Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = protein concentration oscillation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1720 KiB  
Review
Sperm-Derived Dysfunction of Human Embryos: Molecular Mechanisms and Clinical Resolution
by Jan Tesarik and Raquel Mendoza Tesarik
Int. J. Mol. Sci. 2025, 26(13), 6217; https://doi.org/10.3390/ijms26136217 - 27 Jun 2025
Viewed by 487
Abstract
In addition to the male genome, the fertilizing spermatozoon delivers to the oocyte several factors whose deficiency can cause embryo dysfunction. Sperm oocyte-activating factor, identified as phoshoplipase C zeta (PLCζ), drives oocyte exit from meiotic arrest through a signaling pathway initiated by periodic [...] Read more.
In addition to the male genome, the fertilizing spermatozoon delivers to the oocyte several factors whose deficiency can cause embryo dysfunction. Sperm oocyte-activating factor, identified as phoshoplipase C zeta (PLCζ), drives oocyte exit from meiotic arrest through a signaling pathway initiated by periodic rises of free cytosolic Ca2+ concentration (calcium oscillations). Sperm centrioles, together with oocyte proteins, form centrosomes that are responsible for aster formation, pronuclear migration, and DNA polarization before nuclear syngamy and subsequent mitotic divisions. Sperm DNA fragmentation can be at the origin of aneuploidies, while epigenetic issues, mainly abnormal methylation of DNA-associated histones, cause asynchronies of zygotic gene activation among embryonic cells. Sperm long and short non-coding RNAs are important epigenetic regulators affecting critical developmental processes. Dysfunction of sperm PLCζ, centrioles, DNA, and RNA mostly converge to aneuploidy, developmental arrest, implantation failure, miscarriage, abortion, or offspring disease. With the exception of DNA fragmentation, the other sperm issues are more difficult to diagnose. Specific tests, including heterologous human intracytoplasmic sperm injection (ICSI) into animal oocytes, genetic testing for mutations in PLCZ1 (the gene coding for PLCζ in humans) and associated genes, and next-generation sequencing of sperm transcriptome, are currently available. Oral antioxidant treatment and in vitro selection of healthy spermatozoa can be used in cases of sperm DNA fragmentation, while ICSI with assisted oocyte activation is useful to overcome oocyte-activation defects. No clinically confirmed therapy is yet available for sperm RNA issues. Full article
(This article belongs to the Special Issue Embryonic Development and Differentiation: 2nd Edition)
Show Figures

Graphical abstract

30 pages, 6855 KiB  
Article
Circadian-Mediated Regulation of Growth, Chloroplast Proteome, Targeted Metabolomics and Gene Regulatory Network in Spinacia oleracea Under Drought Stress
by Ajila Venkat and Sowbiya Muneer
Agriculture 2025, 15(5), 522; https://doi.org/10.3390/agriculture15050522 - 28 Feb 2025
Viewed by 1239
Abstract
The paramount objectives of this study were to analyze the beneficial role of the circadian clock in alleviating drought stress in an essential green leafy horticultural crop, spinach (Spinacia oleracea), and to attain knowledge on drought-stress adaptation for crop productivity. From [...] Read more.
The paramount objectives of this study were to analyze the beneficial role of the circadian clock in alleviating drought stress in an essential green leafy horticultural crop, spinach (Spinacia oleracea), and to attain knowledge on drought-stress adaptation for crop productivity. From dawn to dusk, a circadian core oscillator-based defense mechanism was noticed in relation to the strength of the chloroplast proteome and transcriptome, and the defense hormone fused it along with the molecular physiology using genotypes “Malav Jyoti” and “Delhi Green”. A photo-periodic rhythmicity containing a 4 h time interval (morning–evening loop) for 12 h in spinach was exhibited under drought-stressed (day-5) and drought re-irrigated (day-10) conditions. The circadian oscillator controlled 70% of the major part of growth and physiological measures such as the biomass, plant height, leaf-relative water content, and the shoot–root ratio under drought stress. Contrarily, drought stress resulted in the upregulation of antioxidative activities and stress markers, whereas it was diversified and maintained in the case of the re-irrigated state at certain rhythmic time intervals of the circadian clock. The physiological parameters we examined, such as net photosynthesis, transpiration, stomatal conductance, and antioxidative enzymes, exhibited the role of the circadian clock in drought stress by showing 80–90% improvements found in plants when they were re-watered after drought stress based on their circadian oscillations. Based on the physiological results, 10 a.m. and 2 p.m. were disclosed to be the rhythmic times for controlling drought stress. Moreover, an extensive study on a gene expression analysis of circadian clock-based genes (CCA1, LHY, TOC1, PRR3, PRR5, PRR7, PRR9, and RVE8) and drought-responsive genes (DREB1, DREB2, and PIP1) depicted the necessity of a circadian oscillator in alleviating drought stress. Hence, the findings of our study allowed for an intense understanding of photo-periodic rhythms in terms of the morning–evening loop, which is in line with the survival rate of spinach plants and occurs by altering cellular ROS-scavenging mechanisms, chloroplast protein profiles, gene regulation, and metabolite concentrations. Full article
Show Figures

