Fast Response to Superspreading: Uncertainty and Complexity in the Context of COVID-19
Abstract
:1. Introduction
2. Understanding Superspreading
2.1. Epidemiological Parameters of a Spread
2.2. Characteristics and Networks of Superspreaders
2.3. Superspreading Events
3. Managing Superspreading
3.1. Societal Policies and the Role of Information Sharing
3.2. Fast Response and Prepared Improvisation
4. Conclusions
- How can we understand complex adaptive systems better and faster? Understanding systemic interrelationships is necessary to implement effective measures and to consider the resulting consequences for subsequent actions. This requires inter- and transdisciplinary approaches to consider the different viewpoints of science and practice and to integrate both kinds of knowledge for joint decisions.
- What is the role of scientists and decision-makers in this context? Especially in uncertain situations, the public expects clear answers and decisions. Scientists prefer to gradually improve incomplete knowledge and resist speculation and improvisation. Political decision-makers, on the other hand, would prefer to present the public with clear measures based on solid scientific knowledge. For both sides to work together, they need to better understand their respective roles and preferences.
- How can we (individuals, organizations, societies) quickly respond to rapidly changing environments? Improvisation is a way of acting and thinking outside of established routines and already existing plans. It is predicated on being prepared, so that in situations of uncertainty requiring immediate decisions, plans and actions must be implemented concurrently and continuously developed on the basis of currently available data and resources, including previous experience.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Paine, R.T. Food Webs: Linkage, Interaction Strength and Community Infrastructure. J. Anim. Ecol. 1980, 49, 666. [Google Scholar] [CrossRef]
- Ives, A.R.; Cardinale, B.J.; Snyder, W.E. A synthesis of subdisciplines: Predator-prey interactions, and biodiversity and ecosystem functioning: Diversity in consumer-resource systems. Ecol. Lett. 2004, 8, 102–116. [Google Scholar] [CrossRef]
- Ahn, M.; Anderson, D.E.; Zhang, Q.; Tan, C.W.; Lim, B.L.; Luko, K.; Ng, J.H.J. Dampened NLRP3-mediated inflammation in bats and implications for a special viral reservoir host. Nat. Microbiol. 2019, 4, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Munster, V.J.; Adney, D.R.; van Doremalen, N.; Brown, V.R.; Miazgowicz, K.L.; Milne-Price, S.; De Wit, E. Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis). Sci. Rep. 2016, 6, 21878. [Google Scholar] [CrossRef] [PubMed]
- Olival, K.J.; Hosseini, P.R.; Zambrana-Torrelio, C.; Ross, N.; Bogich, T.L.; Daszak, P. Host and viral traits predict zoonotic spillover from mammals. Nature 2017, 546, 646–650. [Google Scholar] [CrossRef] [PubMed]
- Steiner, G. From probabilistic functionalism to a mental simulation of innovation: By collaboration from vulnerabilities to resilient societal systems: Comment on ‘Managing complexity: From visual perception to sustainable transitions–contributions of Brunswik’s Theory of Probabilistic Functionalism’. Environ. Syst. Decis. 2018, 38, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Brunswik, E. Organismic achievement and environmental probability. Psychol. Rev. 1943, 50, 255–272. [Google Scholar] [CrossRef]
- Lau, M.S.Y.; Grenfell, B.; Thomas, M.; Bryan, M.; Nelson, K.; Lopman, B. Characterizing superspreading events and age-specific infectiousness of SARS-CoV-2 transmission in Georgia, USA. Proc. Natl. Acad. Sci. USA 2020, 117, 22430–22435. [Google Scholar] [CrossRef]
- Golan, A. Foundations of Info-Metrics: Modeling and Inference with Imperfect Information; Oxford University Press: New York, NY, USA, 2017. [Google Scholar]
- Xie, G. A novel Monte Carlo simulation procedure for modelling COVID-19 spread over time. Sci. Rep. 2020, 10, 13120. [Google Scholar] [CrossRef]
- Pluchino, A.; Biondo, A.E.; Giuffrida, N.; Inturri, G.; Latora, V.; Moli, R.L.; Latora, V. A Novel Methodology for Epidemic Risk Assessment: The case of COVID-19 outbreak in Italy. arXiv 2020, arXiv:2004.02739. Available online: http://arxiv.org/abs/2004.02739 (accessed on 5 August 2020).
