Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = postlingual onset hearing loss

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 964 KiB  
Article
A Machine Learning Model to Predict Postoperative Speech Recognition Outcomes in Cochlear Implant Recipients: Development, Validation, and Comparison with Expert Clinical Judgment
by Alexey Demyanchuk, Eugen Kludt, Thomas Lenarz and Andreas Büchner
J. Clin. Med. 2025, 14(11), 3625; https://doi.org/10.3390/jcm14113625 - 22 May 2025
Viewed by 604
Abstract
Background/Objectives: Cochlear implantation (CI) significantly enhances speech perception and quality of life in patients with severe-to-profound sensorineural hearing loss, yet outcomes vary substantially. Accurate preoperative prediction of CI outcomes remains challenging. This study aimed to develop and validate a machine learning model [...] Read more.
Background/Objectives: Cochlear implantation (CI) significantly enhances speech perception and quality of life in patients with severe-to-profound sensorineural hearing loss, yet outcomes vary substantially. Accurate preoperative prediction of CI outcomes remains challenging. This study aimed to develop and validate a machine learning model predicting postoperative speech recognition using a large, single-center dataset. Additionally, we compared model performance with expert clinical predictions to evaluate potential clinical utility. Methods: We retrospectively analyzed data from 2571 adult patients with postlingual hearing loss who received their cochlear implant between 2000 and 2022 at Hannover Medical School, Germany. A decision tree regression model was trained to predict monosyllabic (MS) word recognition score one to two years post-implantation using preoperative clinical variables (age, duration of deafness, preoperative MS score, pure tone average, onset type, and contralateral implantation status). Model evaluation was performed using a random data split (10%), a chronological future cohort (patients implanted after 2020), and a subset where experienced audiologists predicted outcomes for comparison. Results: The model achieved a mean absolute error (MAE) of 17.3% on the random test set and 17.8% on the chronological test set, demonstrating robust predictive performance over time. Compared to expert audiologist predictions, the model showed similar accuracy (MAE: 19.1% for the model vs. 18.9% for experts), suggesting comparable effectiveness. Conclusions: Our machine learning model reliably predicts postoperative speech outcomes and matches expert clinical predictions, highlighting its potential for supporting clinical decision-making. Future research should include external validation and prospective trials to further confirm clinical applicability. Full article
(This article belongs to the Special Issue The Challenges and Prospects in Cochlear Implantation)
Show Figures

Figure 1

19 pages, 5102 KiB  
Article
Bi-Allelic MARVELD2 Variant Identified with Exome Sequencing in a Consanguineous Multiplex Ghanaian Family Segregating Non-Syndromic Hearing Loss
by Elvis Twumasi Aboagye, Samuel Mawuli Adadey, Leonardo Alves de Souza Rios, Kevin K. Esoh, Edmond Wonkam-Tingang, Lettilia Xhakaza, Carmen De Kock, Isabelle Schrauwen, Lucas Amenga-Etego, Dirk Lang, Gordon A. Awandare, Suzanne M. Leal, Shaheen Mowla and Ambroise Wonkam
Int. J. Mol. Sci. 2025, 26(7), 3337; https://doi.org/10.3390/ijms26073337 - 3 Apr 2025
Viewed by 742
Abstract
Genetic studies and phenotypic expansion of hearing loss (HL) for people living in Africa are greatly needed. We evaluated the clinical phenotypes of three affected siblings presenting non-syndromic (NS) HL and five unaffected members of a consanguineous Ghanaian family. Analysis of exome sequence [...] Read more.
Genetic studies and phenotypic expansion of hearing loss (HL) for people living in Africa are greatly needed. We evaluated the clinical phenotypes of three affected siblings presenting non-syndromic (NS) HL and five unaffected members of a consanguineous Ghanaian family. Analysis of exome sequence data was performed for all affected and one unaffected family members. In-depth genetic and cellular characterization studies were performed to investigate biological significance of the implicated variant using bioinformatic tools and cell-based experimentation. Audiological examinations showed severe-to-profound, bilateral, symmetrical, and post-lingual onset. The whole-exome sequencing (WES) identified a homozygous frameshift variant: MARVEL domain containing 2 (MARVELD2):c.1058dup;p.(Val354Serfs*5) in all affected siblings. This frameshift variant leads to an early stop codon insertion and predicted to be targeted by nonsense medicated decay (mutant protein predicted to lack conserved C-terminal domain if translated). Cell immunofluorescence and immunocytochemistry studies exposed the functional impact of the mutant protein’s expression, stability, localization, protein–protein binding, barrier function, and actin cytoskeleton architecture. The identified variant segregates with NSHL in the index Ghanaian family. The data support this nonsense variant as pathogenic, likely to impact the homeostasis of ions, solutes, and other molecules, compromising membrane barrier and signaling in the inner ear spaces. Full article
(This article belongs to the Special Issue Hearing Loss: Recent Progress in Molecular Genomics)
Show Figures

