Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (87)

Search Parameters:
Keywords = proteolytic antibody

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1036 KiB  
Review
ADAM Proteases in Cancer: Biological Roles, Therapeutic Challenges, and Emerging Opportunities
by Sakshi Arora, Andrew M. Scott and Peter W. Janes
Cancers 2025, 17(10), 1703; https://doi.org/10.3390/cancers17101703 - 19 May 2025
Viewed by 1868
Abstract
ADAM (A Disintegrin and Metalloproteinase) family members are multifunctional transmembrane proteases that govern tumorigenesis and metastasis by cleaving membrane-bound substrates such as growth factors, cytokines, and cell adhesion molecules. Several ADAMs, including ADAM8, ADAM9, ADAM10, ADAM12, and ADAM17, are overexpressed in malignancies and [...] Read more.
ADAM (A Disintegrin and Metalloproteinase) family members are multifunctional transmembrane proteases that govern tumorigenesis and metastasis by cleaving membrane-bound substrates such as growth factors, cytokines, and cell adhesion molecules. Several ADAMs, including ADAM8, ADAM9, ADAM10, ADAM12, and ADAM17, are overexpressed in malignancies and are linked with a poor prognosis. These proteases contribute to tumour growth by regulating cell proliferation, cell fate, invasion, angiogenesis, and immune evasion. ADAM10 and ADAM17, especially, facilitate the shedding of critical developmental and growth factors and their receptors, as well as immuno-regulatory molecules, hence promoting tumour progression, immune escape, and resistance to therapy. Recent work has unveiled multiple regulatory pathways that modulate ADAM functions, which include trafficking, dimerization, and conformational modifications that affect substrate accessibility. These observations have rekindled efforts to produce selective ADAM inhibitors, avoiding the off-target consequences reported with early small molecule inhibitors targeting the enzyme active site, which is conserved also in matrix metalloproteinases (MMPs). Promising approaches tested in preclinical models and, in some cases, clinical settings include more selective small-molecule inhibitors, monoclonal antibodies, and antibody–drug conjugates designed to specifically target ADAMs. In this review, we will discuss the emerging roles of ADAMs in cancer biology, as well as the molecular processes that control their function. We further discuss the therapeutic potential of targeting ADAMs, with a focus on recent advances and future directions in the development of ADAM-specific cancer therapies. Full article
Show Figures

