease and Fowl Typhoid in Floor Materials
by Dita Julianingsih, Chuan-Wei Tung, Kanchan Thapa and Debabrata Biswas
Animals 2024, 14(1), 23; https://doi.org/10.3390/ani14010023 - 20 Dec 2023
Cited by 3 | Viewed by 2242
Abstract
This study investigates the potential role of Cold-pressed Valencia Terpeneless citrus oil (CO), as a natural antimicrobial, in controlling causative agents of pullorum disease and fowl typhoid in floor materials for poultry farming, specifically wooden chips. The study addresses the issues that have [...] Read more.
This study investigates the potential role of Cold-pressed Valencia Terpeneless citrus oil (CO), as a natural antimicrobial, in controlling causative agents of pullorum disease and fowl typhoid in floor materials for poultry farming, specifically wooden chips. The study addresses the issues that have arisen as a result of the reduction in antibiotic use in poultry farming, which has resulted in the re-emergence of bacterial diseases including salmonellosis. CO efficiently inhibits the growth of pathogens including various serovars of Salmonella enterica (SE), including SE serovar Gallinarum (S. Gallinarum) and SE serovar Pullorum (S. Pullorum), in a dose-dependent manner. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of CO showed potential for controlling diverse S. Gallinarum and S. Pullorum isolates. Growth inhibition assays demonstrated that 0.4% (v/w) CO eliminated S. Pullorum and S. Gallinarum from 24 h onwards, also impacting poultry gut microbiota and probiotic strains. Floor material simulation, specifically wooden chips treated with 0.4% CO, confirmed CO’s effectiveness in preventing S. Gallinarum and S. Pullorum growth on poultry house floors. This study also investigated the effect of CO on the expression of virulence genes in S. Gallinarum and S. Pullorum. Specifically, the study revealed that the application of CO resulted in a downregulation trend in virulence genes, including spiA, invA, spaN, sitC, and sifA, in both S. Pullorum and S. Gallinarum, implying that CO may alter the pathogenicity of these bacterial pathogens. Overall, this study reveals that CO has the potential to be used as a natural antimicrobial in the prevention and management of Salmonella-related infections in chicken production, offering a viable alternative to control these re-emerging diseases. Full article
(This article belongs to the Collection Application of Antibiotic Alternatives in the Poultry Industry)
Show Figures

Figure 1

13 pages, 1798 KiB  
Article
The Genomic Characteristics of an Arthritis-Causing Salmonella pullorum
by Zhiyuan Lu, Jiaqi Huang, Peiyong Li, Mengze Song, Ben Liu, Wenli Tang and Shuhong Sun
Microorganisms 2023, 11(12), 2986; https://doi.org/10.3390/microorganisms11122986 - 14 Dec 2023
Cited by 2 | Viewed by 1763
Abstract
Salmonella enterica subsp. enterica serovar Gallinarum biovar pullorum (Salmonella pullorum) is an avian-specific pathogen that has caused considerable economic losses to the poultry industry. High endemicity, poor implementation of hygiene measures, and lack of effective vaccines hinder the prevention and control of [...] Read more.
Salmonella enterica subsp. enterica serovar Gallinarum biovar pullorum (Salmonella pullorum) is an avian-specific pathogen that has caused considerable economic losses to the poultry industry. High endemicity, poor implementation of hygiene measures, and lack of effective vaccines hinder the prevention and control of this disease in intensively maintained poultry flocks. In recent years, the incidence of arthritis in chicks caused by Salmonella pullorum infection has increased. In this study, four Salmonella pullorum strains were identified from the livers, spleens, and joint fluids of Qingjiaoma chicken breeders with arthritis clinical signs, and an arthritis model of chicks was successfully established using SP206-2. Whole genome sequencing of the SP206-2 strain showed that the genome was 4,730,579 bp, 52.16% GC content, and contained 5007 genes, including 4729 protein-coding regions. The genomic analysis of four arthritis-causing isolates and three diarrhea-causing isolates showed that the genome of arthritis-causing isolates was subject to nonsynonymous mutations, shift mutations, and gene copy deletions. An SNP phylogenetic tree analysis showed that arthritis-causing isolates are located in a different evolutionary branch from diarrhea-causing isolates. Further differential genes analysis showed that the genome of arthritis-causing isolates had missense mutations in genes related to substance metabolism and substance transport, as a result of adaptive evolution. Full article
(This article belongs to the Special Issue Poultry Pathogens and Poultry Diseases)
Show Figures

