Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = primary coenzyme Q10 deficiency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 750 KiB  
Review
The ADCK Kinase Family: Key Regulators of Bioenergetics and Mitochondrial Function and Their Implications in Human Cancers
by Noel Jacquet and Yunfeng Zhao
Int. J. Mol. Sci. 2025, 26(12), 5783; https://doi.org/10.3390/ijms26125783 - 17 Jun 2025
Viewed by 625
Abstract
AarF domain-containing kinases (ADCKs) are a family of putative mitochondrial proteins that have been implicated in various aspects of mitochondrial function and cellular metabolism. Mitochondria play a crucial role in cellular bioenergetics, primarily in adenosine triphosphate (ATP) production, while also regulating metabolism, thermogenesis, [...] Read more.
AarF domain-containing kinases (ADCKs) are a family of putative mitochondrial proteins that have been implicated in various aspects of mitochondrial function and cellular metabolism. Mitochondria play a crucial role in cellular bioenergetics, primarily in adenosine triphosphate (ATP) production, while also regulating metabolism, thermogenesis, apoptosis, and reactive oxygen species (ROS) generation. Evidence suggests that the ADCK family of proteins is involved in maintaining mitochondrial architecture and homeostasis. In detail, these proteins are believed to play a role in processes such as coenzyme Q biosynthesis, energy production, and cellular metabolism. There are five known isoforms of ADCK (ADCK1–ADCK5), some of which have similar activities, and each also has its own unique biological functions. Dysregulation or mutations in specific ADCK isoforms have been linked to several pathological conditions, including multiple human cancers, primary coenzyme Q10 (CoQ10) deficiency, and metabolic disorders. This review surveys the current body of peer-reviewed research on the ADCK protein family, incorporating data from the primary literature, case studies, and experimental studies conducted in both in vitro and in vivo systems. It also draws on existing review articles and known published findings to provide a comprehensive overview of the functional roles, disease associations, and molecular mechanisms of ADCK proteins. Further in-depth research on ADCK proteins has the potential to unlock critical insights into their precise mechanisms. This could pave the way for identifying new therapeutic targets for mitochondrial and metabolic-related diseases, as well as for advancing cancer treatment strategies. Full article
(This article belongs to the Special Issue New Aspects of Bioenergetics in Cancer)
Show Figures

Figure 1

17 pages, 640 KiB  
Review
Efficacy and Safety of Coenzyme Q10 Supplementation in Neonates, Infants and Children: An Overview
by David Mantle and Iain Parry Hargreaves
Antioxidants 2024, 13(5), 530; https://doi.org/10.3390/antiox13050530 - 26 Apr 2024
Cited by 2 | Viewed by 7490
Abstract
To date, there have been no review articles specifically relating to the general efficacy and safety of coenzyme Q10 (CoQ10) supplementation in younger subjects. In this article, we therefore reviewed the efficacy and safety of CoQ10 supplementation in neonates (less than 1 month [...] Read more.
To date, there have been no review articles specifically relating to the general efficacy and safety of coenzyme Q10 (CoQ10) supplementation in younger subjects. In this article, we therefore reviewed the efficacy and safety of CoQ10 supplementation in neonates (less than 1 month of age), infants (up to 1 year of age) and children (up to 12 years of age). As there is no rationale for the supplementation of CoQ10 in normal younger subjects (as there is in otherwise healthy older subjects), all of the articles in the medical literature reviewed in the present article therefore refer to the supplementation of CoQ10 in younger subjects with a variety of clinical disorders; these include primary CoQ10 deficiency, acyl CoA dehydrogenase deficiency, Duchenne muscular dystrophy, migraine, Down syndrome, ADHD, idiopathic cardiomyopathy and Friedreich’s ataxia. Full article
(This article belongs to the Section Antioxidant Enzyme Systems)
Show Figures