Figure 1

136 pages, 24434 KiB  
Perspective
Alzheimer’s Is a Multiform Disease of Sustained Neuronal Integrated Stress Response Driven by the C99 Fragment Generated Independently of AβPP; Proteolytic Production of Aβ Is Suppressed in AD-Affected Neurons: Evolution of a Theory
by Vladimir Volloch and Sophia Rits-Volloch
Int. J. Mol. Sci. 2025, 26(9), 4252; https://doi.org/10.3390/ijms26094252 - 29 Apr 2025
Viewed by 1342
Abstract
The present Perspective analyzes the remarkable evolution of the Amyloid Cascade Hypothesis 2.0 (ACH2.0) theory of Alzheimer’s disease (AD) since its inception a few years ago, as reflected in the diminishing role of amyloid-beta (Aβ) in the disease. In the initial iteration of [...] Read more.
The present Perspective analyzes the remarkable evolution of the Amyloid Cascade Hypothesis 2.0 (ACH2.0) theory of Alzheimer’s disease (AD) since its inception a few years ago, as reflected in the diminishing role of amyloid-beta (Aβ) in the disease. In the initial iteration of the ACH2.0, Aβ-protein-precursor (AβPP)-derived intraneuronal Aβ (iAβ), accumulated to neuronal integrated stress response (ISR)-eliciting levels, triggers AD. The neuronal ISR, in turn, activates the AβPP-independent production of its C99 fragment that is processed into iAβ, which drives the disease. The second iteration of the ACH2.0 stemmed from the realization that AD is, in fact, a disease of the sustained neuronal ISR. It introduced two categories of AD—conventional and unconventional—differing mainly in the manner of their causation. The former is caused by the neuronal ISR triggered by AβPP-derived iAβ, whereas in the latter, the neuronal ISR is elicited by stressors distinct from AβPP-derived iAβ and arising from brain trauma, viral and bacterial infections, and various types of inflammation. Moreover, conventional AD always contains an unconventional component, and in both forms, the disease is driven by iAβ generated independently of AβPP. In its third, the current, iteration, the ACH2.0 posits that proteolytic production of Aβ is suppressed in AD-affected neurons and that the disease is driven by C99 generated independently of AβPP. Suppression of Aβ production in AD seems an oxymoron: Aβ is equated with AD, and the later is inconceivable without the former in an ingrained Amyloid Cascade Hypothesis (ACH)-based notion. But suppression of Aβ production in AD-affected neurons is where the logic leads, and to follow it we only need to overcome the inertia of the preexisting assumptions. Moreover, not only is the generation of Aβ suppressed, so is the production of all components of the AβPP proteolytic pathway. This assertion is not a quantum leap (unless overcoming the inertia counts as such): the global cellular protein synthesis is severely suppressed under the neuronal ISR conditions, and there is no reason for constituents of the AβPP proteolytic pathway to be exempted, and they, apparently, are not, as indicated by the empirical data. In contrast, tau protein translation persists in AD-affected neurons under ISR conditions because the human tau mRNA contains an internal ribosomal entry site in its 5′UTR. In current mouse models, iAβ derived from AβPP expressed exogenously from human transgenes elicits the neuronal ISR and thus suppresses its own production. Its levels cannot principally reach AD pathology-causing levels regardless of the number of transgenes or the types of FAD mutations that they (or additional transgenes) carry. Since the AβPP-independent C99 production pathway is inoperative in mice, the current transgenic models have no potential for developing the full spectrum of AD pathology. What they display are only effects of the AβPP-derived iAβ-elicited neuronal ISR. The paper describes strategies to construct adequate transgenic AD models. It also details the utilization of human neuronal cells as the only adequate model system currently available for conventional and unconventional AD. The final alteration of the ACH2.0, introduced in the present Perspective, is that AβPP, which supports neuronal functionality and viability, is, after all, potentially produced in AD-affected neurons, albeit not conventionally but in an ISR-driven and -compatible process. Thus, the present narrative begins with the “omnipotent” Aβ capable of both triggering and driving the disease and ends up with this peptide largely dislodged from its pedestal and retaining its central role in triggering the disease in only one, although prevalent (conventional), category of AD (and driving it in none). Among interesting inferences of the present Perspective is the determination that “sporadic AD” is not sporadic at all (“non-familial” would be a much better designation). The term has fatalistic connotations, implying that the disease can strike at random. This is patently not the case: The conventional disease affects a distinct subpopulation, and the basis for unconventional AD is well understood. Another conclusion is that, unless prevented, the occurrence of conventional AD is inevitable given a sufficiently long lifespan. This Perspective also defines therapeutic directions not to be taken as well as auspicious ways forward. The former category includes ACH-based drugs (those interfering with the proteolytic production of Aβ and/or depleting extracellular Aβ). They are legitimate (albeit inefficient) preventive agents for conventional AD. There is, however, a proverbial snowball’s chance in hell of them being effective in symptomatic AD, lecanemab, donanemab, and any other “…mab” or “…stat” notwithstanding. They comprise Aβ-specific antibodies, inhibitors of beta- and gamma-secretase, and modulators of the latter. In the latter category, among ways to go are the following: (1) Depletion of iAβ, which, if sufficiently “deep”, opens up a tantalizing possibility of once-in-a-lifetime preventive transient treatment for conventional AD and aging-associated cognitive decline, AACD. (2) Composite therapy comprising the degradation of C99/iAβ and concurrent inhibition of the neuronal ISR. A single transient treatment could be sufficient to arrest the progression of conventional AD and prevent its recurrence for life. Multiple recurrent treatments would achieve the same outcome in unconventional AD. Alternatively, the sustained reduction/removal of unconventional neuronal ISR-eliciting stressors through the elimination of their source would convert unconventional AD into conventional one, preventable/treatable by a single transient administration of the composite C99/iAβ depletion/ISR suppression therapy. Efficient and suitable ISR inhibitors are available, and it is explicitly clear where to look for C99/iAβ-specific targeted degradation agents—activators of BACE1 and, especially, BACE2. Directly acting C99/iAβ-specific degradation agents such as proteolysis-targeting chimeras (PROTACs) and molecular-glue degraders (MGDs) are also viable options. (3) A circumscribed shift (either upstream or downstream) of the position of transcription start site (TSS) of the human AβPP gene, or, alternatively, a gene editing-mediated excision or replacement of a small, defined segment of its portion encoding 5′-untranslated region of AβPP mRNA; targeting AβPP RNA with anti-antisense oligonucleotides is another possibility. If properly executed, these RNA-based strategies would not interfere with the protein-coding potential of AβPP mRNA, and each would be capable of both preventing and stopping the AβPP-independent generation of C99 and thus of either preventing AD or arresting the progression of the disease in its conventional and unconventional forms. The paper is interspersed with “validation” sections: every conceptually significant notion is either validated by the existing data or an experimental procedure validating it is proposed. Full article
Show Figures