Figure 1

18 pages, 6059 KiB  
Article
Moso Bamboo’s Survival Strategy Against Chilling Stress in Signaling Dynamics
by Xiong Jing, Chunju Cai, Pengfei Geng and Yi Wang
Forests 2024, 15(12), 2132; https://doi.org/10.3390/f15122132 - 2 Dec 2024
Cited by 1 | Viewed by 1035
Abstract
Phyllostachys edulis, an economically and ecologically significant bamboo species, has substantial research value in applications as a bamboo substitute for plastic and in forest carbon sequestration. However, frequent seasonal low-temperature events due to global climate change affect the growth, development, and productivity [...] Read more.
Phyllostachys edulis, an economically and ecologically significant bamboo species, has substantial research value in applications as a bamboo substitute for plastic and in forest carbon sequestration. However, frequent seasonal low-temperature events due to global climate change affect the growth, development, and productivity of P. edulis. Calcium signaling, serving as a versatile second messenger, is involved in various stress responses and nitrogen metabolism. In this study, we analyzed the calcium signaling dynamics and regulatory strategies in P. edulis under chilling stress. Differentially expressed genes (DEGs) from the CBF families, AMT families, NRT families, and Ca2+ sensor families, including CaM, CDPK, and CBL, were identified using transcriptomics. Additionally, we explored the law of Ca2+ flux and distribution in the roots of P. edulis under chilling stress and validated these findings by assessing the content or activity of Ca2+ sensor proteins and nitrogen transport proteins in the roots. The results indicated that the Ca2+ sensor families of CaM, CDPK, and CBL in P. edulis exhibited significant transcriptional changes under chilling stress. Notably, PH02Gene03957, PH02Gene42787, and PH02Gene19300 were significantly upregulated, while the expressions of PH02Gene08456, PH02Gene01209, and PH02Gene37879 were suppressed. In particular, the expression levels of the CBF family gene PH02Gene14168, a downstream target gene of the calcium channels, increased significantly. P. edulis exhibited an influx of Ca2+ at the root, accompanied by oscillating negative peaks under chilling stress. Spatially, the cytosolic calcium concentration ([Ca2+]cyt) within the root cells increased. The CIPK family genes, interacting with Ca2+-CBL in downstream signaling pathways, showed significant differential expressions. In addition, the expressions of the NRT and AMT family genes changed correspondingly. Our study demonstrates that Ca2+ signaling is involved in the regulatory network of P. edulis under chilling stress. [Ca2+]cyt fluctuations in the roots of P. edulis are induced by chilling stress, reflecting an influx of extracellular Ca2+. Upon binding to Ca2+, downstream target genes from the CBF family are activated. Within the Ca2+–CBL–CIPK signaling network, the CIPK family plays a crucial role in nitrogen metabolism pathways. Full article
Show Figures

