Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,887)

Search Parameters:
Keywords = proteomic studies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 485 KB  
Study Protocol
SANA-Biome: A Protocol for a Cross-Sectional Study on Oral Health, Diet, and the Oral Microbiome in Romania
by Sterling L. Wright, Oana Slusanschi, Ana Cristina Giura, Ioanina Părlătescu, Cristian Funieru, Samantha M. Gaidula, Nicole E. Moore and Laura S. Weyrich
Healthcare 2025, 13(17), 2133; https://doi.org/10.3390/healthcare13172133 - 27 Aug 2025
Abstract
Periodontal disease is a widespread chronic condition linked to systemic illnesses such as cardiovascular disease, diabetes, and adverse pregnancy outcomes. Despite its global burden, population-specific studies on its risk factors remain limited, particularly in Central and Eastern Europe. The SANA-biome Project is a [...] Read more.
Periodontal disease is a widespread chronic condition linked to systemic illnesses such as cardiovascular disease, diabetes, and adverse pregnancy outcomes. Despite its global burden, population-specific studies on its risk factors remain limited, particularly in Central and Eastern Europe. The SANA-biome Project is a cross-sectional, community-based study designed to investigate the biological and social determinants of periodontal disease in Romania, a country with disproportionately high oral disease rates and minimal microbiome data. This protocol will integrate metagenomic, proteomic, and metabolomic data of the oral microbiome from saliva and dental calculus samples with detailed sociodemographic and lifestyle data collected through a structured 44-question survey. This study is grounded in two complementary frameworks: the IMPEDE model, which conceptualizes inflammation as both a driver and a consequence of microbial dysbiosis, and Ecosocial Theory, which situates disease within social and structural contexts. Our aims are as follows: (1) to identify lifestyle and behavioral predictors of periodontal disease; (2) to characterize the oral microbiome in individuals with and without periodontal disease; and (3) to evaluate the predictive value of combined microbial and sociodemographic features using statistical and machine learning approaches. Power calculations based on pilot data indicate a target enrollment of 120 participants. This integrative approach will help disentangle the complex interplay between microbiological and structural determinants of periodontal disease and inform culturally relevant prevention strategies. By focusing on an underrepresented population, this work contributes to a more equitable and interdisciplinary model of oral health research and supports the development of future precision public health interventions. Full article
(This article belongs to the Special Issue Oral Health in Healthcare)
Show Figures