Figure 1

14 pages, 2044 KiB  
Brief Report
Entry Efficiency, Protease Dependence, and Antibody-Mediated Neutralization of SARS-CoV-2 Sublineages KP.3.1.1 and XEC
by Prerna Arora, Amy Kempf, Inga Nehlmeier, Sebastian R. Schulz, Hans-Martin Jäck, Markus Hoffmann and Stefan Pöhlmann
Vaccines 2025, 13(4), 385; https://doi.org/10.3390/vaccines13040385 - 3 Apr 2025
Viewed by 692
Abstract
Background: The SARS-CoV-2 variants KP.3.1.1 and XEC currently dominate the COVID-19 epidemic. However, their cell tropism, proteolytic processing, and susceptibility to neutralization by monoclonal antibodies remain incompletely characterized. Methods: We employed pseudotyped viruses to assess the entry efficiency of KP.3.1.1 and XEC in [...] Read more.
Background: The SARS-CoV-2 variants KP.3.1.1 and XEC currently dominate the COVID-19 epidemic. However, their cell tropism, proteolytic processing, and susceptibility to neutralization by monoclonal antibodies remain incompletely characterized. Methods: We employed pseudotyped viruses to assess the entry efficiency of KP.3.1.1 and XEC in various cell lines, their dependence on TMPRSS2 for lung cell entry, and their ability to use ACE2 for infection. Additionally, we evaluated their susceptibility to neutralization by monoclonal antibodies BD55-4637 and BD55-5514. Results: KP.3.1.1 and XEC entered cell lines with similar efficiency as the parental JN.1 lineage and utilized TMPRSS2 for Calu-3 lung cell entry. Unlike JN.1, KP.3.1.1 and XEC failed to efficiently use murine ACE2 for cell entry. Both variants were effectively neutralized by the monoclonal antibodies BD55-4637 and BD55-5514, suggesting therapeutic potential. Conclusions: Our findings demonstrate that JN.1, KP.3.1.1, and XEC, like their predecessor BA.2.86, rely on TMPRSS2 for lung cell entry and remain sensitive to certain neutralizing monoclonal antibodies. However, these variants differ in their ability to utilize ACE2 species orthologs for cell entry. Full article
(This article belongs to the Special Issue SARS-CoV-2 Variants, Vaccines, and Immune Responses)
Show Figures

Figure 1

14 pages, 916 KiB  
Review
The Crosstalk Between NETs and the Complement Cascade: An Overview in Nephrological Autoimmune Disease
by Xhuliana Kajana, Gianluca Caridi, Maurizio Bruschi, Sonia Spinelli, Francesca Lugani, Gian Marco Ghiggeri, Edoardo La Porta, Gabriele Mortari, Enrico E. Verrina, Andrea Angeletti and Carolina Bigatti
Int. J. Mol. Sci. 2025, 26(6), 2789; https://doi.org/10.3390/ijms26062789 - 20 Mar 2025
Cited by 1 | Viewed by 1049
Abstract
The complement cascade and Neutrophil Extracellular Traps (NETs) represent fundamental tools in protecting the host from foreign pathogens. Complement components and relative fragments, classically assigned to the innate immunity, represent a key link with the humoral immune response. NETs are a crucial component [...] Read more.
The complement cascade and Neutrophil Extracellular Traps (NETs) represent fundamental tools in protecting the host from foreign pathogens. Complement components and relative fragments, classically assigned to the innate immunity, represent a key link with the humoral immune response. NETs are a crucial component of the innate immune response, consisting of chromatin release from activated neutrophils. These web-like structures facilitate pathogen entrapment and elimination through proteolytic degradation and antimicrobial effectors. Previous findings suggested complement components and NETs have a significant role in the pathogenesis of several diseases characterized by inflammation, such as autoimmune and infectious diseases. However, the crosstalk between NETs and the complement cascade has only recently been investigated, and several aspects still need to be fully clarified. Recent evidence seems to suggest a bidirectional link between the complement cascade and NETosis. We here present the interaction between complement components and NETs in specific autoimmune diseases that mostly affect the kidney, such as systemic lupus erythematosus, Antineutrophilic Cytoplasmic Antibody (ANCA)-associated vasculitis and antiphospholipid syndrome. The mechanisms reported here may represent specific targets for the development of possible therapeutic strategies. Full article
Show Figures