Figure 1

28 pages, 523 KiB  
Review
Autosomal Dominant Non-Syndromic Hearing Loss (DFNA): A Comprehensive Narrative Review
by Mirko Aldè, Giovanna Cantarella, Diego Zanetti, Lorenzo Pignataro, Ignazio La Mantia, Luigi Maiolino, Salvatore Ferlito, Paola Di Mauro, Salvatore Cocuzza, Jérôme René Lechien, Giannicola Iannella, Francois Simon and Antonino Maniaci
Biomedicines 2023, 11(6), 1616; https://doi.org/10.3390/biomedicines11061616 - 1 Jun 2023
Cited by 44 | Viewed by 8169
Abstract
Autosomal dominant non-syndromic hearing loss (HL) typically occurs when only one dominant allele within the disease gene is sufficient to express the phenotype. Therefore, most patients diagnosed with autosomal dominant non-syndromic HL have a hearing-impaired parent, although de novo mutations should be considered [...] Read more.
Autosomal dominant non-syndromic hearing loss (HL) typically occurs when only one dominant allele within the disease gene is sufficient to express the phenotype. Therefore, most patients diagnosed with autosomal dominant non-syndromic HL have a hearing-impaired parent, although de novo mutations should be considered in all cases of negative family history. To date, more than 50 genes and 80 loci have been identified for autosomal dominant non-syndromic HL. DFNA22 (MYO6 gene), DFNA8/12 (TECTA gene), DFNA20/26 (ACTG1 gene), DFNA6/14/38 (WFS1 gene), DFNA15 (POU4F3 gene), DFNA2A (KCNQ4 gene), and DFNA10 (EYA4 gene) are some of the most common forms of autosomal dominant non-syndromic HL. The characteristics of autosomal dominant non-syndromic HL are heterogenous. However, in most cases, HL tends to be bilateral, post-lingual in onset (childhood to early adulthood), high-frequency (sloping audiometric configuration), progressive, and variable in severity (mild to profound degree). DFNA1 (DIAPH1 gene) and DFNA6/14/38 (WFS1 gene) are the most common forms of autosomal dominant non-syndromic HL affecting low frequencies, while DFNA16 (unknown gene) is characterized by fluctuating HL. A long audiological follow-up is of paramount importance to identify hearing threshold deteriorations early and ensure prompt treatment with hearing aids or cochlear implants. Full article
(This article belongs to the Special Issue Genetic Research on Hearing Loss 2.0)
15 pages, 3978 KiB  
Article
Clinical Heterogeneity Associated with MYO7A Variants Relies on Affected Domains
by Sun Young Joo, Gina Na, Jung Ah Kim, Jee Eun Yoo, Da Hye Kim, Se Jin Kim, Seung Hyun Jang, Seyoung Yu, Hye-Youn Kim, Jae Young Choi, Heon Yung Gee and Jinsei Jung
Biomedicines 2022, 10(4), 798; https://doi.org/10.3390/biomedicines10040798 - 29 Mar 2022
Cited by 11 | Viewed by 3572
Abstract
Autosomal dominant hearing loss (ADHL) manifests as an adult-onset disease or a progressive disease. MYO7A variants are associated with DFNA11, a subtype of ADHL. Here, we examined the role and genotype–phenotype correlation of MYO7A in ADHL. Enrolled families suspected of having post-lingual sensorineural [...] Read more.
Autosomal dominant hearing loss (ADHL) manifests as an adult-onset disease or a progressive disease. MYO7A variants are associated with DFNA11, a subtype of ADHL. Here, we examined the role and genotype–phenotype correlation of MYO7A in ADHL. Enrolled families suspected of having post-lingual sensorineural hearing loss were selected for exome sequencing. Mutational alleles in MYO7A were identified according to ACMG guidelines. Segregation analysis was performed to examine whether pathogenic variants segregated with affected status of families. All identified pathogenic variants were evaluated for a phenotype–genotype correlation. MYO7A variants were detected in 4.7% of post-lingual families, and 12 of 14 families were multiplex. Five potentially pathogenic missense variants were identified. Fourteen variants causing autosomal dominant deafness were clustered in motor and MyTH4 domains of MYO7A protein. Missense variants in the motor domain caused late onset of hearing loss with ascending tendency. A severe audiological phenotype was apparent in individuals carrying tail domain variants. We report two new pathogenic variants responsible for DFNA11 in the Korean ADHL population. Dominant pathogenic variants of MYO7A occur frequently in motor and MyTH4 domains. Audiological differences among individuals correspond to specific domains which contain the variants. Therefore, appropriate rehabilitation is needed, particularly for patients with late-onset familial hearing loss. Full article
(This article belongs to the Special Issue Genetic Research on Hearing Loss)
Show Figures