Figure 1

19 pages, 5653 KB  
Article
Solanum lyratum-Derived Solalyraine A1 Suppresses Non-Small Cell Lung Cancer Through Regulation of Exosome Secretion and Related Protein Biomarkers
by Pu Jiang, Liangyu Liu, Lixian Chen, Bing Han and Xiao Du
Pharmaceuticals 2025, 18(9), 1280; https://doi.org/10.3390/ph18091280 - 27 Aug 2025
Abstract
Background: Lung cancer is a prevalent malignancy globally, with non-small cell lung cancer (NSCLC) accounting for 80–85% of cases. Solalyraine A1 (SA1) is a steroidal glycoalkaloid derived from Solanum lyratum. However, the effect and mechanism of SA1 on NSCLC remain unclear. [...] Read more.
Background: Lung cancer is a prevalent malignancy globally, with non-small cell lung cancer (NSCLC) accounting for 80–85% of cases. Solalyraine A1 (SA1) is a steroidal glycoalkaloid derived from Solanum lyratum. However, the effect and mechanism of SA1 on NSCLC remain unclear. Methods: The exosomes from SA1-treated A549 cells were prepared and administered to A549 xenograft mice. Proteomics analysis of SA1-treated A549 cells and their exosomes was conducted to assess the mechanism. Bioinformatics analysis was utilized to identify differentially expressed proteins (DEPs) and key signaling pathways. Western blot analysis confirmed the expression of potential targets. Results: SA1 effectively suppressed tumor growth in A549 xenografts, demonstrating a remarkable inhibition rate of 70.48%. A total of 1154 DEPs were identified in A549 cells, primarily associated with the ribosome pathway. Additionally, 746 DEPs were identified in exosomes, mainly involved in the spliceosome pathway. Five highly regulated DEPs were selected for verification. SA1 was found to suppress MUC5B and elevate APOB expression in A549 cells, while inhibiting MFGM, ANGL4 and increasing GCN1 expression in exosomes. Conclusions: This study demonstrates that SA1 exhibits anti-NSCLC effects by regulating exosome function and related protein expression, providing novel insights for NSCLC treatment. Full article
(This article belongs to the Topic Advances in Anti-Cancer Drugs: 2nd Edition)
23 pages, 10292 KB  
Article
The SMIM25-COX-2 Axis Modulates the Immunosuppressive Tumor Microenvironment and Predicts Immunotherapy Response in Hepatocellular Carcinoma
by Zhenxing Wang, Xia Li, Shiyi Zhang, Jiamin Sun, Qinchen Lu, Yuting Tao, Shuang Liang, Xiuwan Lan, Jianhong Zhong and Qiuyan Wang
Curr. Issues Mol. Biol. 2025, 47(9), 693; https://doi.org/10.3390/cimb47090693 - 27 Aug 2025
Abstract
Hepatocellular carcinoma (HCC) is a malignancy that is notorious for its dismal prognosis. Dysregulation of the tumor microenvironment (TME) in HCC has emerged as a key hallmark in determining disease progression and the response to immunotherapy. The aim of this study was to [...] Read more.
Hepatocellular carcinoma (HCC) is a malignancy that is notorious for its dismal prognosis. Dysregulation of the tumor microenvironment (TME) in HCC has emerged as a key hallmark in determining disease progression and the response to immunotherapy. The aim of this study was to identify novel TME regulators that contribute to therapeutic resistance, thus providing mechanistic insights for targeted interventions. The expression of SMIM25 was evaluated in the the Cancer Genome Atlas-Liver Hepatocellular Carcinoma(TCGA-LIHC) and Guangxi HCC cohorts, and its clinicopathological significance was assessed. RNA sequencing and bioinformatics analyses were performed to elucidate the potential impact of elevated SMIM25 levels. Immunohistochemistry (IHC) and single-cell mass cytometry (CyTOF) were employed to examine the cellular composition of the tumor microenvironment. The biological effects of SMIM25 on cell proliferation and migration were studied in vitro using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide(MTT) and wound healing assays, while its impact on tumor growth was evaluated in vivo in a nude mouse model. Transcriptomic and single-cell proteomic analyses were integrated to explore the mechanism by which SMIM25 affects the progression of HCC. The expression of SMIM25 was significantly up-regulated in both HCC tissues and cell lines (p < 0.05). RNA sequencing analyses revealed a significant positive correlation between SMIM25 expression and immunosuppression, and between SMIM25 expression and extracellular matrix(ECM)-related molecular features. Single-cell mass cytometry revealed two immunosuppressive cell clusters that were enriched in HCC patients with high SMIM25 expression. Moreover, SMIM25 was associated with immune exclusion and ECM remodeling signals in the TME of HCC. SMIM25 overexpression was associated with the expression of the tumor inflammatory marker cyclooxygenase-2(COX-2), and a COX-2 inhibitor could partially reverse the biological phenotype associated with SMIM25 expression in HCC cells (p < 0.05). Further transcriptome analysis in immunotherapy cohorts suggested the SMIM25-COX-2 axis might have predictive value for the response to immunotherapy. Our results suggest that SMIM25 may serve as a biomarker for the prognosis of HCC patients and may also be a predictive biomarker for the response to immunotherapy, enabling more precise and personalized HCC treatment. Full article
Show Figures