Figure 1

17 pages, 4094 KiB  
Article
An AlphaFold Structure Analysis of COQ2 as Key a Component of the Coenzyme Q Synthesis Complex
by María de los Ángeles Vargas-Pérez, Damien Paul Devos and Guillermo López-Lluch
Antioxidants 2024, 13(4), 496; https://doi.org/10.3390/antiox13040496 - 21 Apr 2024
Viewed by 3084
Abstract
Coenzyme Q (CoQ) is a lipidic compound that is widely distributed in nature, with crucial functions in metabolism, protection against oxidative damage and ferroptosis and other processes. CoQ biosynthesis is a conserved and complex pathway involving several proteins. COQ2 is a member of [...] Read more.
Coenzyme Q (CoQ) is a lipidic compound that is widely distributed in nature, with crucial functions in metabolism, protection against oxidative damage and ferroptosis and other processes. CoQ biosynthesis is a conserved and complex pathway involving several proteins. COQ2 is a member of the UbiA family of transmembrane prenyltransferases that catalyzes the condensation of the head and tail precursors of CoQ, which is a key step in the process, because its product is the first intermediate that will be modified in the head by the next components of the synthesis process. Mutations in this protein have been linked to primary CoQ deficiency in humans, a rare disease predominantly affecting organs with a high energy demand. The reaction catalyzed by COQ2 and its mechanism are still unknown. Here, we aimed at clarifying the COQ2 reaction by exploring possible substrate binding sites using a strategy based on homology, comprising the identification of available ligand-bound homologs with solved structures in the Protein Data Bank (PDB) and their subsequent structural superposition in the AlphaFold predicted model for COQ2. The results highlight some residues located on the central cavity or the matrix loops that may be involved in substrate interaction, some of which are mutated in primary CoQ deficiency patients. Furthermore, we analyze the structural modifications introduced by the pathogenic mutations found in humans. These findings shed new light on the understanding of COQ2’s function and, thus, CoQ’s biosynthesis and the pathogenicity of primary CoQ deficiency. Full article
(This article belongs to the Special Issue The Ubiquitous and Multifaceted Coenzyme Q)
Show Figures

Figure 1

13 pages, 1551 KiB  
Review
Primary Coenzyme Q10 Deficiency-Related Ataxias
by Piervito Lopriore, Marco Vista, Alessandra Tessa, Martina Giuntini, Elena Caldarazzo Ienco, Michelangelo Mancuso, Gabriele Siciliano, Filippo Maria Santorelli and Daniele Orsucci
J. Clin. Med. 2024, 13(8), 2391; https://doi.org/10.3390/jcm13082391 - 19 Apr 2024
Cited by 2 | Viewed by 3460
Abstract
Cerebellar ataxia is a neurological syndrome characterized by the imbalance (e.g., truncal ataxia, gait ataxia) and incoordination of limbs while executing a task (dysmetria), caused by the dysfunction of the cerebellum or its connections. It is frequently associated with other signs of cerebellar [...] Read more.
Cerebellar ataxia is a neurological syndrome characterized by the imbalance (e.g., truncal ataxia, gait ataxia) and incoordination of limbs while executing a task (dysmetria), caused by the dysfunction of the cerebellum or its connections. It is frequently associated with other signs of cerebellar dysfunction, including abnormal eye movements, dysmetria, kinetic tremor, dysarthria, and/or dysphagia. Among the so-termed mitochondrial ataxias, variants in genes encoding steps of the coenzyme Q10 biosynthetic pathway represent a common cause of autosomal recessive primary coenzyme Q10 deficiencies (PCoQD)s. PCoQD is a potentially treatable condition; therefore, a correct and timely diagnosis is essential. After a brief presentation of the illustrative case of an Italian woman with this condition (due to a novel homozygous nonsense mutation in COQ8A), this article will review ataxias due to PCoQD. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

