Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (765)

Search Parameters:
Keywords = protein–peptide profiling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3146 KiB  
Article
TnP as a Multifaceted Therapeutic Peptide with System-Wide Regulatory Capacity
by Geonildo Rodrigo Disner, Emma Wincent, Carla Lima and Monica Lopes-Ferreira
Pharmaceuticals 2025, 18(8), 1146; https://doi.org/10.3390/ph18081146 (registering DOI) - 1 Aug 2025
Abstract
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling [...] Read more.
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling of TnP-treated larvae following tail fin amputation revealed 558 differentially expressed genes (DEGs), categorized into four functional networks: (1) drug-metabolizing enzymes (cyp3a65, cyp1a) and transporters (SLC/ABC families), where TnP alters xenobiotic processing through Phase I/II modulation; (2) cellular trafficking and immune regulation, with upregulated myosin genes (myhb/mylz3) enhancing wound repair and tlr5-cdc42 signaling fine-tuning inflammation; (3) proteolytic cascades (c6ast4, prss1) coupled to autophagy (ulk1a, atg2a) and metabolic rewiring (g6pca.1-tg axis); and (4) melanogenesis-circadian networks (pmela/dct-fbxl3l) linked to ubiquitin-mediated protein turnover. Key findings highlight TnP’s unique coordination of rapid (protease activation) and sustained (metabolic adaptation) responses, enabled by short network path lengths (1.6–2.1 edges). Hub genes, such as nr1i2 (pxr), ppara, and bcl6aa/b, mediate crosstalk between these systems, while potential risks—including muscle hypercontractility (myhb overexpression) or cardiovascular effects (ace2-ppp3ccb)—underscore the need for targeted delivery. The zebrafish model validated TnP-conserved mechanisms with human relevance, particularly in drug metabolism and tissue repair. TnP’s ability to synchronize extracellular matrix remodeling, immune resolution, and metabolic homeostasis supports its development for the treatment of fibrosis, metabolic disorders, and inflammatory conditions. Conclusions: Future work should focus on optimizing tissue-specific delivery and assessing genetic variability to advance clinical translation. This system-level analysis positions TnP as a model example for next-generation multi-pathway therapeutics. Full article
Show Figures

Graphical abstract

17 pages, 2307 KiB  
Article
Transforming Tomato Industry By-Products into Antifungal Peptides Through Enzymatic Hydrolysis
by Davide Emide, Lorenzo Periccioli, Matias Pasquali, Barbara Scaglia, Stefano De Benedetti, Alessio Scarafoni and Chiara Magni
Int. J. Mol. Sci. 2025, 26(15), 7438; https://doi.org/10.3390/ijms26157438 (registering DOI) - 1 Aug 2025
Abstract
In the context of the valorization of agri-food by-products, tomato (Solanum lycopersicum L.) seeds represent a protein-rich matrix containing potential bioactives. The aim of the present work is to develop a biochemical pipeline for (i) achieving high protein recovery from tomato seed, [...] Read more.
In the context of the valorization of agri-food by-products, tomato (Solanum lycopersicum L.) seeds represent a protein-rich matrix containing potential bioactives. The aim of the present work is to develop a biochemical pipeline for (i) achieving high protein recovery from tomato seed, (ii) optimizing the hydrolysis with different proteases, and (iii) characterizing the resulting peptides. This approach was instrumental for obtaining and selecting the most promising peptide mixture to test for antifungal activity. To this purpose, proteins from an alkaline extraction were treated with bromelain, papain, and pancreatin, and the resulting hydrolysates were assessed for their protein/peptide profiles via SDS-PAGE, SEC-HPLC, and RP-HPLC. Bromelain hydrolysate was selected for antifungal tests due to its greater quantity of peptides, in a broader spectrum of molecular weights and polarity/hydrophobicity profiles, and higher DPPH radical scavenging activity, although all hydrolysates exhibited antioxidant properties. In vitro assays demonstrated that the bromelain-digested proteins inhibited the growth of Fusarium graminearum and F. oxysporum f.sp. lycopersici in a dose-dependent manner, with a greater effect at a concentration of 0.1 mg/mL. The findings highlight that the enzymatic hydrolysis of tomato seed protein represents a promising strategy for converting food by-products into bioactive agents with agronomic applications, supporting sustainable biotechnology and circular economy strategies. Full article
Show Figures

