Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (238)

Search Parameters:
Keywords = progeny virus infectivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2318 KiB  
Article
Extracellular Vesicles Released by Bovine Alphaherpesvirus 1-Infected A549 Cells May Limit Subsequent Infections of the Progeny Virus
by Yuanshan Luo, Hao Yang, Yike Huang, Renee V. Goreham, Xiuyan Ding and Liqian Zhu
Int. J. Mol. Sci. 2025, 26(13), 6181; https://doi.org/10.3390/ijms26136181 - 26 Jun 2025
Viewed by 444
Abstract
Bovine alphaherpesvirus 1 (BoAHV-1) is a promising oncolytic virus that can infect the human lung carcinoma cell line A549. In an effort to adapt the virus to grow more rapidly in these cells through the serial passaging of viral progeny, we were unsuccessful. [...] Read more.
Bovine alphaherpesvirus 1 (BoAHV-1) is a promising oncolytic virus that can infect the human lung carcinoma cell line A549. In an effort to adapt the virus to grow more rapidly in these cells through the serial passaging of viral progeny, we were unsuccessful. Here, we found that extracellular vesicles (EVs) secreted by BoAHV-1-infected A549 cells (referred to as EDVs) contain 59 viral proteins, including both viral structure proteins (such as gC and gD) and viral regulatory proteins (such as bICP4 and bICP22), as identified via a proteomic analysis. These EDVs can bind to and enter target cells, inhibit viral particles binding to cells, and stimulate the production of IFN-α and IFN-β in A549 cells. When EDVs are inoculated into rabbits via either the conjunctival sacs or intravenously, they can be readily detected in neurons within the trigeminal ganglia (TG), where they reduce viral replication and promote the transcription of IFN-γ. Furthermore, incorporation of the known anti-herpesvirus drug Acyclovir (ACY) into the EDVs leads to synergistically enhanced antiviral efficacy. Collectively, the EDVs exhibit antiviral effects by blocking viral binding to target cells and stimulating the innate immune response, thereby leading to the failure of the serial passaging of viral progeny in these cells, and these EDVs may serve as a promising vector for delivering drugs targeting TG tissues for antiviral purposes. Full article
(This article belongs to the Special Issue Microbial Infections and Novel Biological Molecules for Treatment)
Show Figures

Figure 1

17 pages, 5462 KiB  
Article
Molecular Characterization and Pathogenicity of Watermelon Isolates of Begomovirus cucurbitachinaense
by Liming Liu, Yanhui Wang, Yanfei Geng, Bo Yu, Leiyan Yan, Fangmin Hao, Huijie Wu, Pingyong Wang, Qinsheng Gu and Baoshan Kang
Int. J. Mol. Sci. 2025, 26(9), 4289; https://doi.org/10.3390/ijms26094289 - 1 May 2025
Cited by 1 | Viewed by 394
Abstract
Squash leaf curl China virus (SLCCNV) belongs to the species Begomovirus cucurbitachinaense in the genus Begomovirus and can infect some Cucurbitaceae crops except for watermelon (Citrullus lanatus). In this study, watermelon plants showing symptoms typical to begomovirus infection in field were [...] Read more.
Squash leaf curl China virus (SLCCNV) belongs to the species Begomovirus cucurbitachinaense in the genus Begomovirus and can infect some Cucurbitaceae crops except for watermelon (Citrullus lanatus). In this study, watermelon plants showing symptoms typical to begomovirus infection in field were observed in Zhejiang Province of China, and SLCCNV presence was identified through PCR and next-generation sequencing (NGS). The pairwise sequence identity of the DNA-A genome shows that SLCCNV watermelon isolate belongs to the SLCCNV/CN strain and shares 96% nucleotide identity with the previously sequenced SLCCNV/CN. An infectious clone of SLCCNV watermelon isolate was constructed using the tandem repeat fragment method. Through agrobacterium-mediated inoculation, the clone could induce systemic infection with typical symptoms in watermelon, melon (Cucumis melo), squash (Cucurbita pepo), pumpkin (Cucurbita maxima), wax gourd (Benicasa hispida), cucumber (Cucumis sativus), and N. benthamiana. It was further demonstrated that the progeny virions derived from the cloned watermelon isolate could be transmitted by whitefly rather than the sap. To the best of our knowledge, this is the first report of a natural infection of SLCCNV on watermelon in China, and the first complete report on the molecular characteristics and pathogenicity of watermelon-infecting SLCCNV in the world. Full article
(This article belongs to the Special Issue Integrating Molecular Insights on Plant Microbes and Insect Pests)
Show Figures