23 pages, 729 KiB  
Review
Primary Coenzyme Q10 Deficiency: An Update
by David Mantle, Lauren Millichap, Jesus Castro-Marrero and Iain P. Hargreaves
Antioxidants 2023, 12(8), 1652; https://doi.org/10.3390/antiox12081652 - 21 Aug 2023
Cited by 27 | Viewed by 7232
Abstract
Coenzyme Q10 (CoQ10) has a number of vital functions in all cells, both mitochondrial and extra-mitochondrial. In addition to its key role in mitochondrial oxidative phosphorylation, CoQ10 serves as a lipid soluble antioxidant and plays an important role in fatty acid beta-oxidation and [...] Read more.
Coenzyme Q10 (CoQ10) has a number of vital functions in all cells, both mitochondrial and extra-mitochondrial. In addition to its key role in mitochondrial oxidative phosphorylation, CoQ10 serves as a lipid soluble antioxidant and plays an important role in fatty acid beta-oxidation and pyrimidine and lysosomal metabolism, as well as directly mediating the expression of a number of genes, including those involved in inflammation. Due to the multiplicity of roles in cell function, it is not surprising that a deficiency in CoQ10 has been implicated in the pathogenesis of a wide range of disorders. CoQ10 deficiency is broadly divided into primary and secondary types. Primary CoQ10 deficiency results from mutations in genes involved in the CoQ10 biosynthetic pathway. In man, at least 10 genes are required for the biosynthesis of functional CoQ10, a mutation in any one of which can result in a deficit in CoQ10 status. Patients may respond well to oral CoQ10 supplementation, although the condition must be recognised sufficiently early, before irreversible tissue damage has occurred. In this article, we have reviewed clinical studies (up to March 2023) relating to the identification of these deficiencies, and the therapeutic outcomes of CoQ10 supplementation; we have attempted to resolve the disparities between previous review articles regarding the usefulness or otherwise of CoQ10 supplementation in these disorders. In addition, we have highlighted several of the potential problems relating to CoQ10 supplementation in primary CoQ10 deficiency, as well as identifying unresolved issues relating to these disorders that require further research. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

22 pages, 2309 KiB  
Review
Biosynthesis, Deficiency, and Supplementation of Coenzyme Q
by Carmine Staiano, Laura García-Corzo, David Mantle, Nadia Turton, Lauren E. Millichap, Gloria Brea-Calvo and Iain Hargreaves
Antioxidants 2023, 12(7), 1469; https://doi.org/10.3390/antiox12071469 - 21 Jul 2023
Cited by 13 | Viewed by 7652
Abstract
Originally identified as a key component of the mitochondrial respiratory chain, Coenzyme Q (CoQ or CoQ10 for human tissues) has recently been revealed to be essential for many different redox processes, not only in the mitochondria, but elsewhere within other cellular membrane [...] Read more.
Originally identified as a key component of the mitochondrial respiratory chain, Coenzyme Q (CoQ or CoQ10 for human tissues) has recently been revealed to be essential for many different redox processes, not only in the mitochondria, but elsewhere within other cellular membrane types. Cells rely on endogenous CoQ biosynthesis, and defects in this still-not-completely understood pathway result in primary CoQ deficiencies, a group of conditions biochemically characterised by decreased tissue CoQ levels, which in turn are linked to functional defects. Secondary CoQ deficiencies may result from a wide variety of cellular dysfunctions not directly linked to primary synthesis. In this article, we review the current knowledge on CoQ biosynthesis, the defects leading to diminished CoQ10 levels in human tissues and their associated clinical manifestations. Full article
(This article belongs to the Special Issue The Ubiquitous and Multifaceted Coenzyme Q)
Show Figures

Figure 1

15 pages, 3179 KiB  
Review
Neuroimaging in Primary Coenzyme-Q10-Deficiency Disorders
by Juliane Münch, Jannik Prasuhn, Lucia Laugwitz, Cheuk-Wing Fung, Brian H.-Y. Chung, Marcello Bellusci, Ertan Mayatepek, Dirk Klee and Felix Distelmaier
Antioxidants 2023, 12(3), 718; https://doi.org/10.3390/antiox12030718 - 14 Mar 2023
Cited by 6 | Viewed by 4886
Abstract
Coenzyme Q10 (CoQ10) is an endogenously synthesized lipid molecule. It is best known for its role as a cofactor within the mitochondrial respiratory chain where it functions in electron transfer and ATP synthesis. However, there are many other cellular pathways [...] Read more.
Coenzyme Q10 (CoQ10) is an endogenously synthesized lipid molecule. It is best known for its role as a cofactor within the mitochondrial respiratory chain where it functions in electron transfer and ATP synthesis. However, there are many other cellular pathways that also depend on the CoQ10 supply (redox homeostasis, ferroptosis and sulfide oxidation). The CoQ10 biosynthesis pathway consists of several enzymes, which are encoded by the nuclear DNA. The majority of these enzymes are responsible for modifications of the CoQ-head group (benzoquinone ring). Only three enzymes (PDSS1, PDSS2 and COQ2) are required for assembly and attachment of the polyisoprenoid side chain. The head-modifying enzymes may assemble into resolvable domains, representing COQ complexes. During the last two decades, numerous inborn errors in CoQ10 biosynthesis enzymes have been identified. Thus far, 11 disease genes are known (PDSS1, PDSS2, COQ2, COQ4, COQ5, COQ6, COQ7, COQ8A, COQ8B, COQ9 and HPDL). Disease onset is highly variable and ranges from the neonatal period to late adulthood. CoQ10 deficiency exerts detrimental effects on the nervous system. Potential consequences are neuronal death, neuroinflammation and cerebral gliosis. Clinical features include encephalopathy, regression, movement disorders, epilepsy and intellectual disability. Brain magnetic resonance imaging (MRI) is the most important tool for diagnostic evaluation of neurological damage in individuals with CoQ10 deficiency. However, due to the rarity of the different gene defects, information on disease manifestations within the central nervous system is scarce. This review aims to provide an overview of brain MRI patterns observed in primary CoQ10 biosynthesis disorders and to highlight disease-specific findings. Full article
Show Figures