Figure 1

36 pages, 1502 KiB  
Review
A Critical Review on the Role of Lactic Acid Bacteria in Sourdough Nutritional Quality: Mechanisms, Potential, and Challenges
by Youssef Mimoune Reffai and Taoufiq Fechtali
Appl. Microbiol. 2025, 5(3), 74; https://doi.org/10.3390/applmicrobiol5030074 - 29 Jul 2025
Viewed by 135
Abstract
Sourdough fermentation, driven by the biochemical activity of lactic acid bacteria (LAB), presents a scientifically promising approach to addressing nutritional limitations in cereal-based staples. This review critically examines both the underlying mechanisms by which LAB enhance the nutritional profile of sourdough and the [...] Read more.
Sourdough fermentation, driven by the biochemical activity of lactic acid bacteria (LAB), presents a scientifically promising approach to addressing nutritional limitations in cereal-based staples. This review critically examines both the underlying mechanisms by which LAB enhance the nutritional profile of sourdough and the translational challenges in realizing these benefits. Key improvements explored include enhanced mineral bioavailability (e.g., up to 90% phytate reduction), improved protein digestibility, an attenuated glycemic response (GI ≈ 54 vs. ≈75 for conventional bread), and the generation of bioactive compounds. While in vitro and animal studies extensively demonstrate LAB’s potential to reshape nutrient profiles (e.g., phytate hydrolysis improving iron absorption, proteolysis releasing bioactive peptides), translating these effects into consistent human health outcomes proves complex. Significant challenges hinder this transition from laboratory to diet, including the limited bioavailability of LAB-derived metabolites, high strain variability, and sensitivity to fermentation conditions. Furthermore, interactions with the food matrix and host-specific factors, such as gut microbiota composition, contribute to inconsistent findings. This review highlights methodological gaps, particularly reliance on in vitro or animal models, and the lack of long-term, effective human trials. Although LAB hold significant promise for nutritional improvements in sourdough, translating these findings to validated human benefits necessitates continued efforts in mechanism-driven strain optimization, the standardization of fermentation processes, and rigorous human studies. Full article
Show Figures

Graphical abstract

15 pages, 4068 KiB  
Article
Characterization of the Avian Mitochondrial-Derived Peptide MOTS-c and Its Potential Role as a Metabolic Regulator
by Xin Shu, Jiying Liu, Bingjie Xu, Hui Wang, Li Liu, Xiaotong Zheng and Jianfei Chen
Animals 2025, 15(15), 2230; https://doi.org/10.3390/ani15152230 - 29 Jul 2025
Viewed by 116
Abstract
MOTS-c is a mitochondrial peptide that plays a crucial role in regulating energy metabolism, gene expression, and immune processes. However, current research primarily focuses on mammals like humans and mice, with no reports on avian MOTS-c. This study aimed to identify and characterize [...] Read more.
MOTS-c is a mitochondrial peptide that plays a crucial role in regulating energy metabolism, gene expression, and immune processes. However, current research primarily focuses on mammals like humans and mice, with no reports on avian MOTS-c. This study aimed to identify and characterize MOTS-c coding sequences across major poultry species through bioinformatics analysis and experimental validation. The alignment results showed high sequence similarity in the MOTS-c coding regions between avian and mammalian species. However, a single nucleotide deletion was identified in avian sequences at the position corresponding to the fourth amino acid residue of mammalian homologs, resulting in divergent downstream amino acid sequences. Despite this deletion, several residues were conserved across species. Phylogenetic analysis of mRNA sequences grouped pigeons with mammals, while protein sequence analysis revealed that poultry and mammals form separate branches, highlighting the divergence between avian and mammalian MOTS-c sequences. Tissue expression profiling demonstrated widespread distribution of chicken MOTS-c across multiple tissues, with the highest expression levels in the heart. Fasting significantly reduced heart MOTS-c expression, suggesting potential metabolic regulatory functions. Functional analysis of MOTS-c in primary hepatocytes revealed significant enrichment of the ribosome, oxidative phosphorylation, and key signaling pathways (PI3K-AKT and JAK-STAT) following 24 hours of treatment. Western blot validation confirmed MOTS-c-mediated activation of the AKT signaling pathway. This study represents the first comprehensive characterization of avian MOTS-c, providing critical insights into its evolutionary conservation and its potential functional roles in gene expression and cellular metabolism. Our findings establish a foundation for further investigation into the functions of mitochondrial-encoded peptides in avian species. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