Figure 1

20 pages, 364 KB  
Review
CSN1S1 and CSN1S2: Two Remarkable Examples of Genetically Modulated Alternative Splicing via Identification of Allele-Specific Splicing Events
by Gianfranco Cosenza, Andrea Fulgione, Emanuele D’Anza, Sara Albarella, Francesca Ciotola and Alfredo Pauciullo
Genes 2025, 16(9), 1011; https://doi.org/10.3390/genes16091011 - 27 Aug 2025
Abstract
Splicing regulatory sequences are cornerstones for exon recognition. Mutations that modify them can severely compromise mRNA maturation and protein production. A wide range of mutations, including SNPs and InDels, can influence splicing regulatory signals either directly (e.g., altering canonical donor and acceptor dinucleotides) [...] Read more.
Splicing regulatory sequences are cornerstones for exon recognition. Mutations that modify them can severely compromise mRNA maturation and protein production. A wide range of mutations, including SNPs and InDels, can influence splicing regulatory signals either directly (e.g., altering canonical donor and acceptor dinucleotides) or indirectly (e.g., creating cryptic splice sites). CSN1S1 and CSN1S2 genes encode for the two main milk proteins, αs1 and αs2 caseins, respectively. They represent a remarkable and unique example of the possibilities for alternative splicing of individual genes, both due to the high number of alternative splices identified to date and for recognized allele-specific splicing events. To date, at least 13 alleles of CSN1S1 originating from mutations that affect canonical splice sites have been described in Bos taurus (CSN1S1 A, A1, and H), Ovis aries (E, H, and I), Capra hircus (D and G), Bubalus bubalis (E, F) and Camelidae (A, C, and D). Similarly, allele-specific splicing events have been described at the CSN1S2 locus in B. taurus. (CSN1S2 D), C. hircus (CSN1S2 D), B. bubalis (CSN1S2 B, B1, and B2), Equus asinus (CSN1S2 I B), and Camelidae. This review highlights that mutations affecting canonical splice sites, particularly donor sites, are significant sources of genetic variation impacting the casein production of the main dairy livestock species. Currently, a key limitation on this topic is the lack of detailed functional and proteomic studies. Future research should leverage advanced omics technologies like long-read transcriptomics and allele-resolved RNA sequencing to characterize these splicing mechanisms, guiding precision breeding strategies. Full article
29 pages, 3108 KB  
Article
Adiposome Proteomics Uncover Molecular Signatures of Cardiometabolic Risk in Obese Individuals
by Mohamed Saad Rakab, Monica C. Asada, Imaduddin Mirza, Mohammed H. Morsy, Amro Mostafa, Francesco M. Bianco, Mohamed M. Ali, Chandra Hassan, Mario A. Masrur, Brian T. Layden and Abeer M. Mahmoud
Proteomes 2025, 13(3), 39; https://doi.org/10.3390/proteomes13030039 - 26 Aug 2025
Abstract
Background: Adipose-derived extracellular vesicles (adiposomes) are emerging as key mediators of inter-organ communication, yet their molecular composition and role in obesity-related pathophysiology remain underexplored. This study integrates clinical phenotyping with proteomic analysis of visceral adipose-derived adiposomes to identify obesity-linked molecular disruptions. Methods: Seventy-five [...] Read more.
Background: Adipose-derived extracellular vesicles (adiposomes) are emerging as key mediators of inter-organ communication, yet their molecular composition and role in obesity-related pathophysiology remain underexplored. This study integrates clinical phenotyping with proteomic analysis of visceral adipose-derived adiposomes to identify obesity-linked molecular disruptions. Methods: Seventy-five obese and forty-seven lean adults were extensively profiled for metabolic, inflammatory, hepatic, and vascular parameters. Adiposomes isolated from visceral fat underwent mass spectrometry-based proteomic analysis, followed by differential abundance, pathway enrichment, regulatory network modeling, and clinical association testing. Results: Obese individuals exhibited widespread cardiometabolic dysfunction. Proteomics revealed 64 adiposomal proteins with differential abundance. Upregulated proteins (e.g., CRP, C9, APOC1) correlated with visceral adiposity, systemic inflammation, and endothelial dysfunction. In contrast, downregulated proteins (e.g., ADIPOQ, APOD, TTR, FGB, FGG) were associated with enhanced nitric oxide bioavailability and vascular protection, suggesting loss of homeostatic signaling. Network analyses identified TNF and IL1 as key upstream regulators driving inflammatory and oxidative stress pathways. Decision tree and random forest models accurately classified obesity, hypertension, diabetes, dyslipidemia, and hepatic steatosis (AUC = 0.908–0.994), identifying predictive protein signatures related to complement activation, inflammation, and lipid transport. Conclusion: Obesity alters adiposome proteomic cargo, reflecting and potentially mediating systemic inflammation, metabolic dysregulation, and vascular impairment. Full article
(This article belongs to the Special Issue Proteomics in Chronic Diseases: Issues and Challenges)
Show Figures

Figure 1

18 pages, 5000 KB  
Article
Biotinylation Interferes with Protein Ubiquitylation and Turnover in Arabidopsis—A Cautionary Insight for Proximity Labeling in Ubiquitylation Proteome Studies
by Yang Li, Peifeng Yu and Zhihua Hua
Int. J. Mol. Sci. 2025, 26(17), 8248; https://doi.org/10.3390/ijms26178248 - 25 Aug 2025
Abstract
Nearly all eukaryotic proteins are turned over by the ubiquitin (Ub)-26S proteasome system (UPS). Despite its broad cellular roles, only a handful of UPS members, particularly the Ub E3 ligases that specifically recognize a protein for ubiquitylation, have been characterized in plants to [...] Read more.
Nearly all eukaryotic proteins are turned over by the ubiquitin (Ub)-26S proteasome system (UPS). Despite its broad cellular roles, only a handful of UPS members, particularly the Ub E3 ligases that specifically recognize a protein for ubiquitylation, have been characterized in plants to date. The challenge arises from the transient recognition and rapid degradation of ubiquitylation substrates by the UPS. To tackle this challenge, the emerging biotinylation-based proximity labeling (PL) offers an exciting tool for enriching transient interactors of Ub E3 ligases. In this study, we examined the efficacy of TurboID in identifying substrates of Arabidopsis Skp1-cullin1-F-box (SCF) ligases. We demonstrate that the Arabidopsis Skp1 Like (ASK)1-TurboID is not fully functioning in planta, which led us to discover a novel antagonism between biotinylation and ubiquitylation in regulating protein stability in vivo. This discovery lowers the effectiveness of PL in ubiquitylome studies. However, using one long-known SCF substrate, phytochrome A, we succeeded to apply its TurboID fusion for complementing the far-red-light response of the phyA-211 null mutant allele, suggesting an efficacy of PL in characterizing single ubiquitylation pathways. This study highlighted a limitation of PL in ubiquitylome studies, discovered a new antagonistic pathway of biotinylation, and developed a theoretical guidance for future PL-based characterization of ubiquitylation pathways. Full article
(This article belongs to the Special Issue New Insights into Ubiquitination and Deubiquitination in Plants)
Show Figures