Figure 1

17 pages, 3887 KiB  
Article
Dynamics of Fermentation Parameters and Bacterial Community in Rumen of Calves During Dietary Protein Oscillation
by Kun Zhang, Zhanwei Teng, Qing Meng, Shuai Liu, Liping Yuan, Tong Fu, Ningning Zhang and Tengyun Gao
Microorganisms 2024, 12(11), 2123; https://doi.org/10.3390/microorganisms12112123 - 23 Oct 2024
Viewed by 1308
Abstract
Dietary crude protein concentration oscillation can improve the nitrogen utilization efficiency of ruminants. However, little is known about the dynamic changes in microbiota and fermentation in the rumen of calves during the oscillation period. In this study, six calves were fed an oscillating [...] Read more.
Dietary crude protein concentration oscillation can improve the nitrogen utilization efficiency of ruminants. However, little is known about the dynamic changes in microbiota and fermentation in the rumen of calves during the oscillation period. In this study, six calves were fed an oscillating diet at 2-day intervals, including a high-protein diet (HP) and a low-protein diet (LP). The rumen fermentation parameters, plasma urea-N concentration, and rumen bacterial diversity were characterized throughout the oscillation period. The concentrations of volatile fatty acids, NH3-N, and plasma urea-N in rumen changed significantly with an oscillating diet. The abundance of Prevotella_1, Selenomonadales, Succiniclasticum, Clostridiales, Ruminococcaceae, Lachnospiraceae, and Rikenellaceae_RC9_gut_group showed significant changes with diet. Prevotella_1 was positively correlated, and Lachnospiraceae_AC2044_group and Saccharofermentans were negatively correlated with NH3-N. The abundance of Amino Acid Metabolism, Metabolism of Other Amino Acids, and Glycan Biosynthesis and Metabolism pathways, annotated by bacterial functional genes, decreased when the diet changed from HP to LP. The abundance of the Carbohydrate Metabolism pathway increased after the two dietary changes. In conclusion, the plasma urea-N concentration was not as sensitive and quick to adapt to diet changes as the rumen fermentation parameters. Rumen bacteria were responsible for increasing the nitrogen utilization efficiency of calves fed an oscillating diet. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

14 pages, 2492 KiB  
Article
The Role of Ion Channels and Intracellular Signaling Cascades in the Inhibitory Action of WIN 55,212-2 upon Hyperexcitation
by Sergei A. Maiorov, Denis P. Laryushkin, Kristina A. Kritskaya, Valery P. Zinchenko, Sergei G. Gaidin and Artem M. Kosenkov
Brain Sci. 2024, 14(7), 668; https://doi.org/10.3390/brainsci14070668 - 29 Jun 2024
Cited by 2 | Viewed by 1379
Abstract
Gi-coupled receptors, particularly cannabinoid receptors (CBRs), are considered perspective targets for treating brain pathologies, including epilepsy. However, the precise mechanism of the anticonvulsant effect of the CBR agonists remains unknown. We have found that WIN 55,212-2 (a CBR agonist) suppresses the synchronous oscillations [...] Read more.
Gi-coupled receptors, particularly cannabinoid receptors (CBRs), are considered perspective targets for treating brain pathologies, including epilepsy. However, the precise mechanism of the anticonvulsant effect of the CBR agonists remains unknown. We have found that WIN 55,212-2 (a CBR agonist) suppresses the synchronous oscillations of the intracellular concentration of Ca2+ ions (epileptiform activity) induced in the neurons of rat hippocampal neuron-glial cultures by bicuculline or NH4Cl. As we have demonstrated, the WIN 55,212-2 effect is mediated by CB1R receptors. The agonist suppresses Ca2+ inflow mediated by the voltage-gated calcium channels but does not alter the inflow mediated by NMDA, AMPA, and kainate receptors. We have also found that phospholipase C (PLC), protein kinase C (PKC), and G-protein-coupled inwardly rectifying K+ channels (GIRK channels) are involved in the molecular mechanism underlying the inhibitory action of CB1R activation against epileptiform activity. Thus, our results demonstrate that the antiepileptic action of CB1R agonists is mediated by different intracellular signaling cascades, including non-canonical PLC/PKC-associated pathways. Full article
(This article belongs to the Special Issue New Insights into Neuropharmacology)
Show Figures