19 pages, 3224 KiB  
Article
Supramolecular Co-Assembled Fmoc-FRGDF/Hyaluronic Acid Hydrogel for Quercetin Delivery: Multifunctional Bioactive Platform
by Xian-Ni Su, Yu-Yang Wang, Muhammed Fahad Khan, Li-Na Zhu, Zhong-Liang Chen, Zhuo Wang, Bing-Bing Song, Qiao-Li Zhao, Sai-Yi Zhong and Rui Li
Foods 2025, 14(15), 2629; https://doi.org/10.3390/foods14152629 - 26 Jul 2025
Viewed by 309
Abstract
Background: During food processing and storage, traditional protein-based delivery systems encounter significant challenges in maintaining the structural and functional integrity of bioactive compounds, primarily due to their temporal instability. Methods: In this study, a nanocomposite hydrogel was prepared through the co-assembly of a [...] Read more.
Background: During food processing and storage, traditional protein-based delivery systems encounter significant challenges in maintaining the structural and functional integrity of bioactive compounds, primarily due to their temporal instability. Methods: In this study, a nanocomposite hydrogel was prepared through the co-assembly of a self-assembling peptide, 9-Fluorenylmethoxycarbonyl-phenylalanine-arginine-glycine-aspartic acid-phenylalanine (Fmoc-FRGDF), and hyaluronic acid (HA). The stability of this hydrogel as a quercetin (Que) delivery carrier was systematically investigated. Furthermore, the impact of Que co-assembly on the microstructural evolution and physicochemical properties of the hydrogel was characterized. Concurrently, the encapsulation efficiency (EE%) and controlled release kinetics of Que were quantitatively evaluated. Results: The findings indicated that HA significantly reduced the storage modulus (G′) from 256.5 Pa for Fmoc-FRGDF to 21.1 Pa with the addition of 0.1 mg/mL HA. Despite this reduction, HA effectively slowed degradation rates; specifically, residue rates of 5.5% were observed for Fmoc-FRGDF alone compared to 14.1% with 0.5 mg/mL HA present. Notably, Que enhanced G′ within the ternary complex, increasing it from 256.5 Pa in Fmoc-FRGDF to an impressive 7527.0 Pa in the Que/HA/Fmoc-FRGDF hydrogel containing 0.1 mg/mL HA. The interactions among Que, HA, and Fmoc-FRGDF involved hydrogen bonding, electrostatic forces, and hydrophobic interactions; furthermore, the co-assembly process strengthened the β-sheet structure while significantly promoting supramolecular ordering. Interestingly, the release profile of Que adhered to the Korsmeyer–Peppas pharmacokinetic equations. Conclusions: Overall, this study examines the impact of polyphenol on the rheological properties, microstructural features, secondary structure conformation, and supramolecular ordering within peptide–polysaccharide–polyphenol ternary complexes, and the Fmoc-FRGDF/HA hydrogel system demonstrates a superior performance as a delivery vehicle for maintaining quercetin’s bioactivity, thereby establishing a multifunctional platform for bioactive agent encapsulation and controlled release. Full article
Show Figures

Figure 1

15 pages, 5467 KiB  
Article
Comparative Genomic Analysis of Lactiplantibacillus plantarum: Insights into Its Genetic Diversity, Metabolic Function, and Antibiotic Resistance
by Ruiqi Li and Chongpeng Bi
Genes 2025, 16(8), 869; https://doi.org/10.3390/genes16080869 - 24 Jul 2025
Viewed by 172
Abstract
Background/Objectives: Lactiplantibacillus plantarum is widely utilized in the fermentation industry and offers potential health benefits. However, large-scale comparative genomic analyses aimed at exploring its metabolic functions and conducting safety assessments are still lacking. Methods: In this study, we performed a comparative [...] Read more.
Background/Objectives: Lactiplantibacillus plantarum is widely utilized in the fermentation industry and offers potential health benefits. However, large-scale comparative genomic analyses aimed at exploring its metabolic functions and conducting safety assessments are still lacking. Methods: In this study, we performed a comparative genomic analysis of 324 L. plantarum strains sourced from various origins and geographical locations. Results: The results revealed that L. plantarum possesses a total of 2403 core genes, of which 12.3% have an unknown function. The phylogenetic analysis revealed a mixed distribution from various origins, suggesting complex transmission pathways. The metabolic analysis demonstrated that L. plantarum strains can produce several beneficial metabolites, including lysine, acetate, and riboflavin. Furthermore, L. plantarum is highly capable of degrading various carbohydrates and proteins, increasing its adaptability. Further, we profiled the antimicrobial peptides (AMPs) in the genomes of L. plantarum. We identified a widely distributed AMP and its variants, presenting in a total of 280 genomes. In our biosafety assessment of L. plantarum, we identified several antibiotic resistance genes, such as Tet(M), ANT(6)-Ia, and mdeA, which may have potential for horizontal gene transfer within the Lactobacillaceae family. Conclusions: This study provides genomic insights into the genetic diversity, metabolic functions, antimicrobial properties, and biosafety of L. plantarum, underscoring its potential applications in biotechnology and environmental adaptation. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