Figure 1

10 pages, 2750 KiB  
Article
Flos populi (Male Inflorescence of Populus tomentosa Carrière) Aqueous Extract Suppresses Salmonella Pullorum Infection by Affecting T3SS-1
by Wenting Zhang, Guixing Liang, Zhenyu Cheng, Yunqing Guo, Boda Jiang, Tingjiang Liu, Weidong Liao, Qin Lu, Guoyuan Wen, Tengfei Zhang and Qingping Luo
Pathogens 2023, 12(6), 790; https://doi.org/10.3390/pathogens12060790 - 31 May 2023
Cited by 1 | Viewed by 1835
Abstract
Pullorum disease, caused by Salmonella Pullorum (S. Pullorum), is one of the most serious infectious diseases in the poultry industry. Flos populi is traditionally used in Eastern Asian countries to treat various intestinal diseases. However, the anti-infection mechanism of Flos populi [...] Read more.
Pullorum disease, caused by Salmonella Pullorum (S. Pullorum), is one of the most serious infectious diseases in the poultry industry. Flos populi is traditionally used in Eastern Asian countries to treat various intestinal diseases. However, the anti-infection mechanism of Flos populi is not very clear. In this study, we evaluated the anti-infective effects on S. Pullorum of Flos populi aqueous extract (FPAE) in chickens. FPAE significantly reduced S. Pullorum growth in vitro. At the cellular level, FPAE reduced S. Pullorum adhesion and invasion on DF-1 cells but did not affect its intracellular survival or replication in macrophages. Further investigation revealed that FPAE inhibited the transcription of T3SS-1 genes, which is the main virulence factor that mediates S. Pullorum adhesion and invasion in host cells. The results suggest that the anti-infective effect of FPAE likely occurs through the inhibition of S. Pullorum T3SS-1, thereby impairing its ability to adhere to and invade cells. Further, we evaluated its therapeutic effect on animal models (Jianghan domestic chickens) and found that FPAE reduced the bacterial loads in organs and decreased the mortality and weight loss of infected chickens. Our findings provide novel insights into the potential development of FPAE against S. Pullorum as an effective anti-virulence therapeutic substitute for antibiotics. Full article
Show Figures

Figure 1

15 pages, 3959 KiB  
Article
Recombinant Antimicrobial Peptide OaBac5mini Alleviates Inflammation in Pullorum Disease Chicks by Modulating TLR4/MyD88/NF-κB Pathway
by Shanshan Shen, Fei Ren, Junping He, Jie Wang, Yawei Sun and Jianhe Hu
Animals 2023, 13(9), 1515; https://doi.org/10.3390/ani13091515 - 30 Apr 2023
Cited by 4 | Viewed by 2815
Abstract
Pullorum disease (PD), caused by Salmonella Pullorum (S. Pullorum), is a serious threat to the poultry industry worldwide. Antimicrobial peptides (AMPs) have drawn extensive attention as new-generation antibiotics because of their broad antimicrobial spectrum, low resistance, and low cytotoxicity. AMP OaBac5mini [...] Read more.
Pullorum disease (PD), caused by Salmonella Pullorum (S. Pullorum), is a serious threat to the poultry industry worldwide. Antimicrobial peptides (AMPs) have drawn extensive attention as new-generation antibiotics because of their broad antimicrobial spectrum, low resistance, and low cytotoxicity. AMP OaBac5mini exhibits strong antibacterial activity against Gram-negative bacteria, but its efficacy and anti-inflammatory effects on chicks with PD remain unclear. The aim of this study was to generate recombinant OaBac5mini via the Escherichia coli (E. coli) recombinant expression system and evaluate its antibacterial effect against S. Pullorum in vitro and in vivo. Real-time cellular analysis (RTCA) results showed that recombinant OaBac5mini exhibited no cytotoxicity on IPEC-J2 and RAW 264.7 cells and significantly alleviated the drop in the cell index of S. Pullorum-infected cells (p < 0.0001). In the chick model of PD, recombinant OaBac5mini significantly attenuated the increase in organ indexes (heart, liver, spleen, and kidney) and bacterial loads (liver and spleen) induced by S. Pullorum. Histopathology examination showed that recombinant OaBac5mini ameliorated histopathological changes and inflammation in chicks with PD, including impaired epithelium of duodenal villi, infiltration of pseudoacidophilic granulocytes in the cecum and bursa of Fabricius, congested blood clots and increased macrophages in the liver, and increased lymphoid nodule and B lymphocytes in the spleen. Western blot and quantitative real-time PCR (qRT-PCR) results indicated that recombinant OaBac5mini alleviated inflammation by modulating innate immunity through the TLR4/MyD88/NF-κB pathway and by suppressing the expression of pro-inflammatory cytokines. These results suggested that recombinant OaBac5mini has good potential as a clinical substitute for antibiotics in PD intervention. Full article
(This article belongs to the Special Issue Salmonella in Poultry Production: Causes, Impacts, and Solutions)
Show Figures