Figure 1

57 pages, 20162 KiB  
Article
Predicting and Understanding the Pathology of Single Nucleotide Variants in Human COQ Genes
by Sining Wang, Akash Jain, Noelle Alexa Novales, Audrey N. Nashner, Fiona Tran and Catherine F. Clarke
Antioxidants 2022, 11(12), 2308; https://doi.org/10.3390/antiox11122308 - 22 Nov 2022
Cited by 5 | Viewed by 3798
Abstract
Coenzyme Q (CoQ) is a vital lipid that functions as an electron carrier in the mitochondrial electron transport chain and as a membrane-soluble antioxidant. Deficiencies in CoQ lead to metabolic diseases with a wide range of clinical manifestations. There are currently few treatments [...] Read more.
Coenzyme Q (CoQ) is a vital lipid that functions as an electron carrier in the mitochondrial electron transport chain and as a membrane-soluble antioxidant. Deficiencies in CoQ lead to metabolic diseases with a wide range of clinical manifestations. There are currently few treatments that can slow or stop disease progression. Primary CoQ10 deficiency can arise from mutations in any of the COQ genes responsible for CoQ biosynthesis. While many mutations in these genes have been identified, the clinical significance of most of them remains unclear. Here we analyzed the structural and functional impact of 429 human missense single nucleotide variants (SNVs) that give rise to amino acid substitutions in the conserved and functional regions of human genes encoding a high molecular weight complex known as the CoQ synthome (or Complex Q), consisting of the COQ3COQ7 and COQ9 gene products. Using structures of COQ polypeptides, close homologs, and AlphaFold models, we identified 115 SNVs that are potentially pathogenic. Further biochemical characterizations in model organisms such as Saccharomyces cerevisiae are required to validate the pathogenicity of the identified SNVs. Collectively, our results will provide a resource for clinicians during patient diagnosis and guide therapeutic efforts toward combating primary CoQ10 deficiency. Full article
Show Figures

Figure 1

16 pages, 630 KiB  
Review
COQ8A-Ataxia as a Manifestation of Primary Coenzyme Q Deficiency
by Justyna Paprocka, Magdalena Nowak, Piotr Chuchra and Robert Śmigiel
Metabolites 2022, 12(10), 955; https://doi.org/10.3390/metabo12100955 - 8 Oct 2022
Cited by 11 | Viewed by 4202
Abstract
COQ8A-ataxia is a mitochondrial disease in which a defect in coenzyme Q10 synthesis leads to dysfunction of the respiratory chain. The disease is usually present as childhood-onset progressive ataxia with developmental regression and cerebellar atrophy. However, due to variable phenotype, it may [...] Read more.
COQ8A-ataxia is a mitochondrial disease in which a defect in coenzyme Q10 synthesis leads to dysfunction of the respiratory chain. The disease is usually present as childhood-onset progressive ataxia with developmental regression and cerebellar atrophy. However, due to variable phenotype, it may be hard to distinguish from other mitochondrial diseases and a wide spectrum of childhood-onset cerebellar ataxia. COQ8A-ataxia is a potentially treatable condition with the supplementation of coenzyme Q10 as a main therapy; however, even 50% may not respond to the treatment. In this study we review the clinical manifestation and management of COQ8A-ataxia, focusing on current knowledge of coenzyme Q10 supplementation and approach to further therapies. Moreover, the case of a 22-month-old girl with cerebellar ataxia and developmental regression will be presented. Full article
(This article belongs to the Special Issue Rare Disorders—Challenging and Underdiagnosed)
Show Figures