22 pages, 1781 KiB  
Article
Gene Expression Profile of the Cerebral Cortex of Niemann-Pick Disease Type C Mutant Mice
by Iris Valeria Servín-Muñoz, Daniel Ortuño-Sahagún, María Paulina Reyes-Mata, Christian Griñán-Ferré, Mercè Pallàs and Celia González-Castillo
Genes 2025, 16(8), 865; https://doi.org/10.3390/genes16080865 - 24 Jul 2025
Viewed by 280
Abstract
Background/Objectives: Niemann-Pick disease Type C (NPC) represents an autosomal recessive disorder with an incidence rate of 1 in 100,000 live births that belongs to the lysosomal storage diseases (LSDs). NPC is characterized by the abnormal accumulation of unesterified cholesterol, in addition to being [...] Read more.
Background/Objectives: Niemann-Pick disease Type C (NPC) represents an autosomal recessive disorder with an incidence rate of 1 in 100,000 live births that belongs to the lysosomal storage diseases (LSDs). NPC is characterized by the abnormal accumulation of unesterified cholesterol, in addition to being an autosomal recessive inherited pathology, which belongs to LSDs. It occurs in 95% of cases due to mutations in the NPC1 gene, while 5% of cases are due to mutations in the NPC2 gene. In the cerebral cortex (CC), the disease shows lipid inclusions, increased cholesterol and multiple sphingolipids in neuronal membranes, and protein aggregates such as hyperphosphorylated tau, α-Synuclein, TDP-43, and β-amyloid peptide. Mitochondrial damage and oxidative stress are some alterations at the cellular level in NPC. Therefore, the aim of this work was to determine the gene expression profile in the CC of NPC1 mice in order to identify altered molecular pathways that may be related to the pathophysiology of the disease. Methods: In this study, we performed a microarray analysis of a 22,000-gene chip from the cerebral cortex of an NPC mutant mouse compared to a WT mouse. Subsequently, we performed a bioinformatic analysis in which we found groups of dysregulated genes, and their expression was corroborated by qPCR. Finally, we performed Western blotting to determine the expression of proteins probably dysregulated. Results: We found groups of dysregulated genes in the cerebral cortex of the NPC mouse involved in the ubiquitination, fatty acid metabolism, differentiation and development, and underexpression in genes with mitochondrial functions, which could be involved in intrinsic apoptosis reported in NPC, in addition, we found a generalized deregulation in the cortical circadian rhythm pathway, which could be related to the depressive behavior that has even been reported in NPC patients. Conclusions: Recognizing that there are changes in the expression of genes related to ubiquitination, mitochondrial functions, and cortical circadian rhythm in the NPC mutant mouse lays the basis for targeting treatments to new potential therapeutic targets. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