Figure 1

16 pages, 3052 KiB  
Article
Identification and Evaluation of Novel Antigen Candidates against Salmonella Pullorum Infection Using Reverse Vaccinology
by Zhijie Jiang, Xiamei Kang, Yan Song, Xiao Zhou and Min Yue
Vaccines 2023, 11(4), 865; https://doi.org/10.3390/vaccines11040865 - 18 Apr 2023
Cited by 14 | Viewed by 3035
Abstract
Pullorum disease, caused by the Salmonella enterica serovar Gallinarum biovar Pullorum, is a highly contagious disease in the poultry industry, leading to significant economic losses in many developing countries. Due to the emergence of multidrug-resistant (MDR) strains, immediate attention is required to prevent their [...] Read more.
Pullorum disease, caused by the Salmonella enterica serovar Gallinarum biovar Pullorum, is a highly contagious disease in the poultry industry, leading to significant economic losses in many developing countries. Due to the emergence of multidrug-resistant (MDR) strains, immediate attention is required to prevent their endemics and global spreading. To mitigate the prevalence of MDR Salmonella Pullorum infections in poultry farms, it is urgent to develop effective vaccines. Reverse vaccinology (RV) is a promising approach using expressed genomic sequences to find new vaccine targets. The present study used the RV approach to identify new antigen candidates against Pullorum disease. Initial epidemiological investigation and virulent assays were conducted to select strain R51 for presentative and general importance. An additional complete genome sequence (4.7 Mb) for R51 was resolved using the Pacbio RS II platform. The proteome of Salmonella Pullorum was analyzed to predict outer membrane and extracellular proteins, and was further selected for evaluating transmembrane domains, protein prevalence, antigenicity, and solubility. Twenty-two high-scored proteins were identified among 4713 proteins, with 18 recombinant proteins successfully expressed and purified. The chick embryo model was used to assess protection efficacy, in which vaccine candidates were injected into 18-day-old chick embryos for in vivo immunogenicity and protective effects. The results showed that the PstS, SinH, LpfB, and SthB vaccine candidates were able to elicit a significant immune response. Particularly, PstS confers a significant protective effect, with a 75% survival rate compared to 31.25% for the PBS control group, confirming that identified antigens can be promising targets against Salmonella Pullorum infection. Thus, we offer RV to discover novel effective antigens in an important veterinary infectious agent with high priority. Full article
(This article belongs to the Special Issue Vaccines for Chicken)
Show Figures