Figure 1

13 pages, 4830 KiB  
Article
PKM2 Facilitates Classical Swine Fever Virus Replication by Enhancing NS5B Polymerase Function
by Mengzhao Song, Shanchuan Liu, Yan Luo, Tiantian Ji, Yanming Zhang and Wen Deng
Viruses 2025, 17(5), 648; https://doi.org/10.3390/v17050648 - 29 Apr 2025
Viewed by 457
Abstract
Host metabolic reprogramming is a critical strategy employed by many viruses to support their replication, and the key metabolic enzyme plays important roles in virus infection. This study investigates the role of pyruvate kinase M2 (PKM2), a glycolytic enzyme with non-canonical functions, in [...] Read more.
Host metabolic reprogramming is a critical strategy employed by many viruses to support their replication, and the key metabolic enzyme plays important roles in virus infection. This study investigates the role of pyruvate kinase M2 (PKM2), a glycolytic enzyme with non-canonical functions, in the replication of classical swine fever virus (CSFV). Using PK-15 cells and piglet models, we demonstrate that CSFV infection upregulates PKM2 expression both in vitro and in vivo, creating a proviral environment. knockdown of PKM2 by siRNA reduced CSFV proliferation, while PKM2 overexpression significantly increased virus propagation, which was evaluated by viral protein synthesis, genome replication, and progeny virion production. A direct interaction between PKM2 and CSFV NS5B protein was identified by co-immunoprecipitation and GST-pulldown assays, and PKM2 affected NS5B polymerase activity in a dual-luciferase reporter assay, with PKM2 depletion reducing RdRp function by 50%. Temporal analysis of the first viral replication cycle confirmed PKM2-dependent enhancement of CSFV RNA synthesis. These findings establish PKM2 as a proviral host factor that directly binds NS5B to potentiate RdRp activity, thereby bridging metabolic adaptation and viral genome replication. This study provides new evidence of a glycolytic enzyme physically interacting and enhancing viral polymerase function, offering new information about CSFV–host interaction. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

21 pages, 21042 KiB  
Article
Lassa Virus Infection of Primary Human Airway Epithelial Cells
by Helena Müller-Kräuter, Sarah Katharina Fehling, Lucie Sauerhering, Birthe Ehlert, Janine Koepke, Juliane Schilling, Mikhail Matrosovich, Andrea Maisner and Thomas Strecker
Viruses 2025, 17(5), 592; https://doi.org/10.3390/v17050592 - 22 Apr 2025
Viewed by 1034
Abstract
Lassa mammarenavirus (LASV), a member of the family Arenaviridae, is a highly pathogenic virus capable of causing severe systemic infections in humans. The primary host reservoir is the Natal multimammate mouse (Mastomys natalensis), with human infections typically occurring through mucosal exposure [...] Read more.
Lassa mammarenavirus (LASV), a member of the family Arenaviridae, is a highly pathogenic virus capable of causing severe systemic infections in humans. The primary host reservoir is the Natal multimammate mouse (Mastomys natalensis), with human infections typically occurring through mucosal exposure to virus-containing aerosols from rodent excretions. To better understand the molecular mechanisms underlying LASV replication in the respiratory tract, we utilized differentiated primary human airway epithelial cells (HAECs) grown under air–liquid interface conditions, closely mimicking the bronchial epithelium in vivo. Our findings demonstrate that HAECs are permissive to LASV infection and support productive virus replication. While LASV entry into polarized HAECs occurred through both apical and basolateral surfaces, progeny virus particles were predominantly released from the apical surface, consistent with an intrinsic apical localization of the envelope glycoprotein GP. This suggests that apical virus shedding from infected bronchial epithelia may facilitate LASV transmission via airway secretions. Notably, limited basolateral release at later stages of infection was associated with LASV-induced rearrangement of the actin cytoskeleton, resulting in compromised epithelial barrier integrity. Finally, we demonstrate that LASV-infected HAECs exhibited a pronounced type III interferon response. A detailed understanding of LASV replication and host epithelial responses in the respiratory tract could facilitate the development of targeted future therapeutics. Full article
(This article belongs to the Special Issue Viral Infection in Airway Epithelial Cells)
Show Figures

