Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = potential super-spreaders

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3903 KiB  
Article
Superspreading-Based Fabrication of Poly(methyl methacrylate) Films with High Toughness for Ultra-Wideband Flexible Transparent Antenna
by Ying Liu, Cheng Huang, Jiannan Guo, Haoran Zu, Jie Shen, Pengchao Zhang and Wen Chen
Materials 2025, 18(10), 2183; https://doi.org/10.3390/ma18102183 - 9 May 2025
Cited by 2 | Viewed by 461
Abstract
With the rapid advancement of Internet of Things (IoT) technology, ultra-wideband flexible transparent antennas have garnered substantial attention for their potential applications in wireless communication devices. Poly(methyl methacrylate) (PMMA), renowned for its exceptional optical properties and favorable processing characteristics, has been extensively utilized [...] Read more.
With the rapid advancement of Internet of Things (IoT) technology, ultra-wideband flexible transparent antennas have garnered substantial attention for their potential applications in wireless communication devices. Poly(methyl methacrylate) (PMMA), renowned for its exceptional optical properties and favorable processing characteristics, has been extensively utilized as a transparent substrate material for antennas. However, the intrinsic brittleness of transparent PMMA substrates poses a significant limitation in applications such as flexible antennas. In this study, we introduce a superspreading strategy to address the complex trade-off among transparency, toughness, and dielectric properties in flexible electronics through molecular disorder engineering. The PMMA films fabricated via this superspreading strategy exhibit a visible transmittance of 85–95% at 400 nm, a toughness of 9 × 10⁵ J/m3 (representing an enhancement of 150–225% compared to conventional methods), and a frequency-stable permittivity (εr = 3.6 ± 0.05) within the 9–12 GHz range. These films also feature a precisely tunable thickness range of 5.5–60 μm. The PMMA-based flexible transparent antenna demonstrates a gain of 2–4 dBi and a relative bandwidth of 40%, thereby confirming its suitability for ultra-wideband applications. Collectively, this research presents a promising candidate for the development of ultra-wideband flexible transparent antennas. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

11 pages, 3066 KiB  
Article
A Dynamic System to Control the Entry of Non-Authorized Visitors and Detect Superspreader Farms in Strongly Interconnected Systems
by Oscar Soriano, Laura Batista, Joaquin Morales, Eduardo Quintana and Carlos Piñeiro
Animals 2024, 14(20), 2932; https://doi.org/10.3390/ani14202932 - 11 Oct 2024
Viewed by 1119
Abstract
This study explores the critical challenges the livestock sector faces, particularly those related to biosecurity, animal welfare, and antibiotic use restrictions. It highlights the need to implement advanced information and communication technologies to enhance operational sustainability and decision-making. We introduce the Biorisk® [...] Read more.
This study explores the critical challenges the livestock sector faces, particularly those related to biosecurity, animal welfare, and antibiotic use restrictions. It highlights the need to implement advanced information and communication technologies to enhance operational sustainability and decision-making. We introduce the Biorisk® External platform, a cloud-based visit control system designed to optimize biosecurity management by accurately tracking visitor activity through QR codes and GPS geolocation. During a 6-month study period from July to December 2023, we analyzed visits to 142 different swine production sites and 30 vehicle movement patterns. The analysis revealed trends in visitation patterns and compliance with biosecurity SOPs. The software categorized visits as authorized (A), not authorized with access (NAWA), and not authorized without access (NAWOA), providing a framework to assess biosecurity risks. Additionally, network analysis identified interconnected farms, which were classified as ‘superspreaders’, highlighting their considerable risk of disease transmission. This study advocates for the integration of digital systems in livestock operations to improve biosecurity measures, facilitate real-time data input, and support informed decision-making. By enhancing biosecurity protocols through technology, the livestock industry can better safeguard animal health, increase operational efficiency, and reduce potential economic losses associated with disease outbreaks. Full article
(This article belongs to the Special Issue Biosecuring Animal Populations)
Show Figures