24 pages, 4499 KiB  
Article
What Is Similar, What Is Different? Characterization of Mitoferrin-like Proteins from Arabidopsis thaliana and Cucumis sativus
by Karolina Małas, Ludmiła Polechońska and Katarzyna Kabała
Int. J. Mol. Sci. 2025, 26(15), 7103; https://doi.org/10.3390/ijms26157103 - 23 Jul 2025
Viewed by 135
Abstract
Chloroplasts, as the organelles primarily responsible for photosynthesis, require a substantial supply of iron ions. Conversely, due to Fe toxicity, the homeostasis of these ions is subject to tight regulation. Permease in chloroplast 1 (PIC1) has been identified as the primary iron importer [...] Read more.
Chloroplasts, as the organelles primarily responsible for photosynthesis, require a substantial supply of iron ions. Conversely, due to Fe toxicity, the homeostasis of these ions is subject to tight regulation. Permease in chloroplast 1 (PIC1) has been identified as the primary iron importer into chloroplasts. However, previous studies suggested the existence of a distinct pathway for Fe transfer to chloroplasts, likely involving mitoferrin-like 1 (MFL1) protein. In this work, Arabidopsis MFL1 (AtMFL1) and its cucumber homolog (CsMFL1) were characterized using, among others, Arabidopsis protoplasts as well as both yeast and Arabidopsis mutants. Localization of both proteins in chloroplasts has been shown to be mediated via an N-terminal transit peptide. At the gene level, MFL1 expression profiles differed between the model plant and the crop plant under varying Fe availability. The expression of other genes involved in chloroplast Fe homeostasis, including iron acquisition, trafficking, and storage, was affected to some extent in both AtMFL1 knockout and overexpressing plants. Moreover, root growth and photosynthetic parameters changed unfavorably in the mutant lines. The obtained results imply that AtMFL1 and CsMFL1, as putative chloroplast iron transporters, play a role in both iron management and the proper functioning of the plant. Full article
(This article belongs to the Special Issue New Insights in Plant Cell Biology)
Show Figures

Figure 1

21 pages, 1945 KiB  
Article
Discovery of Species-Specific Peptide Markers for Superseed Authentication Using Targeted LC-MS/MS Proteomics
by Sorel Tchewonpi Sagu, Beatrice Schnepf, Peter Stenzel, Kapil Nichani, Alexander Erban, Joachim Kopka, Harshadrai M. Rawel and Andrea Henze
Molecules 2025, 30(14), 2993; https://doi.org/10.3390/molecules30142993 - 16 Jul 2025
Viewed by 284
Abstract
The increasing popularity of “superseeds” such as flax, sesame, amaranth and quinoa as functional foods raises the need for robust analytical methods for authentication purposes. In this work, a standardized workflow for the extraction, characterization and identification of unique peptides that may be [...] Read more.
The increasing popularity of “superseeds” such as flax, sesame, amaranth and quinoa as functional foods raises the need for robust analytical methods for authentication purposes. In this work, a standardized workflow for the extraction, characterization and identification of unique peptides that may be used as markers to distinguish superseed species was investigated. Ammonium bicarbonate/urea (Ambi/urea) extraction, sodium dodecyl sulfate (SDS) buffer and trichloroacetic acid (TCA) precipitation were initially implemented and, based on the level and composition of the extracted proteins, the SDS buffer protocol was selected. Electrophoresis analysis revealed consistent protein profiles between biological replicates from each of the eleven seed species, confirming the reproducibility of the SDS buffer protocol. Targeted mass spectrometry successfully identified species-specific peptide markers for six of eleven superseeds investigated, including peptides from conlinins in flaxseed (WVQQAK), 11S globulins in sesame (LVYIER), oleosin in quinoa (DVGQTIESK), agglutin-like lectins in amaranth (CAGVSVIR), as well as cupin-like proteins in poppy seeds (INIVNSQK) and edestins in hemp seeds (FLQLSAER). Moreover, proteome cross-analysis allowed us to disqualify the isomeric peptide LTALEPTNR from 11S globulins present in amaranth and quinoa. However, no reliable markers were identified for chia, canihua, basil, black cumin, and psyllium seeds under current conditions. While this targeted proteomics approach shows promise for superseed authentication, comprehensive method validation and alternative strategies for marker-deficient species are required before routine implementation. Full article
(This article belongs to the Special Issue Application of Analytical Chemistry in Food Science)
Show Figures