- Weick, K.E.; Sutcliffe, K.M. Managing the Unexpected: Sustained Performance in a Complex World, 3rd ed.; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Abry, P.; Pustelnik, N.; Roux, S.; Jensen, P.; Flandrin, P.; Gribonval, R. Spatial and temporal regularization to estimate COVID-19 reproduction number R(t): Promoting piecewise smoothness via convex optimization. PLoS ONE 2020, 15, e0237901. [Google Scholar] [CrossRef] [PubMed]
- Steiner, G.; Zenk, L.; Schernhammer, E. Preparing for the Next Wave of COVID-19: Resilience in the Face of a Spreading Pandemic. Int. J. Environ. Res. Public Health 2020, 17, 4098. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gayle, A.A.; Wilder-Smith, A.; Rocklöv, J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J. Travel Med. 2020, 27, taaa021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Diao, M.; Yu, W.; Pei, L.; Lin, Z.; Chen, D. Estimation of the reproductive number of novel coronavirus (COVID-19) and the probable outbreak size on the Diamond Princess cruise ship: A data-driven analysis. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2020, 93, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Scire, J.; Nadeau, S.; Vaughan, T.; Brupbacher, G.; Fuchs, S.; Sommer, J.; Eichenberger, T. Reproductive number of the COVID-19 epidemic in Switzerland with a focus on the Cantons of Basel-Stadt and Basel-Landschaft. Swiss Med. Wkly. 2020, 150, 19–20. [Google Scholar] [CrossRef]
- Correa-Martínez, C.L.; Kampmeier, S.; Kümpers, P.; Schwierzeck, V.; Hennies, M.; Hafezi, W.; Mellmann, A. A Pandemic in Times of Global Tourism: Superspreading and Exportation of COVID-19 Cases from a Ski Area in Austria. J. Clin. Microbiol. 2020, 58, e00588–e00620. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Eggo, R.M.; Kucharski, A.J. Secondary attack rate and superspreading events for SARS-CoV-2. Lancet 2020, 395, e47. [Google Scholar] [CrossRef] [Green Version]
- Shah, K.; Saxena, D.; Mavalankar, D. Secondary attack rate of COVID-19 in household contacts: A systematic review. QJM Int. J. Med. 2020, hcaa232. [Google Scholar] [CrossRef]
- Al-Tawfiq, J.A.; Rodriguez-Morales, A.J. Super-spreading events and contribution to transmission of MERS, SARS, and SARS-CoV-2 (COVID-19). J. Hosp. Infect. 2020, 105, 111–112. [Google Scholar] [CrossRef]
- Adam, D.; Wu, P.; Wong, J.; Lau, E.; Tsang, T.; Cauchemez, S.; Cowling, B. Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong. Nat. Med. 2020. [Google Scholar] [CrossRef]
- Endo, A.; Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group; Abbott, S.; Kucharski, A.J.; Funk, S. Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China. Wellcome Open Res. 2020, 5, 67. [Google Scholar] [CrossRef] [PubMed]
- Woolhouse, M.E.J.; Dye, C.; Etard, J.-F.; Smith, T.; Charlwood, J.D.; Garnett, G.P.; Watts, C.H. Heterogeneities in the transmission of infectious agents: Implications for the design of control programs. Proc. Natl. Acad. Sci. USA 1997, 94, 338–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, L.; Kang, S.Y.; Bisanzio, D.; Maxwell, K.; Rodriguez-Barraquer, I.; Greenhouse, B.; Eckhoff, P. Pareto rules for malaria super-spreaders and super-spreading. Nat. Commun. 2019, 10, 3939. [Google Scholar] [CrossRef] [PubMed]