Figure 1

20 pages, 5886 KiB  
Article
Identifying Potential Super-Spreaders and Disease Transmission Hotspots Using White-Tailed Deer Scraping Networks
by Scoty Hearst, Miranda Huang, Bryant Johnson and Elijah Rummells
Animals 2023, 13(7), 1171; https://doi.org/10.3390/ani13071171 - 26 Mar 2023
Cited by 8 | Viewed by 2775
Abstract
White-tailed deer (Odocoileus virginianus, WTD) spread communicable diseases such the zoonotic coronavirus SARS-CoV-2, which is a major public health concern, and chronic wasting disease (CWD), a fatal, highly contagious prion disease occurring in cervids. Currently, it is not well understood how [...] Read more.
White-tailed deer (Odocoileus virginianus, WTD) spread communicable diseases such the zoonotic coronavirus SARS-CoV-2, which is a major public health concern, and chronic wasting disease (CWD), a fatal, highly contagious prion disease occurring in cervids. Currently, it is not well understood how WTD are spreading these diseases. In this paper, we speculate that “super-spreaders” mediate disease transmission via direct social interactions and indirectly via body fluids exchanged at scrape sites. Super-spreaders are infected individuals that infect more contacts than other infectious individuals within a population. In this study, we used network analysis from scrape visitation data to identify potential super-spreaders among multiple communities of a rural WTD herd. We combined local network communities to form a large region-wide social network consisting of 96 male WTD. Analysis of WTD bachelor groups and random network modeling demonstrated that scraping networks depict real social networks, allowing detection of direct and indirect contacts, which could spread diseases. Using this regional network, we model three major types of potential super-spreaders of communicable disease: in-degree, out-degree, and betweenness potential super-spreaders. We found out-degree and betweenness potential super-spreaders to be critical for disease transmission across multiple communities. Analysis of age structure revealed that potential super-spreaders were mostly young males, less than 2.5 years of age. We also used social network analysis to measure the outbreak potential across the landscape using a new technique to locate disease transmission hotspots. To model indirect transmission risk, we developed the first scrape-to-scrape network model demonstrating connectivity of scrape sites. Comparing scrape betweenness scores allowed us to locate high-risk transmission crossroads between communities. We also monitored predator activity, hunting activity, and hunter harvests to better understand how predation influences social networks and potential disease transmission. We found that predator activity significantly influenced the age structure of scraping communities. We assessed disease-management strategies by social-network modeling using hunter harvests or removal of potential super-spreaders, which fragmented WTD social networks reducing the potential spread of disease. Overall, this study demonstrates a model capable of predicting potential super-spreaders of diseases, outlines methods to locate transmission hotspots and community crossroads, and provides new insight for disease management and outbreak prevention strategies. Full article
(This article belongs to the Special Issue Ungulate Ecology, Population Dynamics, and Conservation)
Show Figures

Figure 1

19 pages, 1450 KiB  
Article
Identifying High-Risk Events for COVID-19 Transmission: Estimating the Risk of Clustering Using Nationwide Data
by Minami Ueda, Katsuma Hayashi and Hiroshi Nishiura
Viruses 2023, 15(2), 456; https://doi.org/10.3390/v15020456 - 6 Feb 2023
Cited by 3 | Viewed by 3732
Abstract
The transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is known to be overdispersed, meaning that only a fraction of infected cases contributes to super-spreading. While cluster interventions are an effective measure for controlling pandemics due to the viruses’ overdispersed nature, a [...] Read more.
The transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is known to be overdispersed, meaning that only a fraction of infected cases contributes to super-spreading. While cluster interventions are an effective measure for controlling pandemics due to the viruses’ overdispersed nature, a quantitative assessment of the risk of clustering has yet to be sufficiently presented. Using systematically collected cluster surveillance data for coronavirus disease 2019 (COVID-19) from June 2020 to June 2021 in Japan, we estimated the activity-dependent risk of clustering in 23 establishment types. The analysis indicated that elderly care facilities, welfare facilities for people with disabilities, and hospitals had the highest risk of clustering, with 4.65 (95% confidence interval [CI]: 4.43–4.87), 2.99 (2.59–3.46), and 2.00 (1.88–2.12) cluster reports per million event users, respectively. Risks in educational settings were higher overall among older age groups, potentially being affected by activities with close and uncontrollable contact during extracurricular hours. In dining settings, drinking and singing increased the risk by 10- to 70-fold compared with regular eating settings. The comprehensive analysis of the COVID-19 cluster records provides an additional scientific basis for the design of customized interventions. Full article
(This article belongs to the Collection Mathematical Modeling of Viral Infection)
Show Figures