Graphical abstract

30 pages, 4989 KiB  
Article
Proteomic Analysis of CHIKV-nsP3 Host Interactions in Liver Cells Identifies Novel Interacting Partners
by Nimisha Mishra, Yash Chaudhary, Sakshi Chaudhary, Anjali Singh, Priyanshu Srivastava and Sujatha Sunil
Int. J. Mol. Sci. 2025, 26(14), 6832; https://doi.org/10.3390/ijms26146832 - 16 Jul 2025
Viewed by 399
Abstract
Chikungunya virus (CHIKV), a mosquito-borne alphavirus, has re-emerged, causing widespread outbreaks and a significant clinical burden. Despite advances in virology, the molecular mechanisms governing CHIKV’s interaction with host cells remain poorly understood. In this study, we aimed to identify novel host protein interactors [...] Read more.
Chikungunya virus (CHIKV), a mosquito-borne alphavirus, has re-emerged, causing widespread outbreaks and a significant clinical burden. Despite advances in virology, the molecular mechanisms governing CHIKV’s interaction with host cells remain poorly understood. In this study, we aimed to identify novel host protein interactors of the CHIKV nonstructural protein 3 (nsP3), a critical component of the viral replication complex, using mass spectrometry-based proteomic profiling in liver-derived Huh7 cells. Co-immunoprecipitation followed by LC-MS/MS identified a wide array of host proteins associated with nsP3, revealing 52 proteins classified as high-confidence (FDR of 1%, and unique peptides > 2) CHIKV-specific interactors. A bioinformatic analysis using STRING and Cytoscape uncovered interaction networks enriched in metabolic processes, RNA processing, translation regulation, cellular detoxification, stress responses, and immune signaling pathways. A subcellular localization analysis showed that many interactors reside in the cytosol, while others localize to the nucleus, nucleolus, and mitochondria. Selected novel host protein interactions were validated through co-immunoprecipitation and immunofluorescence assays. Our findings provide new insights into the host cellular pathways hijacked by CHIKV and highlight potential targets for therapeutic intervention. This is the first report mapping direct nsP3–host protein interactions in Huh7 cells during CHIKV infection. Full article
(This article belongs to the Special Issue Host-Pathogen Interaction, 6th Edition)
Show Figures

Graphical abstract

23 pages, 11745 KiB  
Article
Tracing the Evolutionary Expansion of a Hyperdiverse Antimicrobial Peptide Gene Family in Mytilus spp.: The MyticalinDB Resource
by Dona Kireta, Pietro Decarli, Damiano Riommi, Nicolò Gualandi, Samuele Greco, Alberto Pallavicini and Marco Gerdol
Genes 2025, 16(7), 816; https://doi.org/10.3390/genes16070816 - 12 Jul 2025
Viewed by 309
Abstract
Background: The overwhelming majority of the antimicrobial peptides (AMPs) studied in mussels (Mytilus spp.) so far are specifically expressed by hemocytes and display compact disulfide-stabilized structures. However, gill-specific myticalins play a role in mucosal immunity and are one of the very [...] Read more.
Background: The overwhelming majority of the antimicrobial peptides (AMPs) studied in mussels (Mytilus spp.) so far are specifically expressed by hemocytes and display compact disulfide-stabilized structures. However, gill-specific myticalins play a role in mucosal immunity and are one of the very few examples of known molluscan AMPs lacking cysteine residues. Methods: We investigate the molecular evolution of myticalins, compiling a collection of sequences obtained by carefully annotating 169 genome assemblies of different Mytilus species. We determine the gene presence/absence patterns and gene expression profiles for the five myticalin subfamilies, including the newly reported myticalin E. Results: All sequences are deposited in MyticalinDB, a novel database that includes a total of 100 unique mature myticalin peptides encoded by 215 protein precursors, greatly enriching the compendium of these molecules from previous reports. Among the five subfamilies, myticalin A and C are the most widespread and highly expressed across all Mytilus species. Interestingly, structural prediction reveals a previously unreported strong amphipathic nature for some myticalins, which may be highly relevant for their biological activity. Conclusions: The results reported in this work support the role of myticalins in gill-associated mucosal immunity and highlight the importance of inter-individual molecular diversity in establishing an efficient response to microbial infections. The newly established MyticalinDB provides a valuable resource for investigating the evolution and extraordinary molecular diversity of this AMP family. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