Figure 1

29 pages, 13368 KB  
Article
Systems Network Integration of Transcriptomic, Proteomic, and Bioinformatic Analyses Reveals the Mechanism of XuanYunNing Tablets in Meniere’s Disease via JAK-STAT Pathway Modulation
by Zhengsen Jin, Chunguo Wang, Yifei Gao, Xiaoyu Tao, Chao Wu, Siyu Guo, Jiaqi Huang, Jiying Zhou, Chuanqi Qiao, Keyan Chai, Hua Chang, Chun Li, Xun Zou and Jiarui Wu
Pharmaceuticals 2025, 18(9), 1266; https://doi.org/10.3390/ph18091266 - 25 Aug 2025
Abstract
Background: Meniere’s disease (MD) is a rare inner ear disorder characterized by endolymphatic hydrops and symptoms such as vertigo and hearing loss, with no curative treatment currently available. XuanYunNing tablets (XYN) have been clinically used to treat MD, but their molecular mechanisms remain [...] Read more.
Background: Meniere’s disease (MD) is a rare inner ear disorder characterized by endolymphatic hydrops and symptoms such as vertigo and hearing loss, with no curative treatment currently available. XuanYunNing tablets (XYN) have been clinically used to treat MD, but their molecular mechanisms remain unclear. Objective: This study aimed to systematically evaluate the pharmacological effects of XYN in a guinea pig model of MD and to elucidate the underlying molecular mechanisms of both MD pathogenesis and XYN intervention through integrated multi-omics analyses, including transcriptomics, proteomics, and bioinformatics. Methods: A guinea pig model of endolymphatic hydrops was induced by intraperitoneal injection of desmopressin acetate (dDAVP). Pharmacodynamic efficacy was evaluated via behavioral scoring and histopathological analysis. The differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) modulated by XYN treatment were identified using high-throughput transcriptomic and proteomic sequencing. These data were integrated through multi-omics bioinformatic analysis. Key molecular targets and signaling pathways were further validated using RT-qPCR and Western blotting. Results: Pharmacological evaluations showed that guinea pigs in the model group exhibited a 26% increase in endolymphatic hydrops area, while high-dose XYN treatment reduced this area by 19% and significantly improved functional parameters, including overall physiological condition (e.g., weight and general appearance), auricular reflexes to low-, medium-, and high-frequency sound stimuli, nystagmus, and the righting reflex. High-throughput sequencing combined with integrative omics analysis identified 513 potential molecular targets of XYN. Subsequent network and module analyses pinpointed the JAK-STAT signaling pathway as the central axis. Mendelian randomization (MR) analysis further supported a causal relationship between MD and metabolic, immune, and inflammatory traits, reinforcing the central role of JAK-STAT signaling in both MD progression and XYN-mediated intervention. Mechanistic studies confirmed that XYN downregulated IFNG, IFNGR1, JAK1, p-STAT3/STAT3, and AOX at both mRNA and protein levels, thereby inhibiting aberrant JAK-STAT pathway activation in MD model animals. In addition, a total of 125 chemical constituents were identified in XYN by UHPLC-MS analysis. ZBTB20 and other molecules were identified as potential blood-based biomarkers for MD. Conclusions: This study reveals that XYN alleviates MD symptoms by disrupting a pathological cycle driven by JAK-STAT signaling, inflammation, and metabolic dysfunction. These findings support the clinical potential of XYN in the treatment of Meniere’s disease and may inform the development of novel therapeutic strategies. Full article
(This article belongs to the Special Issue Network Pharmacology of Natural Products, 2nd Edition)
Show Figures