Figure 1

17 pages, 9975 KiB  
Article
Oropouche Virus: Isolation and Ultrastructural Characterization from a Human Case Sample from Rio de Janeiro, Brazil, Using an In Vitro System
by Ana Luisa Teixeira de Almeida, Igor Pinto Silva da Costa, Maycon Douglas do Nascimento Garcia, Marcos Alexandre Nunes da Silva, Yasmim Gonçalves Lazzaro, Ana Maria Bispo de Filippis, Fernanda de Bruycker Nogueira and Debora Ferreira Barreto-Vieira
Viruses 2025, 17(3), 373; https://doi.org/10.3390/v17030373 - 5 Mar 2025
Viewed by 1574
Abstract
The Oropouche virus (OROV) is a segmented negative-sense RNA arbovirus member of the Peribunyaviridae family, associated with recurring epidemics of Oropouche fever in Central and South America. Since its identification in 1955, OROV has been responsible for outbreaks in both rural and urban [...] Read more.
The Oropouche virus (OROV) is a segmented negative-sense RNA arbovirus member of the Peribunyaviridae family, associated with recurring epidemics of Oropouche fever in Central and South America. Since its identification in 1955, OROV has been responsible for outbreaks in both rural and urban areas, with transmission involving sylvatic and urban cycles. This study focuses on the characterization of an OROV isolate from a human clinical sample collected in the state of Rio de Janeiro, a non-endemic region in Brazil, highlighting ultrastructural and morphological aspects of the viral replicative cycle in Vero cells. OROV was isolated in Vero cell monolayers which, following viral inoculation, exhibited marked cytopathic effects (CPEs), mainly represented by changes in cell morphology, including membrane protrusions and vacuolization, as well as cell death. Studies by transmission electron microscopy (TEM) revealed significant ultrastructural changes, such as apoptosis, intense remodeling of membrane-bound organelles and signs of rough endoplasmic reticulum and mitochondrial stress. Additionally, the formation of specialized cytoplasmic vacuoles and intra- and extracellular vesicles emphasized trafficking and intercellular communication as essential mechanisms in OROV infection. RT-qPCR studies confirmed the production of viral progeny in high titers, corroborating the efficiency of this experimental model. These findings contribute to a better understanding of the cytopathogenic mechanisms of OROV infection and the contribution of cellular alterations in OROV morphogenesis. Full article
(This article belongs to the Special Issue Oropouche Virus (OROV): An Emerging Peribunyavirus (Bunyavirus))
Show Figures