18 pages, 1321 KiB  
Article
In Silico Proteomic Profiling and Bioactive Peptide Potential of Rapeseed Meal
by Katarzyna Garbacz, Jacek Wawrzykowski, Michał Czelej and Adam Waśko
Foods 2025, 14(14), 2451; https://doi.org/10.3390/foods14142451 - 12 Jul 2025
Viewed by 362
Abstract
Rapeseed meal, a byproduct of oil extraction, is increasingly recognised as a valuable source of plant protein and health-promoting peptides. This study aimed to identify key proteins in cold-pressed rapeseed meal and assess their potential to release bioactive peptides through in silico hydrolysis [...] Read more.
Rapeseed meal, a byproduct of oil extraction, is increasingly recognised as a valuable source of plant protein and health-promoting peptides. This study aimed to identify key proteins in cold-pressed rapeseed meal and assess their potential to release bioactive peptides through in silico hydrolysis using plant-derived proteases, namely papain, bromelain, and ficin. Proteomic profiling via two-dimensional electrophoresis and MALDI-TOF/TOF mass spectrometry revealed cruciferin as the dominant protein, along with other metabolic and defence-related proteins. In silico digestion of these sequences using the BIOPEP database generated thousands of peptide fragments, of which over 50% were predicted to exhibit bioactivities, including ACE and DPP-IV inhibition, as well as antioxidant, neuroprotective, and anticancer effects. Among the evaluated enzymes, bromelain exhibited the highest efficacy, yielding the greatest quantity and diversity of bioactive peptides. Notably, peptides with antihypertensive and antidiabetic properties were consistently identified across all of the protein and enzyme variants. Although certain rare functions, such as anticancer and antibacterial activities, were observed only in specific hydrolysates, their presence underscores the broader functional potential of peptides derived from rapeseed. These findings highlight the potential of rapeseed meal as a sustainable source of functional ingredients while emphasising the necessity for experimental validation to confirm the predicted bioactivities. Full article
Show Figures

Figure 1

17 pages, 2039 KiB  
Article
Protective Effects of Mackerel Protein Hydrolysates Against Oxidative Stress-Induced Atrophy in C2C12 Myotubes
by Gyu-Hyeon Park and Syng-Ook Lee
Foods 2025, 14(14), 2430; https://doi.org/10.3390/foods14142430 - 10 Jul 2025
Viewed by 428
Abstract
Muscle aging and atrophy in the elderly are closely associated with increased oxidative stress in muscle tissue. Bioactive peptides derived from protein hydrolysates have emerged as promising functional ingredients for alleviating sarcopenia due to their antioxidant properties and enrichment in essential amino acids. [...] Read more.
Muscle aging and atrophy in the elderly are closely associated with increased oxidative stress in muscle tissue. Bioactive peptides derived from protein hydrolysates have emerged as promising functional ingredients for alleviating sarcopenia due to their antioxidant properties and enrichment in essential amino acids. In a preliminary screening, mackerel protein hydrolysate (MPH) showed notable protective effects in a myotube atrophy model. This study evaluated the anti-atrophic potential of MPHs produced using different enzymes in H2O2-treated C2C12 myotubes. Among five hydrolysates, the alcalase-derived hydrolysate (MHA) demonstrated the most potent effects in maintaining myotube diameter, restoring myosin heavy chain (MYH) expression, and downregulating the atrophy-related genes MAFbx and MuRF1. Mechanistically, MHA activated the Akt/FoxO signaling pathway and inhibited NF-κB activation, thereby reducing muscle protein degradation. Additionally, MHA significantly lowered intracellular ROS levels and showed strong direct antioxidant activity. Amino acid and molecular weight profiling revealed high levels of essential amino acids and low-molecular-weight peptides, suggesting a synergistic contribution to its bioactivity. These findings suggest that MHA is a promising food-derived functional material with anti-atrophic and antioxidant properties and may be useful in preventing or managing age-related muscle loss such as sarcopenia, warranting further preclinical validation. Full article
(This article belongs to the Special Issue Preparation and Functional Activity of Food Bioactive Peptides)
Show Figures