Figure 1

15 pages, 1209 KB  
Article
Comparative Analysis of the Fecal Proteome in Two Canine Breeds: Dalmatians and Weimaraners
by Matteo Cerquetella, Francesco Pinnella, Rachele Morazzini, Giacomo Rossi, Andrea Marchegiani, Alessandra Gavazza, Sara Mangiaterra, Alessandro Di Cerbo, Daniela Sorio, Jessica Brandi, Daniela Cecconi and Silvia Vincenzetti
Int. J. Mol. Sci. 2025, 26(17), 8247; https://doi.org/10.3390/ijms26178247 - 25 Aug 2025
Abstract
The analysis of proteins in stool samples can significantly enhance the study of mammalian physiology and disease. In this study, we investigated the fecal proteome of clinically healthy dogs (n = 26) by a label-free proteomics approach to evaluate the impact of breed [...] Read more.
The analysis of proteins in stool samples can significantly enhance the study of mammalian physiology and disease. In this study, we investigated the fecal proteome of clinically healthy dogs (n = 26) by a label-free proteomics approach to evaluate the impact of breed differences. The dogs were divided into two groups (n = 13 each) based on their breed, specifically Weimaraner and Dalmatian, the former known for their possible susceptibility to gastrointestinal disease. Quantitative and qualitative differences between the two experimental groups were identified based on analyses performed on pooled biological samples. The overall fecal proteome profile comprised 58 proteins, of which 37 were common, while comparative proteomics analysis detected 15 proteins with different abundances. Notably, the fecal proteome of Weimaraners showed an over-representation of proteins such as pantetheinase, which promotes inflammatory reactions; ferritin heavy chain and hemoglobin, possibly associated with gut ulceration and/or rectal bleeding typical of IBD; and anionic trypsin, implicated in inflammatory bowel disease. Notably, in Dalmatians, despite the absence of specific predispositions, some proteins associated with chronic enteropathy (e.g., carboxypeptidase B and serine protease 1) were also over-represented. Additionally, some proteins linked to breed variation included enzymes associated with “protein digestion and absorption” and “glycolysis and gluconeogenesis”. These findings suggest, for the first time, that the variable breed is a factor that may potentially influence the fecal proteome in dogs. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 2702 KB  
Article
Evaluation of Hypovirus Infection on the Vesicular Protein Expression Pattern of Cryphonectria parasitica by TMT-Based Proteomics Analysis
by Zishan Zeng, Nanxin Lin, Tao Lu, Jian Xu, Zheng Zhang, Fang Wang and Jinzi Wang
Biology 2025, 14(9), 1123; https://doi.org/10.3390/biology14091123 - 25 Aug 2025
Viewed by 27
Abstract
Hypovirus infection is known to reduce the pathogenicity of Cryphonectria parasitica, the causative agent of chestnut blight. Isoforms derived from a viral protein p48 have been discovered in host mitochondria and vesicles, which may contribute to virulence attenuation, as reported in earlier [...] Read more.
Hypovirus infection is known to reduce the pathogenicity of Cryphonectria parasitica, the causative agent of chestnut blight. Isoforms derived from a viral protein p48 have been discovered in host mitochondria and vesicles, which may contribute to virulence attenuation, as reported in earlier work using two-dimensional electrophoresis (2-DE). In this study, a total of 1739 fungal proteins were identified in fungal vesicles through Tandem Mass Tag (TMT)-based quantitative proteomics. The infection of CHV1-EP713 was associated with 75 up-regulated and 201 down-regulated proteins, predominantly involved in vesicular transport process and related cellular functions, including protein folding, membrane fusion, retrograde transport, autophagy, and ER stress responses. The down-regulation of calnexin, COPI, ArfGAP, importin-β, and Atg8 is consistent with impairments in protein folding, retrograde transport, and autophagy. Meanwhile, the up-regulation of clathrin, dynamin, Vps10p, HSP70, and t-SNAREs indicated enhanced trafficking to vacuoles and increased stress response activity. Overall, our findings indicate that hypoviral infection is associated with extensive alterations in the vesicular transport system of C. parasitica, likely mediated through changes in the abundance of multiple key protein regulators. These alterations may underlie attenuation of virulence by impacting crucial cellular processes. Full article
(This article belongs to the Section Infection Biology)
Show Figures