Figure 1

20 pages, 2801 KiB  
Article
A Novel Human Anti-FV mAb as a Potential Tool for Diagnostic and Coagulation Inhibitory Approaches
by Margherita Passariello, Rosa Rapuano Lembo, Lorenzo Manna, Ciro Miele, Antonello Merlino, Cristina Mazzaccara, Antonio Leonardi and Claudia De Lorenzo
Int. J. Mol. Sci. 2025, 26(6), 2721; https://doi.org/10.3390/ijms26062721 - 18 Mar 2025
Viewed by 665
Abstract
Cardiovascular diseases, including thrombosis, are the leading cause of mortality worldwide. The generation of monoclonal antibodies (mAb) targeting specific coagulation factors could provide more targeted and safer anticoagulant therapies. Factor V (FV) is a critical cofactor in the prothrombinase complex, which catalyzes the [...] Read more.
Cardiovascular diseases, including thrombosis, are the leading cause of mortality worldwide. The generation of monoclonal antibodies (mAb) targeting specific coagulation factors could provide more targeted and safer anticoagulant therapies. Factor V (FV) is a critical cofactor in the prothrombinase complex, which catalyzes the conversion of prothrombin to thrombin, a key enzyme in the coagulation cascade. We isolated a novel human antibody specific to FV by using phage display technology. The selection occurred by panning a large repertoire of phages expressing human antibody fragments (scFv) in parallel on the purified recombinant protein in its native form (FV) or activated by proteolytic maturation (Factor Va (FVa)). Through ELISA screening, we identified the clone with the highest binding affinity for both targets, and it was successfully converted into IgG1. The novel human mAb, called D9, was found capable of binding to Factor V with a low nM affinity both by ELISA and BLI assays, whereas its cross-reactivity with some other coagulation factors was found null or very poor. Furthermore, when tested in blood clotting tests, it was found able to prolong activated partial thromboplastin time (aPTT). Thus, D9 could become not only a potential therapeutic agent as a specific anticoagulant but also a precious tool for diagnostic and research applications. Full article
(This article belongs to the Special Issue New Advances in Thrombosis: 3rd Edition)
Show Figures

Figure 1

14 pages, 3398 KiB  
Article
Characterisation of Alternaria alternata Allergoids: Evaluation of the Stability of Grass Pollen Allergen Extracts Mixed with Alternaria alternata Allergoids
by Eva Abel-Fernández, Enrique Fernández-Caldas and Salvador Iborra
J. Fungi 2025, 11(3), 181; https://doi.org/10.3390/jof11030181 - 25 Feb 2025
Viewed by 939
Abstract
Allergens from pollen, mites, and moulds often sensitise patients simultaneously, posing challenges for developing stable and effective combination vaccines. Alternaria alternata, a major source of indoor and outdoor allergens, is strongly linked to asthma development and contains proteolytic enzymes that can degrade [...] Read more.
Allergens from pollen, mites, and moulds often sensitise patients simultaneously, posing challenges for developing stable and effective combination vaccines. Alternaria alternata, a major source of indoor and outdoor allergens, is strongly linked to asthma development and contains proteolytic enzymes that can degrade other allergens, potentially reducing vaccine efficacy. This study aimed to evaluate the safety, efficacy, and stability of polymerised A. alternata extracts (allergoids) compared to native extracts and their compatibility with pollen extracts (Phleum pratense). Allergoids were prepared using glutaraldehyde and characterised through SDS-PAGE, LC-MS/MS, NMR, and gas chromatography. Their immunogenicity and IgE-binding properties were assessed via Western blot and ELISA competition assays, while enzymatic activity was analysed using ApiZym kits. Mice immunisation experiments were conducted to evaluate antibody responses. Polymerised extracts exhibited reduced IgE-binding capacity while maintaining IgG-binding and immunogenicity. Mice immunised with allergoids generated antibodies that efficiently blocked IgE binding in allergic patients. Proteolytic activity was significantly reduced in allergoids, and pollen extracts remained stable when combined with them. These findings demonstrate that A. alternata allergoids are a safer, more stable alternative for immunotherapy, offering enhanced efficacy and reduced injections for polysensitised patients. This study provides critical insights for designing optimised combination vaccines. Full article
Show Figures

Figure 1

15 pages, 2368 KiB  
Article
A Novel BoHV-1-Vectored Subunit RVFV Vaccine Induces a Robust Humoral and Cell-Mediated Immune Response Against Rift Valley Fever in Sheep
by Selvaraj Pavulraj, Rhett W. Stout and Shafiqul I. Chowdhury
Viruses 2025, 17(3), 304; https://doi.org/10.3390/v17030304 - 23 Feb 2025
Viewed by 656
Abstract
Rift Valley fever (RVF) is a vector-borne zoonotic viral disease that causes abortion storms, fetal malformations, and neonatal mortality in livestock ruminants. In humans, RVF can lead to hemorrhagic fever, encephalitis, retinitis, or blindness, and about 1% of patients die. Since there are [...] Read more.
Rift Valley fever (RVF) is a vector-borne zoonotic viral disease that causes abortion storms, fetal malformations, and neonatal mortality in livestock ruminants. In humans, RVF can lead to hemorrhagic fever, encephalitis, retinitis, or blindness, and about 1% of patients die. Since there are no registered vaccines for human use, developing RVF vaccines for use in animals is crucial to protect animals and prevent the spread of the virus from infecting humans. We recently developed a live bovine herpesvirus type 1 quadruple gene-mutant vector (BoHV-1qmv) that lacks virulence and immunosuppressive properties. Further, we engineered a BoHV-1qmv-vectored subunit Rift Valley fever virus (RVFV) vaccine (BoHV-1qmv Sub-RVFV) for cattle, in which a chimeric polyprotein coding for the RVFV Gc, Gn, and bovine granulocyte–macrophage colony-stimulating factor (GMCSF) proteins is fused but cleaved proteolytically in infected cells into individual membrane-anchored Gc and secreted Gn-GMCSF proteins. Calves vaccinated with the BoHV-1qmv Sub-RVFV vaccine generated moderate levels of RVFV-specific serum-neutralizing (SN) antibodies and cellular immune responses. In the current study, we repurposed the BoHV-1qmv Sub-RVFV for sheep by replacing the RVFV Gc and Gn ORF sequences codon-optimized for bovines with the corresponding ovine-codon-optimized sequences and by fusing the sheep GM-CSF ORF sequences with the Gn ORF sequence. A combined primary intranasal-plus-subcutaneous primary immunization induced a moderate level of BoHV-1 (vector)- and vaccine strain MP12-specific SN antibodies and MP-12-specific cellular immune responses. Notably, an intranasal booster vaccination after 29 days triggered a rapid (within 7 days) rise in MP-12-specific SN antibody titers. Therefore, the BoHV-1qmv-vectored subunit RVFV vaccine is safe and highly immunogenic in sheep and can potentially be an efficient subunit vaccine for sheep against RVFV. Full article
(This article belongs to the Special Issue Animal Herpesvirus 2025)
Show Figures