Figure 1

23 pages, 3707 KiB  
Article
Structural and Functional Profiling of Water-Extracted Polypeptides from Periplaneta americana: A Multifunctional Cosmetic Bioactive Agent with Antioxidative and Anti-Inflammatory Properties
by Xinyu Sun, Zhengyang Zhang, Jingyao Qu, Deyun Yao, Zeyuan Sun, Jingyi Zhou, Jiayuan Xie, Mingyang Zhou, Xiaodeng Yang and Ling Wang
Molecules 2025, 30(14), 2901; https://doi.org/10.3390/molecules30142901 - 9 Jul 2025
Viewed by 421
Abstract
Low-molecular-weight polypeptides (<3 kDa) were prepared from Periplaneta americana via enzymatic hydrolysis and ultrafiltration, yielding 3.53 ± 0.01 mg/g of peptide-rich extract. The extract was primarily composed of peptides, proteins, polysaccharides, phenolics, and flavonoids. HPLC-MS analysis identified 1402 peptide sequences, 80.51% of which [...] Read more.
Low-molecular-weight polypeptides (<3 kDa) were prepared from Periplaneta americana via enzymatic hydrolysis and ultrafiltration, yielding 3.53 ± 0.01 mg/g of peptide-rich extract. The extract was primarily composed of peptides, proteins, polysaccharides, phenolics, and flavonoids. HPLC-MS analysis identified 1402 peptide sequences, 80.51% of which were below 1000 Da, predominantly consisting of tri-, tetra-, and octapeptides. Monosaccharide profiling detected D-(+)-galactose, and quantitative assays determined the contents of total phenolics (12.28 mg/g), flavonoids (15.50 mg/g), proteins (85.84 mg/g), and total sugars (17.62 mg/g). The biological activities of the extract were systematically evaluated. The peptide fraction inhibited hyaluronidase activity by 58% at 5 mg/mL, suggesting protection of extracellular matrix integrity. In HaCaT keratinocytes, it promoted cell proliferation by 62.6%, accelerated scratch wound closure by 54%, upregulated Wnt-10b and β-catenin expression, and reduced intracellular ROS levels under oxidative stress. In LPS-stimulated RAW 264.7 macrophages, the extract decreased TNF-α, IL-6, and IL-1β production by 30%, 25%, and 28%, respectively, reduced MDA levels by 35.2%, and enhanced CAT and SOD activities by 12.3% and 60.3%. In vivo, complete closure of full-thickness skin wounds in mice was achieved by day 14. Safety evaluations using the chick chorioallantoic membrane assay and human patch tests confirmed the extract to be non-irritating and non-toxic. These findings highlight Periplaneta americana extract as a promising multifunctional bioactive ingredient for cosmetic and dermatological applications. Further studies on its active components, mechanisms of action, and clinical efficacy are warranted to support its development in skin health and aesthetic medicine. Full article
Show Figures

Figure 1

21 pages, 1637 KiB  
Article
Comparative Label-Based Proteomics of Venoms from Echis ocellatus, Naja nigricollis, and Bitis arietans
by Abdulbaki Alfa-Ibrahim Adio, Samuel Odo Uko, Jiddah Muhammad Lawal, Ibrahim Malami, Nafiu Lawal, Amina Jega Yusuf Jega, Bilyaminu Abubakar, Muhammad Bashir Bello, Kasimu Ghandi Ibrahim, Murtala Bello Abubakar, Abdussamad Muhammad Abdussamad, Mujtaba Sulaiman Abubakar and Mustapha Umar Imam
Proteomes 2025, 13(3), 31; https://doi.org/10.3390/proteomes13030031 - 2 Jul 2025
Viewed by 991
Abstract
Background: Snake envenomation is a major public health issue in Nigeria, primarily due to bites from Echis ocellatus, Naja nigricollis, and Bitis arietans. Understanding their venom composition is essential for effective antivenom development. This study characterizes and compares the venom proteomes [...] Read more.
Background: Snake envenomation is a major public health issue in Nigeria, primarily due to bites from Echis ocellatus, Naja nigricollis, and Bitis arietans. Understanding their venom composition is essential for effective antivenom development. This study characterizes and compares the venom proteomes of these snakes using iTRAQ-based proteomics, focusing on key toxin families and their relative abundances. Methods: Venom samples were ethically collected from adult snakes, pooled by species, lyophilized, and stored for proteomic analysis. Proteins were extracted, digested with trypsin, and labeled with iTRAQ. Peptides were analyzed via mass spectrometry, and data were processed using Mascot and IQuant for protein identification and quantification. Results: E. ocellatus and B. arietans venoms had similar profiles, rich in C-type lectins, serine proteases, and phospholipase A2s. These comprised 17%, 11%, and 5% in E. ocellatus and 47%, 10%, and 7% in B. arietans, with metalloproteinases dominating both (53% and 47%). In N. nigricollis, three-finger toxins (9%) were most abundant, followed by metalloproteinases (3%). All species shared four core protein families, with N. nigricollis also containing four uncharacterized proteins. Conclusions: This study highlights venom compositional differences, advancing snake venom biology and informing targeted antivenom development. Full article
Show Figures

Graphical abstract

Back to TopTop