Graphical abstract

20 pages, 12508 KB  
Article
SIRT3 Acetylation Regulates Mitophagy to Alleviate Deoxynivalenol-Induced Apoptosis in Porcine Alveolar Macrophages Cells
by Peng Fan, Huidan Deng, Ya Wang, Zhihua Ren and Junliang Deng
Int. J. Mol. Sci. 2025, 26(17), 8222; https://doi.org/10.3390/ijms26178222 - 25 Aug 2025
Viewed by 173
Abstract
Deoxynivalenol (DON), a global mycotoxin contaminant, induces immunotoxicity in swine and humans by disrupting mitochondrial membrane integrity and activating mitophagy. SIRT3 plays an important role in regulating cell metabolism and various diseases. It also regulates apoptosis (caused by DON) by regulating the mitophagy [...] Read more.
Deoxynivalenol (DON), a global mycotoxin contaminant, induces immunotoxicity in swine and humans by disrupting mitochondrial membrane integrity and activating mitophagy. SIRT3 plays an important role in regulating cell metabolism and various diseases. It also regulates apoptosis (caused by DON) by regulating the mitophagy pathway, but this pathway has not been studied yet. Gene knockout and overexpression of SIRT3 were performed for proteomics and acetylation modification. Therefore, in this study, PAM cells were selected as an in vitro model of DON (1.1 μg/mL) exposure for 24 h. The results showed that the knockout impaired mitochondrial antioxidant function, whereas overexpression improves damage stimulation. DON can also affect the metabolism of immune pathways, but SIRT3 can enrich these substances’ metabolism. The results of the acetylation modification analysis showed that knockout affected the mRNA metabolism and others, while overexpression affected apoptosis and others. DON exposure caused fatty acid degradation, and altered MAPK signaling pathway. Knockout and overexpression of SIRT3 under DON exposure were enriched in PPAR, Ferroptosis pathway. Overexpression attenuated DON-induced mitophagy by reducing cellular ROS, as well as the expression of LC3, P62 and PINK1/Parkin. Finally, SIRT3 reduced cell apoptosis by reducing the expression of BAX and CASP3 and increasing the expression of BCL-2. These results indicated that SIRT3 could alleviate DON-induced cell damage by reducing apoptosis through the mitophagy pathway. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Graphical abstract

29 pages, 4778 KB  
Article
In Silico Development of a Chimeric Multi-Epitope Vaccine Targeting Helcococcus kunzii: Coupling Subtractive Proteomics and Reverse Vaccinology for Vaccine Target Discovery
by Khaled S. Allemailem
Pharmaceuticals 2025, 18(9), 1258; https://doi.org/10.3390/ph18091258 - 25 Aug 2025
Viewed by 220
Abstract
Background: Helcococcus kunzii, a facultative anaerobe and Gram-positive coccus, has been documented as a cunning pathogen, mainly in immunocompromised individuals, as evidenced by recent clinical and microbiological reports. It has been associated with a variety of polymicrobial infections, comprising diabetic foot [...] Read more.
Background: Helcococcus kunzii, a facultative anaerobe and Gram-positive coccus, has been documented as a cunning pathogen, mainly in immunocompromised individuals, as evidenced by recent clinical and microbiological reports. It has been associated with a variety of polymicrobial infections, comprising diabetic foot ulcers, prosthetic joint infections, osteomyelitis, endocarditis, and bloodstream infections. Despite its emerging clinical relevance, no licensed vaccine or targeted immunotherapy currently exists for H. kunzii, and its rising resistance to conventional antibiotics presents a growing public health concern. Objectives: In this study, we employed an integrated subtractive proteomics and immunoinformatics pipeline to design a multi-epitope subunit vaccine (MEV) candidate against H. kunzii. Initially, pan-proteome analysis identified non-redundant, essential, non-homologous, and virulent proteins suitable for therapeutic targeting. Methods/Results: From these, two highly conserved and surface-accessible proteins, cell division protein FtsZ and peptidoglycan glycosyltransferase FtsW, were selected as promising vaccine targets. Comprehensive epitope prediction identified nine cytotoxic T-lymphocyte (CTL), five helper T-lymphocyte (HTL), and two linear B-cell (LBL) epitopes, which were rationally assembled into a 397-amino-acid-long chimeric construct. The construct was designed using appropriate linkers and adjuvanted with the cholera toxin B (CTB) subunit (NCBI accession: AND74811.1) to enhance immunogenicity. Molecular docking and dynamics simulations revealed persistent and high-affinity ties amongst the MEV and essential immune receptors, indicating a durable ability to elicit an immune reaction. In silico immune dynamic simulations predicted vigorous B- and T-cell-mediated immune responses. Codon optimization and computer-aided cloning into the E. coli K12 host employing the pET-28a(+) vector suggested high translational efficiency and suitability for bacterial expression. Conclusions: Overall, this computationally designed MEV demonstrates favorable immunological and physicochemical properties, and presents a durable candidate for subsequent in vitro and in vivo validation against H. kunzii-associated infections. Full article
Show Figures