Figure 1

14 pages, 11548 KiB  
Article
Real-Time PCR-Based Test as a Research Tool for the Retrospective Detection and Identification of SARS-CoV-2 Variants of Concern in a Sample
by Valeria O. Makarova, Artem Shelkov, Anna Iliukhina, Valentin Azizyan, Inna V. Dolzhikova, Elena Vasilieva and Alexey A. Komissarov
Int. J. Mol. Sci. 2025, 26(5), 1786; https://doi.org/10.3390/ijms26051786 - 20 Feb 2025
Viewed by 1053
Abstract
The Severe Acute Respiratory Syndrome-related Coronavirus 2 (SARS-CoV-2), a causative agent of the COVID-19 disease, has been constantly evolving since its first identification. Mutations that are embedded in the viral genomic RNA affect the properties of the virus and lead to the emergence [...] Read more.
The Severe Acute Respiratory Syndrome-related Coronavirus 2 (SARS-CoV-2), a causative agent of the COVID-19 disease, has been constantly evolving since its first identification. Mutations that are embedded in the viral genomic RNA affect the properties of the virus and lead to the emergence of new variants. During the COVID-19 pandemic, the World Health Organization has identified more than ten variants of the SARS-CoV-2 virus. Five of these—Alpha, Beta, Gamma, Delta, and Omicron—were classified as variants of concern (VOCs), as they caused significant outbreaks of the disease. Additionally, two progeny variants of Omicron, designated JN.1 and KS.1, are still causing new waves of infections. Due to the emergence of various SARS-CoV-2 variants, in some cases, it has become important to identify a particular variant in a sample. Here, we have developed a multiplexed probe-based real-time PCR system for the identification of SARS-CoV-2 VOCs (Alpha, Beta, Gamma, Delta, Omicron B.1.1.529/BA.1, and Omicron BA.2), as well as modern Omicron variants JN.1 and KS.1. The sensitivity and specificity of the PCR system have been tested using isolated viral genomes and RNA preparations from human nasopharyngeal swabs. The system allows for rapid identification of coronavirus variants in the cryopreserved and fresh samples. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

13 pages, 4121 KiB  
Article
Contrasting Effect of Curcumin on Hepatitis B Virus Replication According to the Hepatoma Cell Line
by María Mercedes Elizalde, Pedro Fuentes, Diego Chiappetta and Diego Martín Flichman
Pathogens 2025, 14(2), 203; https://doi.org/10.3390/pathogens14020203 - 19 Feb 2025
Cited by 1 | Viewed by 1302
Abstract
In recent decades, considerable advances have been achieved in the treatment of chronic hepatitis B. However, the currently available drugs have shortcomings. In this context, several natural compounds have been proposed as potential agents to improve either the outcome of antiviral treatment or [...] Read more.
In recent decades, considerable advances have been achieved in the treatment of chronic hepatitis B. However, the currently available drugs have shortcomings. In this context, several natural compounds have been proposed as potential agents to improve either the outcome of antiviral treatment or the progression of chronic infection, with curcumin being one of the most evaluated compounds due to its pleiotropic antiviral activity. The aim of this study was to characterize the effect and mechanism of curcumin on hepatitis B virus (HBV) replication in two different experimental models. Treatment of HepG22.15 and HBV-transfected Huh7 cells with curcumin revealed that the phytochemical differentially modulated HBV replication in both cell lines. In HepG22.15 cells, the addition of curcumin had no effect on viral DNA, pregenomic RNA (pgRNA), and e antigen (HBeAg) levels, while it decreased Precore RNA and s antigen (HBsAg) levels. Conversely, in Huh-7 cells, curcumin significantly increased viral progeny more than tenfold, as well as HBV RNAs and viral antigens. Furthermore, the analysis of the cellular mechanisms associated with the modulation of viral replication revealed that in Huh-7 cells, curcumin-induced cell cycle arrest in the G2/M phase and the modulation of genes involved in proliferation, cell cycle progression, and apoptosis, whereas no changes in cell cycle progression and gene expression were observed in HepG22.15 cells. In conclusion, curcumin elicits a differential cellular response in two hepatoma cell lines, which, in the case of Huh-7 cells, would provide an optimal cellular setting that enhances HBV replication. Therefore, the antiviral effect of this phytochemical remains controversial. Full article
Show Figures