- Hamner, L.; Dubbel, P.; Capron, I.; Ross, A.; Jordan, A.; Lee, J. High SARS-CoV-2 Attack Rate Following Exposure at a Choir Practice–Skagit County, Washington, March 2020. MMWR Morb. Mortal Wkly. Rep. 2020, 69, 606–610. [Google Scholar] [CrossRef]
- Beldomenico, P.M. Do superspreaders generate new superspreaders? A hypothesis to explain the propagation pattern of COVID-19. Int. J. Infect. Dis. 2020, 96, 461–463. [Google Scholar] [CrossRef]
- Santarpia, J.L.; Rivera, D.N.; Herrera, V.L.; Morwitzer, M.J.; Creager, H.M.; Santarpia, G.W.; Lawler, J.V. Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Sci. Rep. 2020, 10, 12732. [Google Scholar] [CrossRef]
- Asadi, S.; Wexler, A.S.; Cappa, C.D.; Barreda, S.; Bouvier, N.M.; Ristenpart, W.D. Aerosol emission and superemission during human speech increase with voice loudness. Sci. Rep. 2019, 9, 2348. [Google Scholar] [CrossRef] [Green Version]
- Asadi, S.; Bouvier, N.; Wexler, A.S.; Ristenpart, W.D. The coronavirus pandemic and aerosols: Does COVID-19 transmit via expiratory particles? Aerosol Sci. Technol. 2020, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Fukui, M.; Furukawa, C. Power Laws in Superspreading Events: Evidence from Coronavirus Outbreaks and Implications for SIR Models. MedRxiv 2020. [Google Scholar] [CrossRef]
- Barabási, A.-L. Linked: How Everything is Connected to Everything Else and What it Means for Business, Science, and Everyday Life; Basic Books: New York, NY, USA, 2014. [Google Scholar]
- Jeong, H.; Néda, Z.; Barabási, A.L. Measuring preferential attachment in evolving networks. Europhys. Lett. EPL 2003, 61, 567–572. [Google Scholar] [CrossRef] [Green Version]
- Newman, M.E.J. The Structure and Function of Complex Networks. SIAM Rev. 2003, 45, 167–256. [Google Scholar] [CrossRef] [Green Version]
- McPherson, M.; Smith-Lovin, L.; Cook, J.M. Birds of a Feather: Homophily in Social Networks. Annu. Rev. Sociol. 2001, 27, 415–444. [Google Scholar] [CrossRef] [Green Version]
- Jackson, M.O.; López-Pintado, D. Diffusion and contagion in networks with heterogeneous agents and homophily. Netw. Sci. 2013, 1, 49–67. [Google Scholar] [CrossRef] [Green Version]
- Cave, E. COVID-19 Super-spreaders: Definitional Quandaries and Implications. Asian Bioeth. Rev. 2020, 12, 235–242. [Google Scholar] [CrossRef]
- Editor, S.B.H.; Belam, M. Super-Spreaders: What are They and How are They Transmitting Coronavirus? The Guardian. 3 March 2020. Available online: https://www.theguardian.com/world/2020/feb/27/what-are-super-spreaders-and-how-are-they-transmitting-coronavirus (accessed on 3 August 2020).
- Milano, M.; Cannataro, M. Statistical and Network-Based Analysis of Italian COVID-19 Data: Communities Detection and Temporal Evolution. Int. J. Environ. Res. Public Health 2020, 17, 4182. [Google Scholar] [CrossRef]
- Travers, J.; Milgram, S. An Experimental Study of the Small World Problem; Social Networks; Elsevier: Amsterdam, The Netherlands, 1977; pp. 179–197. [Google Scholar] [CrossRef]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’ networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef] [PubMed]
- Dezső, Z.; Barabási, A.-L. Halting viruses in scale-free networks. Phys. Rev. E 2002, 65, 055103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masuda, N.; Holme, P. Predicting and controlling infectious disease epidemics using temporal networks. F1000 Prime Rep. 2013, 5. [Google Scholar] [CrossRef] [PubMed]