Figure 1

12 pages, 1411 KiB  
Review
Mechanisms and Therapeutic Effects of Benzoquinone Ring Analogs in Primary CoQ Deficiencies
by Alba Pesini, Agustin Hidalgo-Gutierrez and Catarina M. Quinzii
Antioxidants 2022, 11(4), 665; https://doi.org/10.3390/antiox11040665 - 30 Mar 2022
Cited by 8 | Viewed by 3305
Abstract
Coenzyme Q (CoQ) is a conserved polyprenylated lipid composed of a redox-active benzoquinone ring and a long polyisoprenyl tail that serves as a membrane anchor. CoQ biosynthesis involves multiple steps, including multiple modifications of the precursor ring 4-hydroxybenzoic acid. Mutations in the enzymes [...] Read more.
Coenzyme Q (CoQ) is a conserved polyprenylated lipid composed of a redox-active benzoquinone ring and a long polyisoprenyl tail that serves as a membrane anchor. CoQ biosynthesis involves multiple steps, including multiple modifications of the precursor ring 4-hydroxybenzoic acid. Mutations in the enzymes involved in CoQ biosynthesis pathway result in primary coenzyme Q deficiencies, mitochondrial disorders whose clinical heterogenicity reflects the multiple biological function of CoQ. Patients with these disorders do not always respond to CoQ supplementation, and CoQ analogs have not been successful as alternative approaches. Progress made in understanding the CoQ biosynthesis pathway and studies of supplementation with 4-hydroxybenzoic acid ring analogs have opened a new area in the field of primary CoQ deficiencies treatment. Here, we will review these studies, focusing on efficacy of the different 4-hydroxybenzoic acid ring analogs, models in which they have been tested, and their mechanisms of action. Understanding how these compounds ameliorate biochemical, molecular, and/or clinical phenotypes of CoQ deficiencies is important to develop the most rational treatment for CoQ deficient patients, depending on their molecular defects. Full article
Show Figures

Figure 1

18 pages, 1973 KiB  
Review
The Roles of Coenzyme Q in Disease: Direct and Indirect Involvement in Cellular Functions
by Francesco Pallotti, Christian Bergamini, Costanza Lamperti and Romana Fato
Int. J. Mol. Sci. 2022, 23(1), 128; https://doi.org/10.3390/ijms23010128 - 23 Dec 2021
Cited by 66 | Viewed by 7615
Abstract
Coenzyme Q (CoQ) is a key component of the respiratory chain of all eukaryotic cells. Its function is closely related to mitochondrial respiration, where it acts as an electron transporter. However, the cellular functions of coenzyme Q are multiple: it is present in [...] Read more.
Coenzyme Q (CoQ) is a key component of the respiratory chain of all eukaryotic cells. Its function is closely related to mitochondrial respiration, where it acts as an electron transporter. However, the cellular functions of coenzyme Q are multiple: it is present in all cell membranes, limiting the toxic effect of free radicals, it is a component of LDL, it is involved in the aging process, and its deficiency is linked to several diseases. Recently, it has been proposed that coenzyme Q contributes to suppressing ferroptosis, a type of iron-dependent programmed cell death characterized by lipid peroxidation. In this review, we report the latest hypotheses and theories analyzing the multiple functions of coenzyme Q. The complete knowledge of the various cellular CoQ functions is essential to provide a rational basis for its possible therapeutic use, not only in diseases characterized by primary CoQ deficiency, but also in large number of diseases in which its secondary deficiency has been found. Full article
(This article belongs to the Special Issue Mitochondria in Human Diseases)
Show Figures