Figure 1

15 pages, 3186 KiB  
Article
The Broad-Spectrum Endolysin LySP2 Improves Chick Survival after Salmonella Pullorum Infection
by Hewen Deng, Mengjiao Li, Qiuyang Zhang, Chencheng Gao, Zhanyun Song, Chunhua Chen, Zhuo Wang and Xin Feng
Viruses 2023, 15(4), 836; https://doi.org/10.3390/v15040836 - 24 Mar 2023
Cited by 7 | Viewed by 3032
Abstract
Salmonella pullorum causes typical “Bacillary White Diarrhea” and loss of appetite in chicks, which leads to the death of chicks in severe cases; thus, it is still a critical issue in China. Antibiotics are conventional medicines used for Salmonella infections; however, due to [...] Read more.
Salmonella pullorum causes typical “Bacillary White Diarrhea” and loss of appetite in chicks, which leads to the death of chicks in severe cases; thus, it is still a critical issue in China. Antibiotics are conventional medicines used for Salmonella infections; however, due to the extensive long-term use and even abuse of antibiotics, drug resistance becomes increasingly severe, making treating pullorum disease more difficult. Most of the endolysins are hydrolytic enzymes produced by bacteriophages to cleave the host’s cell wall during the final stage of the lytic cycle. A virulent bacteriophage, YSP2, of Salmonella was isolated in a previous study. A Pichia pastoris expression strain that can express the Salmonella bacteriophage endolysin was constructed efficiently, and the Gram-negative bacteriophage endolysin, LySP2, was obtained in this study. Compared with the parental phage YSP2, which can only lyse Salmonella, LySP2 can lyse Salmonella and Escherichia. The survival rate of Salmonella-infected chicks treated with LySP2 can reach up to 70% and reduce Salmonella abundance in the liver and intestine. The treatment group showed that LySP2 significantly improved the health of infected chicks and alleviated organ damage caused by Salmonella infection. In this study, the Salmonella bacteriophage endolysin was expressed efficiently by Pichia pastoris, and the endolysin LySP2 showed good potential for the treatment of pullorum disease caused by Salmonella pullorum. Full article
(This article belongs to the Special Issue Roles and Applications of Phages in the Food Industry and Agriculture)
Show Figures

Figure 1

20 pages, 4688 KiB  
Article
Prevalence and Characterization of Salmonella Isolated from Chickens in Anhui, China
by Xuehuai Shen, Lei Yin, Anyun Zhang, Ruihong Zhao, Dongdong Yin, Jieru Wang, Yin Dai, Hongyan Hou, Xiaocheng Pan, Xiaomiao Hu, Danjun Zhang and Yongjie Liu
Pathogens 2023, 12(3), 465; https://doi.org/10.3390/pathogens12030465 - 16 Mar 2023
Cited by 19 | Viewed by 5169
Abstract
Salmonella is one of the most important zoonotic pathogens that can cause both acute and chronic illnesses in poultry flocks, and can also be transmitted to humans from infected poultry. The purpose of this study was to investigate the prevalence, antimicrobial resistance, and [...] Read more.
Salmonella is one of the most important zoonotic pathogens that can cause both acute and chronic illnesses in poultry flocks, and can also be transmitted to humans from infected poultry. The purpose of this study was to investigate the prevalence, antimicrobial resistance, and molecular characteristics of Salmonella isolated from diseased and clinically healthy chickens in Anhui, China. In total, 108 Salmonella isolates (5.66%) were successfully recovered from chicken samples (n = 1908), including pathological tissue (57/408, 13.97%) and cloacal swabs (51/1500, 3.40%), and S. Enteritidis (43.52%), S. Typhimurium (23.15%), and S. Pullorum (10.19%) were the three most prevalent isolates. Salmonella isolates showed high rates of resistance to penicillin (61.11%), tetracyclines (47.22% to tetracycline and 45.37% to doxycycline), and sulfonamides (48.89%), and all isolates were susceptible to imipenem and polymyxin B. In total, 43.52% isolates were multidrug-resistant and had complex antimicrobial resistance patterns. The majority of isolates harbored cat1 (77.78%), blaTEM (61.11%), and blaCMY-2 (63.89%) genes, and the antimicrobial resistance genes in the isolates were significantly positively correlated with their corresponding resistance phenotype. Salmonella isolates carry high rates of virulence genes, with some of these reaching 100% (invA, mgtC, and stn). Fifty-seven isolates (52.78%) were biofilm-producing. The 108 isolates were classified into 12 sequence types (STs), whereby ST11 (43.51%) was the most prevalent, followed by ST19 (20.37%) and ST92 (13.89%). In conclusion, Salmonella infection in chicken flocks is still serious in Anhui Province, and not only causes disease in chickens but might also pose a threat to public health security. Full article
Show Figures

Figure 1

Back to TopTop