- Rocha, L.E.C.; Singh, V.; Esch, M.; Lenaerts, T.; Liljeros, F.; Thorson, A. Dynamic contact networks of patients and MRSA spread in hospitals. Sci. Rep. 2020, 10, 9336. [Google Scholar] [CrossRef]
- Bansal, S.; Read, J.; Pourbohloul, B.; Meyers, L.A. The dynamic nature of contact networks in infectious disease epidemiology. J. Biol. Dyn. 2010, 4, 478–489. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, H.W. The early days of the HIV-AIDS epidemic in the USA. Nat. Immunol. 2008, 9, 1201–1203. [Google Scholar] [CrossRef]
- Zhangbo, Y. Contact Network Analysis of Patients with Novel Coronavirus Pneumonia–Based on 237 Cases in Shaanxi Province. Res. Square 2020. [Google Scholar] [CrossRef] [Green Version]
- Manzo, G. Complex Social Networks are Missing in the Dominant COVID-19 Epidemic Models. Sociologica 2020, 14, 31–49. [Google Scholar] [CrossRef]
- Kermack, W.O.; McKendrick, A.G.; Walker, G.T. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. Contain. Pap. Math Phys. Character 1927, 115, 700–721. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.-H.; Huang, C.-Y.; Sun, C.-T. Identifying Super-Spreader Nodes in Complex Networks. Math Probl. Eng. 2015, 2015, 1–8. [Google Scholar] [CrossRef]
- Yi, Z.; Wu, X.; Li, F. Ranking Spreaders in Complex Networks Based on the Most Influential Neighbors. Discrete Dyn. Nat. Soc. 2018, 2018, 1–6. [Google Scholar] [CrossRef]
- Pastor-Satorras, R.; Castellano, C.; Van Mieghem, P.; Vespignani, A. Epidemic processes in complex networks. Rev. Mod. Phys. 2015, 87, 925–979. [Google Scholar] [CrossRef] [Green Version]
- Madotto, A.; Liu, J. Super-Spreader Identification Using Meta-Centrality. Sci. Rep. 2016, 6, 38994. [Google Scholar] [CrossRef] [PubMed]
- Durón, C. Heatmap centrality: A new measure to identify super-spreader nodes in scale-free networks. Cherifi, H., Ed. PLoS ONE 2020, 15, e0235690. [Google Scholar] [CrossRef] [PubMed]
- Reich, O.; Shalev, G.; Kalvari, T. Modeling COVID-19 on a network: Super-spreaders, testing and containment. MedRxiv 2020. [Google Scholar] [CrossRef]
- Kochańczyk, M.; Grabowski, F.; Lipniacki, T. Super-spreading events initiated the exponential growth phase of COVID-19 with 0 higher than initially estimated. R. Soc. Open Sci. 2020, 7, 200786. [Google Scholar] [CrossRef] [PubMed]
- Frieden, T.; Lee, C. Identifying and Interrupting Superspreading Events-Implications for Control of Severe Acute Respiratory Syndrome Coronavirus 2. Emerg. Infect. Dis. 2020, 26. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Cho, W.; Kim, M.-H.; Hur, J.-Y. Public Health Emergency and Crisis Management: Case Study of SARS-CoV-2 Outbreak. Int. J. Environ. Res. Public Health 2020, 17, 3984. [Google Scholar] [CrossRef] [PubMed]
- Furuse, Y.; Sando, E.; Tsuchiya, N.; Miyahara, R.; Yasuda, I.; Ko, Y.K.; Nagata, S. Early Release–Clusters of Coronavirus Disease in Communities. Emerg. Infect. Dis. J. CDC 2020, 26. [Google Scholar] [CrossRef]
- Lessells, D.R.; Moosa, Y.; de Oliveira, T. Report into a nosocomial outbreak of coronavirus disease 2019 (COVID-19) at Netcare St. Augustine’s Hospital. KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP). Available online: https://www.krisp.org.za/news.php?id=421 (accessed on 5 August 2020).