Graphical abstract

27 pages, 1286 KiB  
Review
Animal Models of Coenzyme Q Deficiency: Mechanistic and Translational Learnings
by Pilar González-García, Eliana Barriocanal-Casado, María Elena Díaz-Casado, Sergio López-Herrador, Agustín Hidalgo-Gutiérrez and Luis C. López
Antioxidants 2021, 10(11), 1687; https://doi.org/10.3390/antiox10111687 - 26 Oct 2021
Cited by 8 | Viewed by 4222
Abstract
Coenzyme Q (CoQ) is a vital lipophilic molecule that is endogenously synthesized in the mitochondria of each cell. The CoQ biosynthetic pathway is complex and not completely characterized, and it involves at least thirteen catalytic and regulatory proteins. Once it is synthesized, CoQ [...] Read more.
Coenzyme Q (CoQ) is a vital lipophilic molecule that is endogenously synthesized in the mitochondria of each cell. The CoQ biosynthetic pathway is complex and not completely characterized, and it involves at least thirteen catalytic and regulatory proteins. Once it is synthesized, CoQ exerts a wide variety of mitochondrial and extramitochondrial functions thank to its redox capacity and its lipophilicity. Thus, low levels of CoQ cause diseases with heterogeneous clinical symptoms, which are not always understood. The decreased levels of CoQ may be primary caused by defects in the CoQ biosynthetic pathway or secondarily associated with other diseases. In both cases, the pathomechanisms are related to the CoQ functions, although further experimental evidence is required to establish this association. The conventional treatment for CoQ deficiencies is the high doses of oral CoQ10 supplementation, but this therapy is not effective for some specific clinical presentations, especially in those involving the nervous system. To better understand the CoQ biosynthetic pathway, the biological functions linked to CoQ and the pathomechanisms of CoQ deficiencies, and to improve the therapeutic outcomes of this syndrome, a variety of animal models have been generated and characterized in the last decade. In this review, we show all the animal models available, remarking on the most important outcomes that each model has provided. Finally, we also comment some gaps and future research directions related to CoQ metabolism and how the current and novel animal models may help in the development of future research studies. Full article
Show Figures

Figure 1

27 pages, 10852 KiB  
Article
β-RA Targets Mitochondrial Metabolism and Adipogenesis, Leading to Therapeutic Benefits against CoQ Deficiency and Age-Related Overweight
by Agustín Hidalgo-Gutiérrez, Eliana Barriocanal-Casado, María Elena Díaz-Casado, Pilar González-García, Riccardo Zenezini Chiozzi, Darío Acuña-Castroviejo and Luis Carlos López
Biomedicines 2021, 9(10), 1457; https://doi.org/10.3390/biomedicines9101457 - 13 Oct 2021
Cited by 15 | Viewed by 3978
Abstract
Primary mitochondrial diseases are caused by mutations in mitochondrial or nuclear genes, leading to the abnormal function of specific mitochondrial pathways. Mitochondrial dysfunction is also a secondary event in more common pathophysiological conditions, such as obesity and metabolic syndrome. In both cases, the [...] Read more.
Primary mitochondrial diseases are caused by mutations in mitochondrial or nuclear genes, leading to the abnormal function of specific mitochondrial pathways. Mitochondrial dysfunction is also a secondary event in more common pathophysiological conditions, such as obesity and metabolic syndrome. In both cases, the improvement and management of mitochondrial homeostasis remain challenging. Here, we show that beta-resorcylic acid (β-RA), which is a natural phenolic compound, competed in vivo with 4-hydroxybenzoic acid, which is the natural precursor of coenzyme Q biosynthesis. This led to a decrease in demethoxyubiquinone, which is an intermediate metabolite of CoQ biosynthesis that is abnormally accumulated in Coq9R239X mice. As a consequence, β-RA rescued the phenotype of Coq9R239X mice, which is a model of primary mitochondrial encephalopathy. Moreover, we observed that long-term treatment with β-RA also reduced the size and content of the white adipose tissue (WAT) that is normally accumulated during aging in wild-type mice, leading to the prevention of hepatic steatosis and an increase in survival at the elderly stage of life. The reduction in WAT content was due to a decrease in adipogenesis, an adaptation of the mitochondrial proteome in the kidneys, and stimulation of glycolysis and acetyl-CoA metabolism. Therefore, our results demonstrate that β-RA acted through different cellular mechanisms, with effects on mitochondrial metabolism; as such, it may be used for the treatment of primary coenzyme Q deficiency, overweight, and hepatic steatosis. Full article
(This article belongs to the Special Issue Mitochondrial Dysfunction in Disease)
Show Figures