Figure 1

17 pages, 3315 KiB  
Article
Insights into the Chemistry and Functional Properties of Edible Mushrooms Cropped in the Northeastern Highlands of Puebla, Mexico
by Yesenia Pacheco-Hernández, Edmundo Lozoya-Gloria, Clemente Mosso-González, Jenaro Leocadio Varela-Caselis and Nemesio Villa-Ruano
Appl. Sci. 2024, 14(6), 2520; https://doi.org/10.3390/app14062520 - 16 Mar 2024
Viewed by 2244
Abstract
Herein, we present an integrative investigation of the nutritional and nutraceutical potential of Lactarius indigo, Clitocybe nuda, Clitocybe subclavipes, Russula delica, Russula brevipes, Clitocybe squamulosa, and Amanita jacksonii, which are edible mushrooms consumed in the northeastern [...] Read more.
Herein, we present an integrative investigation of the nutritional and nutraceutical potential of Lactarius indigo, Clitocybe nuda, Clitocybe subclavipes, Russula delica, Russula brevipes, Clitocybe squamulosa, and Amanita jacksonii, which are edible mushrooms consumed in the northeastern highlands of Puebla, Mexico. The content of protein oscillated from 4.8 to 10.9 g 100 g−1 fresh weight (FW) whereas that of fiber ranged from 8.8 to 19.7 g 100 g−1 FW. The edible species presented low amounts of fat (1.5–3.4 g 100 g−1 FW) and reducing sugars (0.8–2.9 g 100 g−1 FW), whereas the content of vitamin C oscillated from 6.5 to 84.8 mg 100 g−1 dry weight (DW). In addition, four vitamins of B complex (thiamine, riboflavin, vitamin B6, and folate) were determined in different concentrations. A high abundance of potassium (92.3–294.3 mg 100 g−1 DW), calcium (139.1–446.9 mg 100 g−1 DW), and magnesium (81.3–339.1 mg 100 g−1 DW) was determined in most of the edible mushrooms, as well as detectable levels of p-hydroxybenzoic acid (2.2–48.7 mg 100 g−1 DW), protocatechuic acid (0.5–50.8 mg 100 g−1 DW), oleic acid (14.2–98.3 mg 100 g−1 DW), linoleic acid (748–1549.6 mg 100 g−1 DW), and linolenic acid (from 9.1 to 83.6 mg 100 g−1 DW). The total phenol content and antioxidant capacity significantly (p < 0.05) varied among the studied species, and their capacity to inhibit enzymes involved in glucose, lipid, and polyamine metabolism. Nevertheless, the hydroalcoholic extracts from A. jacksonii and L. indigo efficiently inhibited alpha-glucosidase and ornithine decarboxylase (IC50 < 50 µg mL−1), respectively. The evaluation of the same extracts on microorganisms associated with the gastrointestinal tract showed negligible toxicity on probiotics (MIC > 500 µg mL−1) and moderate toxicity against pathogenic bacteria (MIC < 400 µg mL−1). Based on the studied parameters, principal component analysis and orthogonal partial least squares discriminant analysis clustered these edible mushrooms into two main groups with similar biological or chemical properties. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

22 pages, 4073 KiB  
Article
The Proteome of Extracellular Vesicles Released from Pulmonary Microvascular Endothelium Reveals Impact of Oxygen Conditions on Biotrauma
by Wolfgang Schaubmayr, Beatrix Hochreiter, Eva Hunyadi-Gulyas, Louise Riegler, Katy Schmidt, Akos Tiboldi, Bernhard Moser, Klaus U. Klein, Katharina Krenn, Gisela Scharbert, Thomas Mohr, Johannes A. Schmid, Andreas Spittler and Verena Tretter
Int. J. Mol. Sci. 2024, 25(4), 2415; https://doi.org/10.3390/ijms25042415 - 19 Feb 2024
Cited by 2 | Viewed by 2321
Abstract
The lung can experience different oxygen concentrations, low as in hypoxia, high as under supplemental oxygen therapy, or oscillating during intermittent hypoxia as in obstructive sleep apnea or intermittent hypoxia/hyperoxia due to cyclic atelectasis in the ventilated patient. This study aimed to characterize [...] Read more.
The lung can experience different oxygen concentrations, low as in hypoxia, high as under supplemental oxygen therapy, or oscillating during intermittent hypoxia as in obstructive sleep apnea or intermittent hypoxia/hyperoxia due to cyclic atelectasis in the ventilated patient. This study aimed to characterize the oxygen-condition-specific protein composition of extracellular vesicles (EVs) released from human pulmonary microvascular endothelial cells in vitro to decipher their potential role in biotrauma using quantitative proteomics with bioinformatic evaluation, transmission electron microscopy, flow cytometry, and non-activated thromboelastometry (NATEM). The release of vesicles enriched in markers CD9/CD63/CD81 was enhanced under intermittent hypoxia, strong hyperoxia and intermittent hypoxia/hyperoxia. Particles with exposed phosphatidylserine were increased under intermittent hypoxia. A small portion of vesicles were tissue factor-positive, which was enhanced under intermittent hypoxia and intermittent hypoxia/hyperoxia. EVs from treatment with intermittent hypoxia induced a significant reduction of Clotting Time in NATEM analysis compared to EVs isolated after normoxic exposure, while after intermittent hypoxia/hyperoxia, tissue factor in EVs seems to be inactive. Gene set enrichment analysis of differentially expressed genes revealed that EVs from individual oxygen conditions potentially induce different biological processes such as an inflammatory response under strong hyperoxia and intermittent hypoxia/hyperoxia and enhancement of tumor invasiveness under intermittent hypoxia. Full article
(This article belongs to the Special Issue Characterization of Extracellular Vesicles in Disease)
Show Figures