Figure 1

28 pages, 1198 KB  
Review
A Perspective on the Role of Mitochondrial Biomolecular Condensates (mtBCs) in Neurodegenerative Diseases and Evolutionary Links to Bacterial BCs
by Matteo Calcagnile, Pietro Alifano, Fabrizio Damiano, Paola Pontieri and Luigi Del Giudice
Int. J. Mol. Sci. 2025, 26(17), 8216; https://doi.org/10.3390/ijms26178216 - 24 Aug 2025
Viewed by 297
Abstract
Biomolecular condensates (BCs), formed through liquid–liquid phase separation (LLPS), are membraneless compartments that dynamically regulate key cellular processes. Beyond their canonical roles in energy metabolism and apoptosis, Mitochondria harbor distinct BCs, including mitochondrial RNA granules (MRGs), nucleoids, and degradasomes, that coordinate RNA processing, [...] Read more.
Biomolecular condensates (BCs), formed through liquid–liquid phase separation (LLPS), are membraneless compartments that dynamically regulate key cellular processes. Beyond their canonical roles in energy metabolism and apoptosis, Mitochondria harbor distinct BCs, including mitochondrial RNA granules (MRGs), nucleoids, and degradasomes, that coordinate RNA processing, genome maintenance, and protein homeostasis. These structures rely heavily on proteins with intrinsically disordered regions (IDRs), which facilitate the transient and multivalent interactions necessary for LLPS. In this review, we explore the composition and function of mitochondrial BCs and their emerging involvement in neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Amyotrophic lateral sclerosis, and Huntington’s disease. We provide computational evidence identifying IDR-containing proteins within the mitochondrial proteome and demonstrate their enrichment in BC-related functions. Many of these proteins are also implicated in mitochondrial stress responses, apoptosis, and pathways associated with neurodegeneration. Moreover, the evolutionary conservation of phase-separating proteins from bacteria to mitochondria underscores the ancient origin of LLPS-mediated compartmentalization. Comparative analysis reveals functional parallels between mitochondrial and prokaryotic IDPs, supporting the use of bacterial models to study mitochondrial condensates. Overall, this review underscores the critical role of mitochondrial BCs in health and disease and highlights the potential of targeting LLPS mechanisms in the development of therapeutic strategies. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Mitochondrial Neurodegenerative Diseases)
Show Figures

Figure 1

34 pages, 8321 KB  
Article
Differential Expression of Erythrocyte Proteins in Patients with Alcohol Use Disorder
by İ. İpek Boşgelmez, Gülin Güvendik, Nesrin Dilbaz and Metin Esen
Int. J. Mol. Sci. 2025, 26(17), 8199; https://doi.org/10.3390/ijms26178199 - 23 Aug 2025
Viewed by 133
Abstract
Alcohol Use Disorder (AUD) poses global health challenges, and causes hematological alterations such as macrocytosis and oxidative stress. Disruption of protein structures by alcohol and/or its metabolites may exacerbate AUDs; proteomics can elucidate the underlying biological mechanisms. This study examined the proteins differentially [...] Read more.
Alcohol Use Disorder (AUD) poses global health challenges, and causes hematological alterations such as macrocytosis and oxidative stress. Disruption of protein structures by alcohol and/or its metabolites may exacerbate AUDs; proteomics can elucidate the underlying biological mechanisms. This study examined the proteins differentially expressed in the cytosol and membrane fractions of erythrocytes obtained from 30 male patients with AUD, comparing them to samples from 15 age- and BMI-matched social drinkers (SDs) and 15 non-drinkers (control). The analysis aimed to identify the molecular differences related to alcohol consumption. The AUD patient subgrouping was based on mean corpuscular volume (MCV), with 16 individuals classified as having a normal MCV and 14 having a high MCV. Proteins were separated via two-dimensional(2D)-gel electrophoresis, digested with trypsin, and identified via Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (TOF) mass spectrometry (MALDI-TOF/TOF). Additionally, levels of malondialdehyde and 4-hydroxyalkenals (MDA + HAE), reduced glutathione (GSH), oxidized glutathione (GSSG), serum carbohydrate-deficient transferrin (%CDT), disialotransferrin (%DST), and sialic acid (SA) were analyzed. The results showed increased MDA + HAE and decreased total thiols in AUD patients, with GSSG elevated and the GSH/GSSG ratio reduced in the AUD MCV-high subgroup. Serum %CDT, %DST, and SA were significantly higher in AUD. Compared to the control profiles, the AUD group exhibited differential protein expression. Few proteins, such as bisphosphoglycerate mutase, were downregulated in AUD versus control and SD, as well as in the MCV-high AUD subgroup. Conversely, endoplasmin and gelsolin were upregulated in AUD relative to control. Cytoskeletal proteins, including spectrin-alpha chain, actin cytoplasmic 2, were overexpressed in the AUD group and MCV-high AUD subgroup. Several proteins, such as 14-3-3 isoforms, alpha-synuclein, translation initiation factors, heat shock proteins, and others, were upregulated in the MCV-high AUD subgroup. Under-expressed proteins in this subgroup include band 3 anion transport protein, bisphosphoglycerate mutase, tropomyosin alpha-3 chain, uroporphyrinogen decarboxylase, and WD repeat-containing protein 1. Our findings highlight the specific changes in protein expression associated with oxidative stress, cytoskeletal alterations, and metabolic dysregulation, specifically in AUD patients with an elevated MCV. Understanding these mechanisms is crucial for developing targeted interventions and identifying biomarkers of alcohol-induced cellular damage. The complex interplay between oxidative stress, membrane composition, and cellular function illustrates how chronic alcohol exposure affects cellular physiology. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 1611 KB  
Article
Sea Anemone Stichodactyla Haddoni Venom: Extraction Method Dictates Composition and Functional Potency
by Meiling Huang, Ming Li, Rong Zhu, Kailin Mao, Kun Pan, Xuefeidan Liu and Bingmiao Gao
Mar. Drugs 2025, 23(9), 333; https://doi.org/10.3390/md23090333 - 23 Aug 2025
Viewed by 206
Abstract
Sea anemone venoms contain diverse toxins that have significant pharmacological potential, including anticancer, ecticidal, and immunotherapeutic properties. However, critically, the extraction methodology influences venom composition and bioactivity. This study characterized venom from Stichodactyla haddoni obtained via homogenization, electrical stimulation, and milking. Extraction yields [...] Read more.
Sea anemone venoms contain diverse toxins that have significant pharmacological potential, including anticancer, ecticidal, and immunotherapeutic properties. However, critically, the extraction methodology influences venom composition and bioactivity. This study characterized venom from Stichodactyla haddoni obtained via homogenization, electrical stimulation, and milking. Extraction yields varied significantly between methods: the homogenization, electrical stimulation, and milking of healthy sea anemones yielded crude venoms at rates of 17.8%, 3.4%, and 1.5%, respectively. SDS-PAGE revealed distinct protein banding patterns and concentrations, while RP-HPLC demonstrated method-dependent compositional differences. Comprehensive proteomic profiling identified 2370 proteins, encompassing both unique and shared components across extraction techniques. Label-free quantitative analysis confirmed significant variations in protein abundance that was attributable to the extraction method. Cytotoxicity assays against cancer cell lines revealed concentration-dependent inhibition, with milking-derived venom exhibiting the highest potency. Insecticidal activity against Tenebrio molitor was also method-dependent, with milking venom inducing the highest mortality rate. These findings elucidate the profound impact of extraction methodology on the protein composition and functional activities of S. haddoni venom, providing crucial insights for its optimized exploitation in pharmacological development. Full article
Show Figures