Graphical abstract

20 pages, 1320 KiB  
Review
Cellular Models for Primary CoQ Deficiency Pathogenesis Study
by Carlos Santos-Ocaña, María V. Cascajo, María Alcázar-Fabra, Carmine Staiano, Guillermo López-Lluch, Gloria Brea-Calvo and Plácido Navas
Int. J. Mol. Sci. 2021, 22(19), 10211; https://doi.org/10.3390/ijms221910211 - 22 Sep 2021
Cited by 7 | Viewed by 3922
Abstract
Primary coenzyme Q10 (CoQ) deficiency includes a heterogeneous group of mitochondrial diseases characterized by low mitochondrial levels of CoQ due to decreased endogenous biosynthesis rate. These diseases respond to CoQ treatment mainly at the early stages of the disease. The advances in [...] Read more.
Primary coenzyme Q10 (CoQ) deficiency includes a heterogeneous group of mitochondrial diseases characterized by low mitochondrial levels of CoQ due to decreased endogenous biosynthesis rate. These diseases respond to CoQ treatment mainly at the early stages of the disease. The advances in the next generation sequencing (NGS) as whole-exome sequencing (WES) and whole-genome sequencing (WGS) have increased the discoveries of mutations in either gene already described to participate in CoQ biosynthesis or new genes also involved in this pathway. However, these technologies usually provide many mutations in genes whose pathogenic effect must be validated. To functionally validate the impact of gene variations in the disease’s onset and progression, different cell models are commonly used. We review here the use of yeast strains for functional complementation of human genes, dermal skin fibroblasts from patients as an excellent tool to demonstrate the biochemical and genetic mechanisms of these diseases and the development of human-induced pluripotent stem cells (hiPSCs) and iPSC-derived organoids for the study of the pathogenesis and treatment approaches. Full article
(This article belongs to the Special Issue Disorders of Mitochondrial Metabolism)
Show Figures

Figure 1

15 pages, 655 KiB  
Review
The Role of Metabolism in Migraine Pathophysiology and Susceptibility
by Olivia Grech, Susan P. Mollan, Benjamin R. Wakerley, Daniel Fulton, Gareth G. Lavery and Alexandra J. Sinclair
Life 2021, 11(5), 415; https://doi.org/10.3390/life11050415 - 1 May 2021
Cited by 26 | Viewed by 6532
Abstract
Migraine is a highly prevalent and disabling primary headache disorder, however its pathophysiology remains unclear, hindering successful treatment. A number of key secondary headache disorders have headaches that mimic migraine. Evidence has suggested a role of mitochondrial dysfunction and an imbalance between energetic [...] Read more.
Migraine is a highly prevalent and disabling primary headache disorder, however its pathophysiology remains unclear, hindering successful treatment. A number of key secondary headache disorders have headaches that mimic migraine. Evidence has suggested a role of mitochondrial dysfunction and an imbalance between energetic supply and demand that may contribute towards migraine susceptibility. Targeting these deficits with nutraceutical supplementation may provide an additional adjunctive therapy. Neuroimaging techniques have demonstrated a metabolic phenotype in migraine similar to mitochondrial cytopathies, featuring reduced free energy availability and increased metabolic rate. This is reciprocated in vivo when modelling a fundamental mechanism of migraine aura, cortical spreading depression. Trials assessing nutraceuticals successful in the treatment of mitochondrial cytopathies including magnesium, coenzyme q10 and riboflavin have also been conducted in migraine. Although promising results have emerged from nutraceutical trials in patients with levels of minerals or vitamins below a critical threshold, they are confounded by lacking control groups or cohorts that are not large enough to be representative. Energetic imbalance in migraine may be relevant in driving the tissue towards maximum metabolic capacity, leaving the brain lacking in free energy. Personalised medicine considering an individual’s deficiencies may provide an approach to ameliorate migraine. Full article
(This article belongs to the Special Issue Idiopathic Intracranial Hypertension)
Show Figures

Figure 1

Back to TopTop