Figure 1

28 pages, 1967 KiB  
Review
Parkinson’s Disease: Cells Succumbing to Lifelong Dopamine-Related Oxidative Stress and Other Bioenergetic Challenges
by Hirohisa Watanabe, Johannes M. Dijkstra and Toshiharu Nagatsu
Int. J. Mol. Sci. 2024, 25(4), 2009; https://doi.org/10.3390/ijms25042009 - 7 Feb 2024
Cited by 18 | Viewed by 4389
Abstract
The core pathological event in Parkinson’s disease (PD) is the specific dying of dopamine (DA) neurons of the substantia nigra pars compacta (SNc). The reasons why SNc DA neurons are especially vulnerable and why idiopathic PD has only been found in humans are [...] Read more.
The core pathological event in Parkinson’s disease (PD) is the specific dying of dopamine (DA) neurons of the substantia nigra pars compacta (SNc). The reasons why SNc DA neurons are especially vulnerable and why idiopathic PD has only been found in humans are still puzzling. The two main underlying factors of SNc DA neuron vulnerability appear related to high DA production, namely (i) the toxic effects of cytoplasmic DA metabolism and (ii) continuous cytosolic Ca2+ oscillations in the absence of the Ca2+-buffer protein calbindin. Both factors cause oxidative stress by producing highly reactive quinones and increasing intra-mitochondrial Ca2+ concentrations, respectively. High DA expression in human SNc DA neuron cell bodies is suggested by the abundant presence of the DA-derived pigment neuromelanin, which is not found in such abundance in other species and has been associated with toxicity at higher levels. The oxidative stress created by their DA production system, despite the fact that the SN does not use unusually high amounts of energy, explains why SNc DA neurons are sensitive to various genetic and environmental factors that create mitochondrial damage and thereby promote PD. Aging increases multiple risk factors for PD, and, to a large extent, PD is accelerated aging. To prevent PD neurodegeneration, possible approaches that are discussed here are (1) reducing cytoplasmic DA accumulation, (2) blocking cytoplasmic Ca2+ oscillations, and (3) providing bioenergetic support. Full article
(This article belongs to the Special Issue Recent Molecular Research of Parkinson's Disease)
Show Figures

Figure 1

10 pages, 3246 KiB  
Article
Evidence of Noisy Oscillations of cAMP under Nutritional Stress Condition in Budding Yeast
by Sonia Colombo, Maddalena Collini, Laura D’Alfonso, Giuseppe Chirico and Enzo Martegani
Symmetry 2023, 15(9), 1793; https://doi.org/10.3390/sym15091793 - 20 Sep 2023
Cited by 1 | Viewed by 1066
Abstract
The Ras/cAMP/PKA pathway regulates responses to nutrients’ availability and stress in budding yeast. The cAMP levels are subjected to negative feedback, and we have previously simulated a dynamic model of this pathway suggesting the existence of stable oscillatory states depending on the symmetrical [...] Read more.
The Ras/cAMP/PKA pathway regulates responses to nutrients’ availability and stress in budding yeast. The cAMP levels are subjected to negative feedback, and we have previously simulated a dynamic model of this pathway suggesting the existence of stable oscillatory states depending on the symmetrical and opposed activity of the RasGEF (Cdc25) and RasGAPs (Ira proteins). Noisy oscillations related to the activity of this pathway were reported by looking at the nuclear localization of the transcription factor Msn2, and sustained oscillations of the nuclear accumulation of Msn2 under the condition of limiting glucose were observed. We were able to reproduce the periodic accumulation of Msn2-GFP protein in a yeast cell under the condition of limiting glucose, and we also detected oscillations of cAMP. We used a sensor based on a fusion protein between YFP-Epac2-CFP expressed in yeast cells. The FRET between CFP and YFP is controlled by the cAMP concentration. This sensor allows us to monitor changes in cAMP concentrations in a single yeast cell over a long time. Using this method, we were able to detect noisy oscillations of cAMP levels in single yeast cells under conditions of nutritional stress caused by limiting glucose availability. Full article
(This article belongs to the Section Life Sciences)
Show Figures