Figure 1

15 pages, 2494 KiB  
Article
High-Throughput Field Screening of Cassava Brown Streak Disease Resistance for Efficient and Cost-Saving Breeding Selection
by Mouritala Sikirou, Najimu Adetoro, Samar Sheat, Eric Musungayi, Romain Mungangan, Miafuntila Pierre, Kayode Fowobaje, Ibnou Dieng, Zoumana Bamba, Ismail Rabbi, Hapson Mushoriwa and Stephan Winter
Agronomy 2025, 15(2), 425; https://doi.org/10.3390/agronomy15020425 - 8 Feb 2025
Viewed by 950
Abstract
Cassava brown streak disease (CBSD) remains the most severe threat to cassava production in the Great Lakes region and Southern Africa. Screening for virus resistance by subjecting cassava to high virus pressure in the epidemic zone (hotspots) is a common but lengthy process [...] Read more.
Cassava brown streak disease (CBSD) remains the most severe threat to cassava production in the Great Lakes region and Southern Africa. Screening for virus resistance by subjecting cassava to high virus pressure in the epidemic zone (hotspots) is a common but lengthy process because of unpredictable and erratic virus infections requiring multiple seasons for disease evaluation. This study investigated the feasibility of graft-infections to provide a highly controlled infection process that is robust and reproducible to select and eliminate susceptible cassava at the early stages and to predict the resistance of adapted and economically valuable varieties. To achieve this, a collection of cassava germplasm from the Democratic Republic of Congo and a different set of breeding trials comprising two seed nurseries and one preliminary yield trial were established. The cassava varieties OBAMA and NAROCASS 1 infected with CBSD were planted one month after establishment of the main trials in a 50 m2 plot to serve as the source of the infection and to provide scions to graft approximately 1 ha. Grafted plants were inspected for virus symptoms and additionally tested by RT-qPCR for sensitive detection of the viruses. The incidence and severity of CBSD and cassava mosaic disease (CMD) symptoms were scored at different stages of plant growth and fresh root yield determined at harvesting. The results from the field experiments proved that graft-infection with infected plants showed rapid symptom development in susceptible cassava plants allowing instant exclusion of those lines from the next breeding cycle. High heritability, with values ranging from 0.63 to 0.97, was further recorded for leaf and root symptoms, respectively. Indeed, only a few cassava progenies were selected while clones DSC260 and two species of M. glaziovii (Glaziovii20210005 and Glaziovii20210006) showed resistance to CBSD. Taken together, grafting scions from infected cassava is a highly efficient and cost-effective method to infect cassava with CBSD even under rugged field conditions. It replaces an erratic infection process with a controlled method to ensure precise screening and selection for virus resistance. The clones identified as resistant could serve as elite donors for introgression, facilitating the transfer of resistance to CBSD. Full article
Show Figures

Figure 1

19 pages, 1766 KiB  
Review
Baculovirus Genetic Diversity and Population Structure
by Miguel López-Ferber, Primitivo Caballero and Trevor Williams
Viruses 2025, 17(2), 142; https://doi.org/10.3390/v17020142 - 22 Jan 2025
Cited by 2 | Viewed by 1399 | Correction
Abstract
Baculoviruses can naturally regulate lepidopteran populations and are used as biological insecticides. The genetic diversity of these viruses affects their survival and efficacy in pest control. For nucleopolyhedroviruses, occlusion-derived virions and the occlusion body facilitate the transmission of groups of genomes, whereas this [...] Read more.
Baculoviruses can naturally regulate lepidopteran populations and are used as biological insecticides. The genetic diversity of these viruses affects their survival and efficacy in pest control. For nucleopolyhedroviruses, occlusion-derived virions and the occlusion body facilitate the transmission of groups of genomes, whereas this is not the case for granuloviruses. We review the evidence for baculovirus genetic diversity in the environment, in the host insect, and in occlusion bodies and virions. Coinfection allows defective genotypes to persist through complementation and results in the pseudotyping of virus progeny that can influence their transmissibility and insecticidal properties. Genetic diversity has marked implications for the development of pest resistance to virus insecticides. We conclude that future research is warranted on the physical segregation of genomes during virus replication and on the independent action of virions during infection. We also identify opportunities for studies on the transmission of genetic diversity and host resistance to viruses. Full article
(This article belongs to the Special Issue Insect Viruses and Pest Management, the Third Edition)
Show Figures