Figure 1

21 pages, 8692 KiB  
Article
Investigation of a Limited but Explosive COVID-19 Outbreak in a German Secondary School
by Sigrid Baumgarte, Felix Hartkopf, Martin Hölzer, Max von Kleist, Sabine Neitz, Martin Kriegel and Kirsten Bollongino
Viruses 2022, 14(1), 87; https://doi.org/10.3390/v14010087 - 4 Jan 2022
Cited by 16 | Viewed by 10275
Abstract
The role of schools as a source of infection and driver in the coronavirus-pandemic has been controversial and is still not completely clarified. To prevent harm and disadvantages for children and adolescents, but also adults, detailed data on school outbreaks is needed, especially [...] Read more.
The role of schools as a source of infection and driver in the coronavirus-pandemic has been controversial and is still not completely clarified. To prevent harm and disadvantages for children and adolescents, but also adults, detailed data on school outbreaks is needed, especially when talking about open schools employing evidence-based safety concepts. Here, we investigated the first significant COVID-19 school outbreak in Hamburg, Germany, after the re-opening of schools in 2020. Using clinical, laboratory, and contact data and spatial measures for epidemiological and environmental studies combined with whole-genome sequencing (WGS) analysis, we examined the causes and the course of the secondary school outbreak. The potential index case was identified by epidemiological tracking and the lessons in classrooms with presumably high virus spreading rates and further infection chains in the setting. Sequence analysis of samples detected one sample of a different virus lineage and 25 virus genomes with almost identical sequences, of which 21 showed 100% similarity. Most infections occurred in connection with two lesson units of the primary case. Likely, 31 students (12–14 years old), two staff members, and three family members were infected in the school or the typical household. Sequence analysis revealed an outbreak cluster with a single source that was epidemiologically identified as a member of the educational staff. In lesson units, two superspreading events of varying degrees with airborne transmission took place. These were influenced by several parameters including the exposure times, the use of respiratory masks while speaking and spatial or structural conditions at that time. Full article
(This article belongs to the Section SARS-CoV-2 and COVID-19)
Show Figures

Figure 1

13 pages, 2727 KiB  
Article
Analysis of Superspreading Potential from Transmission Clusters of COVID-19 in South Korea
by Hyojung Lee, Changyong Han, Jooyi Jung and Sunmi Lee
Int. J. Environ. Res. Public Health 2021, 18(24), 12893; https://doi.org/10.3390/ijerph182412893 - 7 Dec 2021
Cited by 11 | Viewed by 3493
Abstract
The COVID-19 pandemic has been spreading worldwide with more than 246 million confirmed cases and 5 million deaths across more than 200 countries as of October 2021. There have been multiple disease clusters, and transmission in South Korea continues. We aim to analyze [...] Read more.
The COVID-19 pandemic has been spreading worldwide with more than 246 million confirmed cases and 5 million deaths across more than 200 countries as of October 2021. There have been multiple disease clusters, and transmission in South Korea continues. We aim to analyze COVID-19 clusters in Seoul from 4 March to 4 December 2020. A branching process model is employed to investigate the strength and heterogeneity of cluster-induced transmissions. We estimate the cluster-specific effective reproduction number Reff and the dispersion parameter κ using a maximum likelihood method. We also compute Rm as the mean secondary daily cases during the infection period with a cluster size m. As a result, a total of 61 clusters with 3088 cases are elucidated. The clusters are categorized into six groups, including religious groups, convalescent homes, and hospitals. The values of Reff and κ of all clusters are estimated to be 2.26 (95% CI: 2.02–2.53) and 0.20 (95% CI: 0.14–0.28), respectively. This indicates strong evidence for the occurrence of superspreading events in Seoul. The religious groups cluster has the largest value of Reff among all clusters, followed by workplaces, schools, and convalescent home clusters. Our results allow us to infer the presence or absence of superspreading events and to understand the cluster-specific characteristics of COVID-19 outbreaks. Therefore, more effective suppression strategies can be implemented to halt the ongoing or future cluster transmissions caused by small and sporadic clusters as well as large superspreading events. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