Figure 1

22 pages, 3111 KiB  
Article
Oscillating Glucose Induces the Increase in Inflammatory Stress through Ninjurin-1 Up-Regulation and Stimulation of Transport Proteins in Human Endothelial Cells
by Laura Toma, Gabriela M. Sanda, Camelia S. Stancu, Loredan S. Niculescu, Mina Raileanu and Anca V. Sima
Biomolecules 2023, 13(4), 626; https://doi.org/10.3390/biom13040626 - 30 Mar 2023
Cited by 7 | Viewed by 3583
Abstract
Clinical data implicate fluctuations of high levels of plasma glucose in cardiovascular diseases. Endothelial cells (EC) are the first cells of the vessel wall exposed to them. Our aim was to evaluate the effects of oscillating glucose (OG) on EC function and to [...] Read more.
Clinical data implicate fluctuations of high levels of plasma glucose in cardiovascular diseases. Endothelial cells (EC) are the first cells of the vessel wall exposed to them. Our aim was to evaluate the effects of oscillating glucose (OG) on EC function and to decipher new molecular mechanisms involved. Cultured human ECs (EA.hy926 line and primary cells) were exposed to OG (5/25 mM alternatively at 3 h), constant HG (25 mM) or physiological concentration (5 mM, NG) for 72 h. Markers of inflammation (Ninj-1, MCP-1, RAGE, TNFR1, NF-kB, and p38 MAPK), oxidative stress (ROS, VPO1, and HO-1), and transendothelial transport proteins (SR-BI, caveolin-1, and VAMP-3) were assessed. Inhibitors of ROS (NAC), NF-kB (Bay 11-7085), and Ninj-1 silencing were used to identify the mechanisms of OG-induced EC dysfunction. The results revealed that OG determined an increased expression of Ninj-1, MCP-1, RAGE, TNFR1, SR-B1, and VAMP-3 andstimulated monocyte adhesion. All of these effects were induced bymechanisms involving ROS production or NF-kB activation. NINJ-1 silencing inhibited the upregulation of caveolin-1 and VAMP-3 induced by OG in EC. In conclusion, OG induces increased inflammatory stress, ROS production, and NF-kB activation and stimulates transendothelial transport. To this end, we propose a novel mechanism linking Ninj-1 up-regulation to increased expression of transendothelial transport proteins. Full article
Show Figures

Graphical abstract

23 pages, 5309 KiB  
Article
Oscillatory Deficits in the Sub-Chronic PCP Rat Model for Schizophrenia Are Reversed by mGlu5 Receptor-Positive Allosteric Modulators VU0409551 and VU0360172
by Jessica Brown, Ben Grayson, Joanna C. Neill, Michael Harte, Mark J. Wall and Richard T. Ngomba
Cells 2023, 12(6), 919; https://doi.org/10.3390/cells12060919 - 16 Mar 2023
Cited by 4 | Viewed by 3028
Abstract
The cognitive deficits of schizophrenia are linked to imbalanced excitatory and inhibitory signalling in the prefrontal cortex (PFC), disrupting gamma oscillations. We previously demonstrated that two mGlu5 receptor-positive allosteric modulators (PAMs), VU0409551 and VU0360172, restore cognitive deficits in the sub-chronic PCP (scPCP) rodent [...] Read more.
The cognitive deficits of schizophrenia are linked to imbalanced excitatory and inhibitory signalling in the prefrontal cortex (PFC), disrupting gamma oscillations. We previously demonstrated that two mGlu5 receptor-positive allosteric modulators (PAMs), VU0409551 and VU0360172, restore cognitive deficits in the sub-chronic PCP (scPCP) rodent model for schizophrenia via distinct changes in PFC intracellular signalling molecules. Here, we have assessed ex vivo gamma oscillatory activity in PFC slices from scPCP rats and investigated the effects of VU0409551 and VU0360172 upon oscillatory power. mGlu5 receptor, protein kinase C (PKC), and phospholipase C (PLC) inhibition were also used to examine ‘modulation bias’ in PAM activity. The amplitude and area power of gamma oscillations were significantly diminished in the scPCP model. Slice incubation with either VU0409551 or VU0360172 rescued scPCP-induced oscillatory deficits in a concentration-dependent manner. MTEP blocked the PAM-induced restoration of oscillatory power, confirming the requirement of mGlu5 receptor modulation. Whilst PLC inhibition prevented the power increase mediated by both PAMs, PKC inhibition diminished the effects of VU0360172 but not VU0409551. This aligns with previous reports that VU0409551 exhibits preferential activation of the phosphatidylinositol-3-kinase (PI3K) signalling pathway over the PKC cascade. Restoration of the excitatory/inhibitory signalling balance and gamma oscillations may therefore underlie the mGluR5 PAM-mediated correction of scPCP-induced cognitive deficits. Full article
(This article belongs to the Special Issue The Role of Metabotropic Glutamate Receptors in Health and Disease)
Show Figures