Figure 1

12 pages, 3939 KiB  
Article
Dysregulation of FURIN and Other Proprotein Convertase Genes in the Progression from HPV Infection to Cancer
by Gonzalo Izaguirre, Natalia Zirou and Craig Meyers
Int. J. Mol. Sci. 2025, 26(2), 461; https://doi.org/10.3390/ijms26020461 - 8 Jan 2025
Viewed by 884
Abstract
Productive infections of oncogenic human papillomaviruses (HPVs) are closely linked to the differentiation of host epithelial cells, a process that the virus manipulates to create conditions favorable to produce virion progeny. This viral interference involves altering the expression of numerous host genes. Among [...] Read more.
Productive infections of oncogenic human papillomaviruses (HPVs) are closely linked to the differentiation of host epithelial cells, a process that the virus manipulates to create conditions favorable to produce virion progeny. This viral interference involves altering the expression of numerous host genes. Among these, proprotein convertases (PCs) have emerged as potential oncogenes due to their central role in cellular functions. Using RT-qPCR, aberrant PC gene expression was detected across the progression from early HPV infection stages to cancer. These findings demonstrated a progressive disruption of normal PC expression profiles, with FURIN consistently downregulated and other PCs upregulated, transitioning from the episomal stage to neoplastic and carcinoma phenotypes. This pattern of dysregulation was distinct from the broader trends observed in a variety of cancer types through bioinformatic analysis of publicly available transcriptomic datasets, where FURIN expression was predominantly upregulated compared to other PCs. Further bioinformatic investigations revealed a correlation between PC gene expression and cancer phenotype diversity, suggesting a potential link between the loss of normal PC gene expression patterns and the progression of HPV infections toward malignancy. Full article
(This article belongs to the Special Issue Human Papillomavirus and Cancers: Advances and Future Prospects)
Show Figures

Figure 1

11 pages, 3418 KiB  
Article
hnRNPH1 Inhibits Influenza Virus Replication by Binding Viral RNA
by Ruixue Xue, Danqi Bao, Tianxin Ma, Shiqi Niu, Zihua Wu, Xuehua Lv, Yunxiang Zhang, Guanlong Xu, Dawei Yan, Zhifei Zhang, Xue Pan, Minghao Yan, Qiaoyang Teng, Chunxiu Yuan, Zejun Li and Qinfang Liu
Microorganisms 2025, 13(1), 24; https://doi.org/10.3390/microorganisms13010024 - 26 Dec 2024
Viewed by 1109
Abstract
During the life cycle of the influenza virus, viral RNPs (vRNPs) are transported to the nucleus for replication. Given that a large number of progeny viral RNA occupies the nucleus, whether there is any host protein located in the nucleus that recognizes the [...] Read more.
During the life cycle of the influenza virus, viral RNPs (vRNPs) are transported to the nucleus for replication. Given that a large number of progeny viral RNA occupies the nucleus, whether there is any host protein located in the nucleus that recognizes the viral RNA and inhibits the viral replication remains largely unknown. In this study, to explore the role of hnRNPH1 in influenza virus infection, we knocked down and over-expressed the hnRNPH1 proteins in 293T cells, then infected the cells with the influenza virus. The results showed that the host hnRNPH1 inhibits the replication of H1N1 and H9N2 influenza viruses by restraining the polymerase activity of viruses. hnRNPH1 contains two RNA recognition motifs (RRM1) and RRM2. Further studies indicated that hnRNPH1 specifically binds to the viral RNA of the PB1, PA, and NP genes. Mutation of the key residues tryptophan and tyrosine in RRM1 and RRM2 abolished the binding affinity to viral RNA and the suppression of polymerase activity of the influenza virus. All the results suggested that hnRNPH1 suppresses polymerase activity and replication of the influenza virus by binding viral RNA. Full article
(This article belongs to the Special Issue Gut Microbiome, Zoonotic Diseases, and Pathogen–Host Interactions)
Show Figures