9 pages, 1501 KiB  
Article
Antiviral Activity of Silver, Copper Oxide and Zinc Oxide Nanoparticle Coatings against SARS-CoV-2
by Padryk Merkl, Siwen Long, Gerald M. McInerney and Georgios A. Sotiriou
Nanomaterials 2021, 11(5), 1312; https://doi.org/10.3390/nano11051312 - 17 May 2021
Cited by 129 | Viewed by 10828
Abstract
SARS-CoV-2 is responsible for several million deaths to date globally, and both fomite transmission from surfaces as well as airborne transmission from aerosols may be largely responsible for the spread of the virus. Here, nanoparticle coatings of three antimicrobial materials (Ag, CuO and [...] Read more.
SARS-CoV-2 is responsible for several million deaths to date globally, and both fomite transmission from surfaces as well as airborne transmission from aerosols may be largely responsible for the spread of the virus. Here, nanoparticle coatings of three antimicrobial materials (Ag, CuO and ZnO) are deposited on both solid flat surfaces as well as porous filter media, and their activity against SARS-CoV-2 viability is compared with a viral plaque assay. These nanocoatings are manufactured by aerosol nanoparticle self-assembly during their flame synthesis. Nanosilver particles as a coating exhibit the strongest antiviral activity of the three studied nanomaterials, while copper oxide exhibits moderate activity, and zinc oxide does not appear to significantly reduce the virus infectivity. Thus, nanosilver and copper oxide show potential as antiviral coatings on solid surfaces and on filter media to minimize transmission and super-spreading events while also providing critical information for the current and any future pandemic mitigation efforts. Full article
(This article belongs to the Special Issue Antimicrobial Nano Coatings)
Show Figures

Figure 1

16 pages, 2510 KiB  
Article
SARS-CoV-2 Molecular Transmission Clusters and Containment Measures in Ten European Regions during the First Pandemic Wave
by Maria Bousali, Aristea Dimadi, Evangelia-Georgia Kostaki, Sotirios Tsiodras, Georgios K. Nikolopoulos, Dionyssios N. Sgouras, Gkikas Magiorkinis, George Papatheodoridis, Vasiliki Pogka, Giota Lourida, Aikaterini Argyraki, Emmanouil Angelakis, George Sourvinos, Apostolos Beloukas, Dimitrios Paraskevis and Timokratis Karamitros
Life 2021, 11(3), 219; https://doi.org/10.3390/life11030219 - 9 Mar 2021
Cited by 7 | Viewed by 3862
Abstract
Background: The spatiotemporal profiling of molecular transmission clusters (MTCs) using viral genomic data can effectively identify transmission networks in order to inform public health actions targeting SARS-CoV-2 spread. Methods: We used whole genome SARS-CoV-2 sequences derived from ten European regions belonging to eight [...] Read more.
Background: The spatiotemporal profiling of molecular transmission clusters (MTCs) using viral genomic data can effectively identify transmission networks in order to inform public health actions targeting SARS-CoV-2 spread. Methods: We used whole genome SARS-CoV-2 sequences derived from ten European regions belonging to eight countries to perform phylogenetic and phylodynamic analysis. We developed dedicated bioinformatics pipelines to identify regional MTCs and to assess demographic factors potentially associated with their formation. Results: The total number and the scale of MTCs varied from small household clusters identified in all regions, to a super-spreading event found in Uusimaa-FI. Specific age groups were more likely to belong to MTCs in different regions. The clustered sequences referring to the age groups 50–100 years old (y.o.) were increased in all regions two weeks after the establishment of the lockdown, while those referring to the age group 0–19 y.o. decreased only in those regions where schools’ closure was combined with a lockdown. Conclusions: The spatiotemporal profiling of the SARS-CoV-2 MTCs can be a useful tool to monitor the effectiveness of the interventions and to reveal cryptic transmissions that have not been identified through contact tracing. Full article
(This article belongs to the Special Issue Ecology, Evolution and Epidemiology of Coronaviruses)
Show Figures