Figure 1

28 pages, 4843 KB  
Article
Human Adipose-Stem-Cell-Derived Small Extracellular Vesicles Modulate Behavior and Glial Cells in Young and Aged Mice Following TBI
by Salma S. Abdelmaboud, Lauren D. Moss, Charles Hudson, Rekha Patel, Marta Avlas, Jessica Wohlfahrt, Tiara Wolf, Jennifer Guergues, Stanley M. Stevens, Niketa A. Patel and Paula C. Bickford
Cells 2025, 14(17), 1304; https://doi.org/10.3390/cells14171304 - 22 Aug 2025
Viewed by 184
Abstract
Traumatic brain injury (TBI) is a major cause of long-term neurological impairment, with aging amplifying vulnerability and worsening recovery. Older individuals face greater cognitive and motor deficits post-TBI and respond less effectively to treatments, as both aging and TBI independently elevate neuroinflammation and [...] Read more.
Traumatic brain injury (TBI) is a major cause of long-term neurological impairment, with aging amplifying vulnerability and worsening recovery. Older individuals face greater cognitive and motor deficits post-TBI and respond less effectively to treatments, as both aging and TBI independently elevate neuroinflammation and cognitive decline. This study evaluated the therapeutic effects of human adipose-derived stem cell small extracellular vesicles (hASC-sEVs) on neurological recovery and neuroinflammation in a mouse model of TBI. Male C57BL/6 mice (3, 15, and 20 months old) underwent controlled cortical impact (CCI) and received intranasal hASC-sEVs 48 h post-injury; control groups received PBS. A dose–response study at 7 days post injury (dpi) identified 20 µg as the optimal therapeutic dose, improving motor function, reducing neuroinflammation, and enhancing neurogenesis. This was followed by a 30-dpi study assessing cognitive function, neuroinflammation, neurogenesis, and proteomic changes in microglia and astrocytes via mass spectrometry. hASC-sEV treatment significantly improved behavioral outcomes and reduced neuroinflammatory markers (GFAP, IBA-1, and MHC-II), with reduced efficacy observed in older mice. Proteomics revealed that hASC-sEVs reduce inflammatory proteins (TNF-α, IL-1β, IFNG, CCL2) and modulated mitochondrial dysfunction and reactive oxygen species. These results highlight hASC-sEVs as a promising cell-free therapy for improving TBI outcomes, especially in aging populations. Full article
(This article belongs to the Special Issue Glial Cells: Physiological and Pathological Perspective)
Show Figures

Figure 1

Back to TopTop