Figure 1

22 pages, 12243 KiB  
Article
Phlorotannin-Rich Ascophyllum nodosum Seaweed Extract Inhibits Influenza Infection
by Daniele F. Mega, Parul Sharma, Anja Kipar, Udo Hetzel, Chloe Bramwell, Alan Merritt, Samuel Wright, Chris Plummer, Richard A. Urbanowicz and James P. Stewart
Viruses 2024, 16(12), 1919; https://doi.org/10.3390/v16121919 - 15 Dec 2024
Viewed by 1223
Abstract
Seaweed-derived compounds are a renewable resource utilised in the manufacturing and food industry. This study focuses on an enriched seaweed extract (ESE) isolated from Ascophyllum nodosum. The ESE was screened for antiviral activity by plaque reduction assays against influenza A/Puerto Rico/8/1934 H1N1 (PR8), [...] Read more.
Seaweed-derived compounds are a renewable resource utilised in the manufacturing and food industry. This study focuses on an enriched seaweed extract (ESE) isolated from Ascophyllum nodosum. The ESE was screened for antiviral activity by plaque reduction assays against influenza A/Puerto Rico/8/1934 H1N1 (PR8), A/X-31 H3N2 (X31) and A/England/195/2009 H1N1 (Eng195), resulting in the complete inhibition of infection. Time of addition assays and FACS analysis were used to help determine the modes of action. The therapeutic potential of ESE was then explored using differentiated human bronchiole epithelial cells at the air–liquid interphase and a murine model challenged with IAV. The data indicates that ESE primarily interacts directly with virions, reducing mean virus–cell binding by 79.3% with 0.01 mg/mL ESE. Interestingly, ESE also inhibits the early and late stages of the influenza A lifecycle when treatment occurs after cell binding. This inhibitory effect appears to reduce the internalisation of the virus and the release of progeny virus by targeting neuraminidase activity, with IC50 values of 0.5 μg/mL for X31, 3.2 μg/mL for Eng195 and 12.8 μg/mL for PR8. The intranasal administration of 5 mg/kg ESE in mice infected with IAV reduced the viral load in lung tissue. ESE may be a promising broad-acting antiviral agent in the treatment of influenza infections. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

15 pages, 883 KiB  
Review
The Role of vIL-6 in KSHV-Mediated Immune Evasion and Tumorigenesis
by Somayeh Komaki, Tomoki Inagaki, Ashish Kumar and Yoshihiro Izumiya
Viruses 2024, 16(12), 1900; https://doi.org/10.3390/v16121900 - 10 Dec 2024
Cited by 3 | Viewed by 1586
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA gamma herpesvirus. Like other herpesviruses, KSHV establishes a latent infection with limited gene expression, while KSHV occasionally undergoes the lytic replication phase, which produces KSHV progenies and infects neighboring cells. KSHV genome encodes 80+ open [...] Read more.
Kaposi’s sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA gamma herpesvirus. Like other herpesviruses, KSHV establishes a latent infection with limited gene expression, while KSHV occasionally undergoes the lytic replication phase, which produces KSHV progenies and infects neighboring cells. KSHV genome encodes 80+ open reading frames. One of the KSHV genes, K2, encodes viral interleukin 6 (vIL-6), a homolog of human IL-6 (hIL-6), mainly expressed in the lytic phase of the virus. vIL-6 plays a crucial role in regulating the expression of other viral genes and is also associated with inducing angiogenesis, cell survival, and immune evasion, which is suggested to promote the development of KSHV-associated diseases. This review summarizes the current knowledge on vIL-6. We focus on the vIL-6 regarding its protein structure, transcriptional regulation, cell signaling pathways, and contribution to the KSHV-associated diseases. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