- Mędrzycka-Dąbrowska, W.; Lewandowska, K.; Ślęzak, D.; Dąbrowski, S. Prone ventilation of critically ill adults with COVID-19: How to perform CPR in cardiac arrest? Crit. Care 2020, 24, 258. [Google Scholar] [CrossRef]
- Wańkowicz, P.; Szylińska, A.; Rotter, I. Assessment of Mental Health Factors among Health Professionals Depending on Their Contact with COVID-19 Patients. Int. J. Environ. Res. Public Health 2020, 17, 5849. [Google Scholar] [CrossRef]
- Guenther, T.; Czech-Sioli, M.; Indenbirken, D.; Robitailles, A.; Tenhaken, P.; Exner, M.; Brinkmann, M. Investigation of a superspreading event preceding the largest meat processing plant-related SARS-Coronavirus 2 outbreak in Germany. SSRN Electron. J. 2020. [Google Scholar] [CrossRef]
- Rocklöv, J.; Sjödin, H.; Wilder-Smith, A. COVID-19 outbreak on the Diamond Princess cruise ship: Estimating the epidemic potential and effectiveness of public health countermeasures. J. Travel Med. 2020, 27. [Google Scholar] [CrossRef] [Green Version]
- Althaus, C.L.; Probst, D.; Hauser, A.; Riou, J.L. Time is of the essence: Containment of the SARS-CoV-2 epidemic in Switzerland from February to May 2020. MedRxiv 2020. [Google Scholar] [CrossRef]
- Scala, A.; Flori, A.; Spelta, A.; Brugnoli, E.; Cinelli, M.; Quattrociocchi, W.; Pammolli, F. Time, Space and Social Interactions: Exit Mechanisms for the Covid-19 Epidemics. arXiv 2020, arXiv:2004.04608. Available online: http://arxiv.org/abs/2004.04608 (accessed on 5 August 2020).
- Rajendran, D.K.; Rajagopal, V.; Alagumanian, S.; Santhosh Kumar, T.; Sathiya Prabhakaran, S.P.; Kasilingam, D. Systematic literature review on novel corona virus SARS-CoV-2: A threat to human era. Virus Dis. 2020, 31, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Brethouwer, J.-T.; van de Rijt, A.; Lindelauf, R.; Fokkink, R. “Stay Nearby or Get Checked”: A Covid-19 Lockdown Exit Strategy. arXiv 2020, arXiv:2004.06891. Available online: http://arxiv.org/abs/2004.06891 (accessed on 22 July 2020).
- Zhu, Z.; Gao, C.; Zhang, Y.; Li, H.; Xu, J.; Zan, Y.; Li, Z. Cooperation and Competition among information on social networks. Sci. Rep. 2020, 10, 12160. [Google Scholar] [CrossRef] [PubMed]
- Khatri, P.; Singh, S.R.; Belani, N.K.; Yeong, Y.L.; Lohan, R.; Lim, Y.W.; Teo, W.Z. YouTube as source of information on 2019 novel coronavirus outbreak: A cross sectional study of English and Mandarin content. Travel Med. Infect. Dis. 2020, 35, 101636. [Google Scholar] [CrossRef] [PubMed]
- Yin, F.; Xia, X.; Song, N.; Zhu, L.; Wu, J. Quantify the role of superspreaders -opinion leaders- on COVID-19 information propagation in the Chinese Sina-microblog. PLoS ONE 2020, 15, e0234023. [Google Scholar] [CrossRef]
- Yum, S. Social Network Analysis for Coronavirus (COVID-19) in the United States. Soc. Sci. Q. 2020, 101, 1642–1647. [Google Scholar] [CrossRef]
- Frenkel, S.; Alba, D. Misleading Virus Video, Pushed by the Trumps, Spreads Online. The New York Times. 28 July 2020. Available online: https://www.nytimes.com/2020/07/28/technology/virus-video-trump.html (accessed on 5 August 2020).
- Zarocostas, J. How to fight an infodemic. Lancet 2020, 395, 676. [Google Scholar] [CrossRef]
- Ball, P.; Maxmen, A. The epic battle against coronavirus misinformation and conspiracy theories. Nature 2020, 581, 371–374. [Google Scholar] [CrossRef]
- Sallam, M.; Dababseh, D.; Yaseen, A.; Al-Haidar, A.; Ababneh, N.A.; Bakri, F.G.; Mahafzah, A. Conspiracy Beliefs Are Associated with Lower Knowledge and Higher Anxiety Levels Regarding COVID-19 among Students at the University of Jordan. Int. J. Environ. Res. Public Health 2020, 17, 4915. [Google Scholar] [CrossRef]
- McGrail, D.J.; Dai, J.; McAndrews, K.M.; Kalluri, R. Enacting national social distancing policies corresponds with dramatic reduction in COVID19 infection rates. PLoS ONE 2020, 15, e0236619. [Google Scholar] [CrossRef] [PubMed]
- Gasparek, M.; Racko, M.; Dubovsky, M. A stochastic, individual-based model for the evaluation of the impact of non-pharmacological interventions on COVID-19 transmission in Slovakia. MedRxiv 2020. [Google Scholar] [CrossRef]
- Tsay, C.; Lejarza, F.; Stadtherr, M.A.; Baldea, M. Modeling, state estimation, and optimal control for the US COVID-19 outbreak. Sci. Rep. 2020, 10, 10711. [Google Scholar] [CrossRef] [PubMed]
- Hossein Rashidi, T.; Shahriari, S.; Azad, A.; Vafaee, F. Real-time time-series modelling for prediction of COVID-19 spread and intervention assessment. Health Policy 2020. [Google Scholar] [CrossRef]
- COVID-19 Map. Johns Hopkins Coronavirus Resource Center. Available online: https://coronavirus.jhu.edu/map.html (accessed on 29 July 2020).