Figure 1

13 pages, 2439 KiB  
Article
Expression of the H2O2 Biosensor roGFP-Tpx1.C169S in Fission and Budding Yeasts and Jurkat Cells to Compare Intracellular H2O2 Levels, Transmembrane Gradients, and Response to Metals
by Laura de Cubas, Jorge Mallor, Víctor Herrera-Fernández, José Ayté, Rubén Vicente and Elena Hidalgo
Antioxidants 2023, 12(3), 706; https://doi.org/10.3390/antiox12030706 - 13 Mar 2023
Cited by 4 | Viewed by 2702
Abstract
Intracellular hydrogen peroxide (H2O2) levels can oscillate from low, physiological concentrations, to intermediate, signaling ones, and can participate in toxic reactions when overcoming certain thresholds. Fluorescent protein-based reporters to measure intracellular H2O2 have been developed in [...] Read more.
Intracellular hydrogen peroxide (H2O2) levels can oscillate from low, physiological concentrations, to intermediate, signaling ones, and can participate in toxic reactions when overcoming certain thresholds. Fluorescent protein-based reporters to measure intracellular H2O2 have been developed in recent decades. In particular, the redox-sensitive green fluorescent protein (roGFP)-based proteins fused to peroxiredoxins are among the most sensitive H2O2 biosensors. Using fission yeast as a model system, we recently demonstrated that the gradient of extracellular-to-intracellular peroxides through the plasma membrane is around 300:1, and that the concentration of physiological H2O2 is in the low nanomolar range. Here, we have expressed the very sensitive probe roGFP2-Tpx1.C169S in two other model systems, budding yeast and human Jurkat cells. As in fission yeast, the biosensor is ~40–50% oxidized in these cell types, suggesting similar peroxide steady-state levels. Furthermore, probe oxidation upon the addition of extracellular peroxides is also quantitatively similar, suggesting comparable plasma membrane H2O2 gradients. Finally, as a proof of concept, we have applied different concentrations of zinc to all three model systems and have detected probe oxidation, demonstrating that an excess of this metal can cause fluctuations of peroxides, which are moderate in yeasts and severe in mammalian cells. We conclude that the principles governing H2O2 fluxes are very similar in different model organisms. Full article
(This article belongs to the Special Issue Cellular ROS and Antioxidants: Physiological and Pathological Role)
Show Figures