Figure 1

20 pages, 1686 KiB  
Article
A New IL-6-Inducing Mechanism in Cancer with New Therapeutic Possibilities
by Leif Håkansson, Pontus Dunér, Erik Broströmer, Bengt Gustavsson, Yvonne Wettergren, Bijar Ghafouri, Annika Håkansson and Birgitta Clinchy
Cancers 2024, 16(21), 3588; https://doi.org/10.3390/cancers16213588 - 24 Oct 2024
Cited by 1 | Viewed by 1873
Abstract
Background: Interleukin-6 is dysregulated in multiple pathological conditions, e.g., cancer and inflammatory diseases. Aim: To investigate new mechanisms for the regulation of pathological IL-6 production. Methods: PBMCs (peripheral blood mononuclear cells) stimulated by cancer serum factors or specific peptides produce [...] Read more.
Background: Interleukin-6 is dysregulated in multiple pathological conditions, e.g., cancer and inflammatory diseases. Aim: To investigate new mechanisms for the regulation of pathological IL-6 production. Methods: PBMCs (peripheral blood mononuclear cells) stimulated by cancer serum factors or specific peptides produce interleukin-6 (IL-6). Immunoregulatory albumin neo-structures and peptides were identified with 2D gel electrophoresis and MALDI-TOF-MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) analyses. Il-6 and albumin neo-structures were determined by ELISA (enzyme-linked immunosorbent assay). Results: Conformational changes in normal serum albumin by proteolytic degradation generates an IL-6-inducing neo-structure, IL-6-inducing factor (IL-6IF). This neo-structure is immunogenic which results in the production of autoantibodies. IL-6 production induced by IL-6IF and cancer patient sera is inhibited by specific antibodies. The serum concentration of IL-6IF is significantly higher in advanced cancer stages, and its presence is significantly correlated with the survival of the patients. Conclusions: A new mechanism for the induction IL-6 synthesis is presented. Based on this mechanism, the pathological IL-6 production related to enhanced proteolytic activity can be diagnosed and selectively inhibited by specific antibodies. Such antibodies were identified and purified. Thus, the neo-structure, inducing pathological IL-6 production, associated with a reduced survival of cancer patients, can be selectively removed by the therapeutic administration of antibodies leaving the function of IL-6 needed for the normal activity of the immune system intact. Full article
(This article belongs to the Section Cancer Pathophysiology)
Show Figures

Figure 1

10 pages, 1453 KiB  
Article
Comparison of Antigen Retrieval Methods for Immunohistochemical Analysis of Cartilage Matrix Glycoproteins Using Cartilage Intermediate Layer Protein 2 (CILP-2) as an Example
by Taavi Torga, Siim Suutre, Kalle Kisand, Marina Aunapuu and Andres Arend
Methods Protoc. 2024, 7(5), 67; https://doi.org/10.3390/mps7050067 - 24 Aug 2024
Cited by 1 | Viewed by 1927
Abstract
The aim of this study was to compare different antigen retrieval methods to improve the outcome of immunohistochemistry (IHC) performed on osteoarthritic (OA) cartilage obtained from total knee replacement operation. A voluminous and dense extracellular matrix of articular cartilage inhibits antibody penetration, and [...] Read more.
The aim of this study was to compare different antigen retrieval methods to improve the outcome of immunohistochemistry (IHC) performed on osteoarthritic (OA) cartilage obtained from total knee replacement operation. A voluminous and dense extracellular matrix of articular cartilage inhibits antibody penetration, and therefore, proteins present at low concentrations and masked during fixation may need antigen retrieval to enhance an IHC outcome. We focused on the IHC detection of a minor but diagnostically promising cartilage glycoprotein, CILP-2 (cartilage intermediate layer protein 2), to demonstrate the effect of four different protocols: (1) heat-induced epitope retrieval (HIER), (2) proteolytic-induced epitope retrieval applying proteinase K and hyaluronidase (PIER), (3) HIER combined with PIER, and (4) no antigen retrieval (control). A semi-quantitative staining assessment based on the CILP-2 staining extent was applied. Out of the tested antigen retrieval protocols, the best CILP-2 IHC staining results were achieved by PIER. Combining PIER with HIER did not improve CILP-2 staining in the given experimental setting. Rather the opposite, the application of heat reduced the positive effect of PIER on CILP-2 staining and resulted in the frequent detachment of sections from the slides. Our findings emphasize the need for proper adaptation of antigen retrieval protocols for IHC to maximize the quantitative evaluation of minor matrix proteins in OA articular cartilage samples. Full article
(This article belongs to the Section Biomedical Sciences and Physiology)
Show Figures