- Coronavirus Dashboard. Available online: https://ncov2019.live/data (accessed on 29 July 2020).
- Pina e Cunha, M.; Vieira da Cunha, J.; Kamoche, K. Organizational Improvisation: What, When, How and Why. Int. J. Manag. Rev. 1999, 1, 299–341. [Google Scholar] [CrossRef]
- Lloyd-Smith, M. The COVID-19 pandemic: Resilient organisational response to a low-chance, high-impact event. BMJ Lead. 2020. [Google Scholar] [CrossRef]
- Abrantes, A.C.M.; Passos, A.M.; Pina e Cunha, M.; Miner, A.S. Managing the unforeseen when time is scarce: How temporal personality and team improvised adaptation can foster team performance. Group Dyn. Theory Res. Pract. 2020, 24, 42–58. [Google Scholar] [CrossRef]
- Fisher, C.; Barrett, F. The Experience of Improvising in Organizations: A Creative Process Perspective. Acad Manag. Perspect. 2018. [Google Scholar] [CrossRef]
- Batista, M.; da G. Cunha, M.P.E. Improvisation in Tightly Controlled Work Environments: The Case of Medical Practice. Available online: https://run.unl.pt/handle/10362/11585?locale=en (accessed on 13 March 2020).
- Weick, K.E. Introductory essay—Improvisation as a mindset for organizational analysis. Organ Sci. 1998, 9, 543–555. [Google Scholar] [CrossRef]
- Public Health Emergency COVID-19 Initiative. Available online: https://www.ncbi.nlm.nih.gov/pmc/about/covid-19/ (accessed on 27 July 2020).
- Wang, C.J.; Ng, C.Y.; Brook, R.H. Response to COVID-19 in Taiwan: Big Data Analytics, New Technology, and Proactive Testing. JAMA 2020, 323, 1341. [Google Scholar] [CrossRef]
- Dignum, F.; Dignum, V.; Davidsson, P.; Ghorbani, A.; van der Hurk, M.; Jensen, M.; Mellema, R. Analysing the combined health, social and economic impacts of the corovanvirus pandemic using agent-based social simulation. arXiv 2020, arXiv:2004.12809. Available online: http://arxiv.org/abs/2004.12809 (accessed on 22 July 2020). [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zenk, L.; Steiner, G.; Pina e Cunha, M.; Laubichler, M.D.; Bertau, M.; Kainz, M.J.; Jäger, C.; Schernhammer, E.S. Fast Response to Superspreading: Uncertainty and Complexity in the Context of COVID-19. Int. J. Environ. Res. Public Health 2020, 17, 7884. https://doi.org/10.3390/ijerph17217884
Zenk L, Steiner G, Pina e Cunha M, Laubichler MD, Bertau M, Kainz MJ, Jäger C, Schernhammer ES. Fast Response to Superspreading: Uncertainty and Complexity in the Context of COVID-19. International Journal of Environmental Research and Public Health. 2020; 17(21):7884. https://doi.org/10.3390/ijerph17217884
Chicago/Turabian StyleZenk, Lukas, Gerald Steiner, Miguel Pina e Cunha, Manfred D. Laubichler, Martin Bertau, Martin J. Kainz, Carlo Jäger, and Eva S. Schernhammer. 2020. "Fast Response to Superspreading: Uncertainty and Complexity in the Context of COVID-19" International Journal of Environmental Research and Public Health 17, no. 21: 7884. https://doi.org/10.3390/ijerph17217884