Figure 1

19 pages, 3077 KiB  
Article
Roles of Calcium Signaling in Gene Expression and Photosynthetic Acclimatization of Solanum lycopersicum Micro-Tom (MT) after Mechanical Damage
by Felipe Girotto Campos, Diana Pacheco Seixas, Gustavo Ribeiro Barzotto, Letícia Galhardo Jorge, Karina Renostro Ducatti, Gisela Ferreira, Tatiane Maria Rodrigues, Edvaldo Aparecido Amaral da Silva and Carmen Sílvia Fernandes Boaro
Int. J. Mol. Sci. 2022, 23(21), 13571; https://doi.org/10.3390/ijms232113571 - 5 Nov 2022
Cited by 6 | Viewed by 2163
Abstract
A momentary increase in cytoplasmic Ca2+ generates an oscillation responsible for the activation of proteins, such as calmodulin and kinases, which interact with reactive oxygen species (ROS) for the transmission of a stress signal. This study investigated the influence of variations in [...] Read more.
A momentary increase in cytoplasmic Ca2+ generates an oscillation responsible for the activation of proteins, such as calmodulin and kinases, which interact with reactive oxygen species (ROS) for the transmission of a stress signal. This study investigated the influence of variations in calcium concentrations on plant defense signaling and photosynthetic acclimatization after mechanical damage. Solanum lycopersicum Micro-Tom was grown with 0, 2 and 4 mM Ca2+, with and without mechanical damage. The expression of stress genes was evaluated, along with levels of antioxidant enzymes, hydrogen peroxide, lipid peroxidation, histochemistry, photosynthesis and dry mass of organs. The ROS production generated by mechanical damage was further enhanced by calcium-free conditions due to the inactivation of the oxygen evolution complex, contributing to an increase in reactive species. The results indicated that ROS affected mechanical damage signaling because calcium-free plants exhibited high levels of H2O2 and enhanced expression of kinase and RBOH1 genes, necessary conditions for an efficient response to stress. We conclude that the plants without calcium supply recognized mechanical damage but did not survive. The highest expression of the RBOH1 gene and the accumulation of H2O2 in these plants signaled cell death. Plants grown in the presence of calcium showed higher expression of SlCaM2 and control of H2O2 concentration, thus overcoming the stress caused by mechanical damage, with photosynthetic acclimatization and without damage to dry mass production. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Plant Sciences in Brazil)
Show Figures

Figure 1

20 pages, 2970 KiB  
Article
Optical Study of Lysozyme Molecules in Aqueous Solutions after Exposure to Laser-Induced Breakdown
by Ruslan M. Sarimov, Tatiana A. Matveyeva, Vera A. Mozhaeva, Aleksandra I. Kuleshova, Anastasia A. Ignatova and Alexander V. Simakin
Biomolecules 2022, 12(11), 1613; https://doi.org/10.3390/biom12111613 - 1 Nov 2022
Cited by 1 | Viewed by 2297
Abstract
The properties of a lysozyme solution under laser-induced breakdown were studied. An optical breakdown under laser action in protein solutions proceeds with high efficiency: the formation of plasma and acoustic oscillations is observed. The concentration of protein molecules has very little effect on [...] Read more.
The properties of a lysozyme solution under laser-induced breakdown were studied. An optical breakdown under laser action in protein solutions proceeds with high efficiency: the formation of plasma and acoustic oscillations is observed. The concentration of protein molecules has very little effect on the physicochemical characteristics of optical breakdown. After exposure to optical breakdown, changes were observed in the enzymatic activity of lysozyme, absorption and fluorescence spectra, viscosity, and the sizes of molecules and aggregates of lysozyme measured by dynamic light scattering. However, the refractive index of the solution and the Raman spectrum did not change. The appearance of a new fluorescence peak was observed upon excitation at 350 nm and emission at 434 nm at exposure for 30 min. Previously, a peak in this range was associated with the fluorescence of amyloid fibrils. However, neither the ThT assay nor the circular dichroism dispersion confirmed the formation of amyloid fibrils. Probably, under the influence of optical breakdown, a small part of the protein degraded, and a part changed its native state and aggregated, forming functional dimers or “native aggregates”. Full article
Show Figures

Figure 1

20 pages, 573 KiB  
Article
On the Regulated Nuclear Transport of Incompletely Spliced mRNAs by HIV-Rev Protein: A Minimal Dynamic Model
by Jeffrey J. Ishizuka, Delaney A. Soble, Tiffany Y. Chang and Enrique Peacock-López
Mathematics 2022, 10(21), 3922; https://doi.org/10.3390/math10213922 - 22 Oct 2022
Viewed by 2206
Abstract
A kinetic model for the HIV-1 Rev protein is developed by drawing upon mechanistic information from the literature to formulate a set of differential equations modeling the behavior of Rev and its various associated factors over time. A set of results demonstrates the [...] Read more.
A kinetic model for the HIV-1 Rev protein is developed by drawing upon mechanistic information from the literature to formulate a set of differential equations modeling the behavior of Rev and its various associated factors over time. A set of results demonstrates the possibility of oscillations in the concentration of these factors. Finally, the results are analyzed, and future directions are discussed. Full article
(This article belongs to the Special Issue Big Data and Bioinformatics)
Show Figures

Figure 1

Back to TopTop