Figure 1

12 pages, 1583 KiB  
Article
Influence of Anticoagulants on the Dissociation of Cardiac Troponin Complex in Blood Samples
by Natalia S. Riabkova, Alexander E. Kogan, Ivan A. Katrukha, Alexandra V. Vylegzhanina, Agnessa P. Bogomolova, Amina K. Alieva, Dmitry V. Pevzner, Anastasia V. Bereznikova and Alexey G. Katrukha
Int. J. Mol. Sci. 2024, 25(16), 8919; https://doi.org/10.3390/ijms25168919 - 16 Aug 2024
Cited by 3 | Viewed by 1343
Abstract
Immunodetection of cardiac isoforms of troponin I (cTnI) and troponin T (cTnT) in blood samples is widely used for the diagnosis of acute myocardial infarction. The cardiac troponin complex (ITC-complex), comprising cTnI, cTnT, and troponin C (TnC), makes up a large portion of [...] Read more.
Immunodetection of cardiac isoforms of troponin I (cTnI) and troponin T (cTnT) in blood samples is widely used for the diagnosis of acute myocardial infarction. The cardiac troponin complex (ITC-complex), comprising cTnI, cTnT, and troponin C (TnC), makes up a large portion of troponins released into the bloodstream after the necrosis of cardiomyocytes. However, the stability of the ITC-complex has not been fully investigated. This study aimed to investigate the stability of the ITC-complex in blood samples. A native ITC-complex was incubated in buffer solutions, serum, and citrate, heparin, or EDTA plasma at various temperatures. Western blotting and gel filtration were performed, and troponins were detected using specific monoclonal antibodies. The ITC-complex dissociated at 37 °C in buffers with or without anticoagulants, in citrate, heparin, and EDTA plasmas, and in serum, into a binary cTnI-TnC complex (IC-complex) and free cTnT. In plasma containing heparin and EDTA, the IC-complex further dissociated into free TnC and cTnI. No dissociation was found at 4 °C or at room temperature (RT) in all matrices within 24 h except for EDTA plasma. After incubation at 37 °C in EDTA plasma and serum, dissociation was accompanied by proteolytic degradation of both cTnI and cTnT. The presence of anti-troponin autoantibodies in the sample impeded dissociation of the ITC-complex. The ITC-complex dissociates in vitro to form the IC-complex and free cTnT at 37 °C but is mostly stable at 4 °C or RT. Further dissociation of the IC-complex occurs at 37 °C in plasmas containing heparin and EDTA. Full article
Show Figures

Figure 1

19 pages, 2235 KiB  
Review
Enhancing Neoadjuvant Virotherapy’s Effectiveness by Targeting Stroma to Improve Resectability in Pancreatic Cancer
by Khandoker Usran Ferdous, Mulu Z. Tesfay, Aleksandra Cios, Randal S. Shelton, Conner Hartupee, Alicja Urbaniak, Jean Christopher Chamcheu, Michail N. Mavros, Emmanouil Giorgakis, Bahaa Mustafa, Camila C. Simoes, Isabelle R. Miousse, Alexei G. Basnakian, Omeed Moaven, Steven R. Post, Martin J. Cannon, Thomas Kelly and Bolni Marius Nagalo
Biomedicines 2024, 12(7), 1596; https://doi.org/10.3390/biomedicines12071596 - 18 Jul 2024
Cited by 2 | Viewed by 2414
Abstract
About one-fourth of patients with pancreatic ductal adenocarcinoma (PDAC) are categorized as borderline resectable (BR) or locally advanced (LA). Chemotherapy and radiation therapy have not yielded the anticipated outcomes in curing patients with BR/LA PDAC. The surgical resection of these tumors presents challenges [...] Read more.
About one-fourth of patients with pancreatic ductal adenocarcinoma (PDAC) are categorized as borderline resectable (BR) or locally advanced (LA). Chemotherapy and radiation therapy have not yielded the anticipated outcomes in curing patients with BR/LA PDAC. The surgical resection of these tumors presents challenges owing to the unpredictability of the resection margin, involvement of vasculature with the tumor, the likelihood of occult metastasis, a higher ratio of positive lymph nodes, and the relatively larger size of tumor nodules. Oncolytic virotherapy has shown promising activity in preclinical PDAC models. Unfortunately, the desmoplastic stroma within the PDAC tumor microenvironment establishes a barrier, hindering the infiltration of oncolytic viruses and various therapeutic drugs—such as antibodies, adoptive cell therapy agents, and chemotherapeutic agents—in reaching the tumor site. Recently, a growing emphasis has been placed on targeting major acellular components of tumor stroma, such as hyaluronic acid and collagen, to enhance drug penetration. Oncolytic viruses can be engineered to express proteolytic enzymes that cleave hyaluronic acid and collagen into smaller polypeptides, thereby softening the desmoplastic stroma, ultimately leading to increased viral distribution along with increased oncolysis and subsequent tumor size regression. This approach may offer new possibilities to improve the resectability of patients diagnosed with BR and LA PDAC. Full article
(This article belongs to the Special Issue Virotherapy and Gene Therapy in Cancer)
Show Figures