8 pages, 3068 KiB  
Article
Persistent Rhesus Enteric Calicivirus Infection in Recombinant CHO Cells Expressing the Coxsackie and Adenovirus Receptor
by Tibor Farkas and Zeinab R. Aboezz
Viruses 2024, 16(12), 1849; https://doi.org/10.3390/v16121849 - 28 Nov 2024
Cited by 2 | Viewed by 968
Abstract
Recently, using a panel of recombinant CHO cell lines, we identified the coxsackie and adenovirus receptor (CAR) and histo-blood group antigens (HBGAs) or sialic acid as the minimum requirement for susceptibility to rhesus enteric calicivirus (ReCV) infections. While ReCVs cause lytic infection in [...] Read more.
Recently, using a panel of recombinant CHO cell lines, we identified the coxsackie and adenovirus receptor (CAR) and histo-blood group antigens (HBGAs) or sialic acid as the minimum requirement for susceptibility to rhesus enteric calicivirus (ReCV) infections. While ReCVs cause lytic infection in LLC-MK2 cells, recombinant CHO (rCHO) cell lines did not exhibit any morphological changes upon infection. To monitor infectious virus production, rCHO cell cultures had to be freeze–thawed and titrated on LLC-MK2 monolayers. This raised the question of whether ReCV infection in rCHO cells is persistent and whether non-enveloped progeny virions are released from the infected cells. Here, we used the rCHO-CAR+ cell line and a CAR and sialic acid-dependent recovirus strain (FT7) and found that these cells were persistently infected, and infectious virus was continuously produced and released into the culture without showing any visible cell damage. Viral capsid protein and replication intermediate double-stranded RNA (dsRNA) were detectable in almost all cells for at least 12 passages. We suspect a fully exosomal viral exit mechanism without a lytic cycle in these cells. rCHO cell may provide a valuable system for ReCV production (producer cell line) and serve as a model for investigating enteric calicivirus non-lytic viral exit mechanisms and the properties of the released, most likely membrane-cloaked, infectious progeny virions. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

21 pages, 6259 KiB  
Article
Rapid and Visual Screening of Virus Infection in Sugar Beets Through Polerovirus-Induced Gene Silencing
by Heemee Devi Bunwaree, Elodie Klein, Guillaume Saubeau, Bruno Desprez, Véronique Ziegler-Graff and David Gilmer
Viruses 2024, 16(12), 1823; https://doi.org/10.3390/v16121823 - 23 Nov 2024
Viewed by 1396
Abstract
Since the ban of neonicotinoid insecticides in the European Union, sugar beet production is threatened by outbreaks of virus yellows (VY) disease, caused by several aphid-transmitted viruses, including the polerovirus beet mild yellowing virus (BMYV). As the symptoms induced may vary depending on [...] Read more.
Since the ban of neonicotinoid insecticides in the European Union, sugar beet production is threatened by outbreaks of virus yellows (VY) disease, caused by several aphid-transmitted viruses, including the polerovirus beet mild yellowing virus (BMYV). As the symptoms induced may vary depending on multiple infections and other stresses, there is an urgent need for fast screening tests to evaluate resistance/tolerance traits in sugar beet accessions. To address this issue, we exploited the virus-induced gene silencing (VIGS) system, by introducing a fragment of a Beta vulgaris gene involved in chlorophyll synthesis in the BMYV genome. This recombinant virus was able to generate early clear vein chlorosis symptoms in infected sugar beets, allowing easy and rapid visual discernment of infected plants across five sugar beet lines. The recombinant virus displayed similar infectivity as the wild-type, and the insert remained stable within the viral progeny. We demonstrated that the percentage of VIGS-symptomatic plants was representative of the infection rate of each evaluated line, and depending on the susceptibility of the line to BMYV infection, VIGS symptoms may last over months. Our work provides a polerovirus-based VIGS system adapted to sugar beet crop allowing visual and rapid large-scale screens for resistance or functional genomic studies. Full article
(This article belongs to the Special Issue Application of Genetically Engineered Plant Viruses)
Show Figures

Graphical abstract

Back to TopTop