Figure 1

8 pages, 634 KiB  
Review
Observations on the Occurrence, Transmission and Management of the COVID-19 Pandemic Derived from Physics
by John G. Ingersoll
Diseases 2021, 9(1), 9; https://doi.org/10.3390/diseases9010009 - 16 Jan 2021
Cited by 1 | Viewed by 3640
Abstract
Three important observations derived from the ongoing COVID-19 pandemic could result in the development of novel approaches to deal with it and avoid or at least minimize the occurrence and impact of future outbreaks. First, the dramatic increase in pandemics in the past [...] Read more.
Three important observations derived from the ongoing COVID-19 pandemic could result in the development of novel approaches to deal with it and avoid or at least minimize the occurrence and impact of future outbreaks. First, the dramatic increase in pandemics in the past decade alone suggests that the current relationship of humans with the environment is quickly becoming unstable, with potentially catastrophic consequences. In order to reduce the toll in life and property, we would need to shift our emphasis from control of nature to a symbiosis with nature. This, then, can become the new framework for dealing effectively with environmental issues such as climate change, whereby properly applied medical science would provide the necessary impetus for action. Second, the existence of superspreaders of infection among populations in this pandemic requires that we develop objective tests, most likely of a genetic nature, to identify them rather than apply indiscriminate and draconian controls across the board. Not identifying superspreaders in a timely fashion could allow this pandemic to turn into a black swan event, with a catastrophic impact on society. Third, we need to refocus our efforts in dealing with this pandemic from the virus itself to the human hosts. An objective morbidity risk index can be developed such that most of us can go about our daily business without the fear of becoming seriously ill, while measures can be implemented to protect those who are most vulnerable to this virus. These observations point clearly to a need for a paradigm shift. Full article
Show Figures

Figure 1

13 pages, 372 KiB  
Article
Fast Response to Superspreading: Uncertainty and Complexity in the Context of COVID-19
by Lukas Zenk, Gerald Steiner, Miguel Pina e Cunha, Manfred D. Laubichler, Martin Bertau, Martin J. Kainz, Carlo Jäger and Eva S. Schernhammer
Int. J. Environ. Res. Public Health 2020, 17(21), 7884; https://doi.org/10.3390/ijerph17217884 - 27 Oct 2020
Cited by 30 | Viewed by 7317
Abstract
Although the first coronavirus disease 2019 (COVID-19) wave has peaked with the second wave underway, the world is still struggling to manage potential systemic risks and unpredictability of the pandemic. A particular challenge is the “superspreading” of the virus, which starts abruptly, is [...] Read more.
Although the first coronavirus disease 2019 (COVID-19) wave has peaked with the second wave underway, the world is still struggling to manage potential systemic risks and unpredictability of the pandemic. A particular challenge is the “superspreading” of the virus, which starts abruptly, is difficult to predict, and can quickly escalate into medical and socio-economic emergencies that contribute to long-lasting crises challenging our current ways of life. In these uncertain times, organizations and societies worldwide are faced with the need to develop appropriate strategies and intervention portfolios that require fast understanding of the complex interdependencies in our world and rapid, flexible action to contain the spread of the virus as quickly as possible, thus preventing further disastrous consequences of the pandemic. We integrate perspectives from systems sciences, epidemiology, biology, social networks, and organizational research in the context of the superspreading phenomenon to understand the complex system of COVID-19 pandemic and develop suggestions for interventions aimed at rapid responses. Full article
Back to TopTop