Figure 1

19 pages, 3346 KiB  
Article
Evaluation of the Inhibitory Potential of Synthetic Peptides Homologous to CDR3 Regions of a Monoclonal Antibody against Bothropic Venom Serine Proteases
by Lucas Yuri Saladini, Marcos Jorge Magalhães-Junior, Cristiane Castilho Fernandes da Silva, Priscila Gonçalves Coutinho Oliveira, Roberto Tadashi Kodama, Lais Gomes, Milton Yutaka Nishiyama-Jr, Patrick Jack Spencer, Wilmar Dias da Silva and Fernanda Calheta Vieira Portaro
Int. J. Mol. Sci. 2024, 25(10), 5181; https://doi.org/10.3390/ijms25105181 - 9 May 2024
Cited by 1 | Viewed by 1887
Abstract
Snakebite accidents, neglected tropical diseases per the WHO, pose a significant public health threat due to their severity and frequency. Envenomation by Bothrops genus snakes leads to severe manifestations due to proteolytic enzymes. While the antibothropic serum produced by the Butantan Institute saves [...] Read more.
Snakebite accidents, neglected tropical diseases per the WHO, pose a significant public health threat due to their severity and frequency. Envenomation by Bothrops genus snakes leads to severe manifestations due to proteolytic enzymes. While the antibothropic serum produced by the Butantan Institute saves lives, its efficacy is limited as it fails to neutralize certain serine proteases. Hence, developing new-generation antivenoms, like monoclonal antibodies, is crucial. This study aimed to explore the inhibitory potential of synthetic peptides homologous to the CDR3 regions of a monoclonal antibody targeting a snake venom thrombin-like enzyme (SVTLE) from B. atrox venom. Five synthetic peptides were studied, all stable against hydrolysis by venoms and serine proteases. Impressively, four peptides demonstrated uncompetitive SVTLE inhibition, with Ki values ranging from 10−6 to 10−7 M. These findings underscore the potential of short peptides homologous to CDR3 regions in blocking snake venom toxins, suggesting their promise as the basis for new-generation antivenoms. Thus, this study offers potential advancements in combatting snakebites, addressing a critical public health challenge in tropical and subtropical regions. Full article
(This article belongs to the Special Issue The Biology and Therapeutic Potential of Metalloproteases)
Show Figures

Figure 1

13 pages, 2067 KiB  
Article
Natural Antibodies Produced in Vaccinated Patients and COVID-19 Convalescents Hydrolyze Recombinant RBD and Nucleocapsid (N) Proteins
by Anna M. Timofeeva, Liliya Sh. Shayakhmetova, Artem O. Nikitin, Tatyana A. Sedykh, Andrey L. Matveev, Daniil V. Shanshin, Ekaterina A. Volosnikova, Iuliia A. Merkuleva, Dmitriy N. Shcherbakov, Nina V. Tikunova, Sergey E. Sedykh and Georgy A. Nevinsky
Biomedicines 2024, 12(5), 1007; https://doi.org/10.3390/biomedicines12051007 - 2 May 2024
Cited by 4 | Viewed by 2012
Abstract
Antibodies are protein molecules whose primary function is to recognize antigens. However, recent studies have demonstrated their ability to hydrolyze specific substrates, such as proteins, oligopeptides, and nucleic acids. In 2023, two separate teams of researchers demonstrated the proteolytic activity of natural plasma [...] Read more.
Antibodies are protein molecules whose primary function is to recognize antigens. However, recent studies have demonstrated their ability to hydrolyze specific substrates, such as proteins, oligopeptides, and nucleic acids. In 2023, two separate teams of researchers demonstrated the proteolytic activity of natural plasma antibodies from COVID-19 convalescents. These antibodies were found to hydrolyze the S-protein and corresponding oligopeptides. Our study shows that for antibodies with affinity to recombinant structural proteins of the SARS-CoV-2: S-protein, its fragment RBD and N-protein can only hydrolyze the corresponding protein substrates and are not cross-reactive. By using strict criteria, we have confirmed that this proteolytic activity is an intrinsic property of antibodies and is not caused by impurities co-eluting with them. This discovery suggests that natural proteolytic antibodies that hydrolyze proteins of the SARS-CoV-2 virus may have a positive impact on disease pathogenesis. It is also possible for these antibodies to work in combination with other antibodies that bind specific epitopes to enhance the process of virus neutralization. Full article
Show Figures

Figure 1

13 pages, 2405 KiB  
Article
Using Biotinylated Iron-Responsive Element to Analyze the Activity of Iron Regulatory Proteins
by De-Liang Zhang, Hayden Ollivierre and Tracey A. Rouault
Int. J. Mol. Sci. 2024, 25(9), 4852; https://doi.org/10.3390/ijms25094852 - 29 Apr 2024
Cited by 1 | Viewed by 1439
Abstract
Iron regulatory proteins (IRP1 and IRP2) are the master regulators of mammalian iron homeostasis. They bind to the iron-responsive elements (IREs) of the transcripts of iron-related genes to regulate their expression, thereby maintaining cellular iron availability. The primary method to measure the IRE-binding [...] Read more.
Iron regulatory proteins (IRP1 and IRP2) are the master regulators of mammalian iron homeostasis. They bind to the iron-responsive elements (IREs) of the transcripts of iron-related genes to regulate their expression, thereby maintaining cellular iron availability. The primary method to measure the IRE-binding activity of IRPs is the electrophoresis mobility shift assay (EMSA). This method is particularly useful for evaluating IRP1 activity, since IRP1 is a bifunctional enzyme and its protein levels remain similar during conversion between the IRE-binding protein and cytosolic aconitase forms. Here, we exploited a method of using a biotinylated-IRE probe to separate IRE-binding IRPs followed by immunoblotting to analyze the IRE-binding activity. This method allows for the successful measurement of IRP activity in cultured cells and mouse tissues under various iron conditions. By separating IRE-binding IRPs from the rest of the lysates, this method increases the specificity of IRP antibodies and verifies whether a band represents an IRP, thereby revealing some previously unrecognized information about IRPs. With this method, we showed that the S711-phosphorylated IRP1 was found only in the IRE-binding form in PMA-treated Hep3B cells. Second, we found a truncated IRE-binding IRP2 isoform that is generated by proteolytic cleavage on sites in the 73aa insert region of the IRP2 protein. Third, we found that higher levels of SDS, compared to 1–2% SDS in regular loading buffer, could dramatically increase the band intensity of IRPs in immunoblots, especially in HL-60 cells. Fourth, we found that the addition of SDS or LDS to cell lysates activated protein degradation at 37 °C or room temperature, especially in HL-60 cell lysates. As this method is more practical, sensitive, and cost-effective, we believe that its application will enhance future research on iron regulation and metabolism. Full article
(This article belongs to the Special Issue Iron Metabolism and Toxicity)
Show Figures

Figure 1

8 pages, 6457 KiB  
Case Report
Factor VII Deficiency in Systemic Mastocytosis with an Associated Myeloid Neoplasm
by Giorgio Rosati, Sofia Camerlo, Alessandro Fornari, Valerio Marci, Barbara Montaruli and Alessandro Morotti
Hematol. Rep. 2024, 16(1), 132-139; https://doi.org/10.3390/hematolrep16010014 - 12 Mar 2024
Viewed by 1710
Abstract
Factor VII (FVII) deficiency is a rare bleeding disorder that can be classified as congenital or acquired, and the majority of acquired cases are due to vitamin K deficiency or liver disease. Isolated acquired FVII deficiency is a rare occurrence and has been [...] Read more.
Factor VII (FVII) deficiency is a rare bleeding disorder that can be classified as congenital or acquired, and the majority of acquired cases are due to vitamin K deficiency or liver disease. Isolated acquired FVII deficiency is a rare occurrence and has been associated with inhibitors or auto-antibodies. Here, we describe a patient with polycythemia vera who developed systemic mastocytosis and FVII deficiency simultaneously. FVII deficiency was not caused by inhibitors and improved with antineoplastic treatment. Acquired FVII deficiency has been reported in cases of sepsis, possibly due to proteolytic degradation induced by the activation of monocytes or endothelial cells. Malignancies have been shown to cause a depletion in circulating FVII through the direct binding of cancer cells. This case report suggests a potential association between SM associated with a hematological neoplasm (SM-AHN) and acquired FVII deficiency. Further evaluations are recommended in patients with systemic mastocytosis to gain a better understanding of the relationship between pathological mast cells and clotting factor concentrations. Full article
Show Figures

Figure 1

Back to TopTop