Figure 1

13 pages, 1195 KiB  
Article
Prevalence and Clinical Characteristics of Hearing Loss Caused by MYH14 Variants
by Ken Hiramatsu, Shin-ya Nishio, Shin-ichiro Kitajiri, Tomohiro Kitano, Hideaki Moteki, Shin-ichi Usami and on behalf of the Deafness Gene Study Consortium
Genes 2021, 12(10), 1623; https://doi.org/10.3390/genes12101623 - 15 Oct 2021
Cited by 5 | Viewed by 3193
Abstract
Variants in MYH14 are reported to cause autosomal dominant nonsyndromic hereditary hearing loss (ADNSHL), with 34 variants reported to cause hearing loss in various ethnic groups. However, the available information on prevalence, as well as with regard to clinical features, remains fragmentary. In [...] Read more.
Variants in MYH14 are reported to cause autosomal dominant nonsyndromic hereditary hearing loss (ADNSHL), with 34 variants reported to cause hearing loss in various ethnic groups. However, the available information on prevalence, as well as with regard to clinical features, remains fragmentary. In this study, genetic screening for MYH14 variants was carried out using a large series of Japanese hearing-loss patients to reveal more detailed information. Massively parallel DNA sequencing of 68 target candidate genes was applied in 8074 unrelated Japanese hearing-loss patients (including 1336 with ADNSHL) to identify genomic variations responsible for hearing loss. We identified 11 families with 10 variants. The prevalence was found to be 0.14% (11/8074) among all hearing-loss patients and 0.82% (11/1336) among ADNSHL patients. Nine of the eleven variants identified were novel. The patients typically showed late-onset hearing loss arising later than 20 years of age (64.3%, 9/14) along with progressive (92.3%, 12/13), moderate (62.5%, 10/16), and flat-type hearing loss (68.8%, 11/16). We also confirmed progressive hearing loss in serial audiograms. The clinical information revealed by the present study will contribute to further diagnosis and management of MYH14-associated hearing loss. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

7 pages, 1874 KiB  
Case Report
When Familial Hearing Loss Means Genetic Heterogeneity: A Model Case Report
by Camille Cenni, Luke Mansard, Catherine Blanchet, David Baux, Christel Vaché, Corinne Baudoin, Mélodie Moclyn, Valérie Faugère, Michel Mondain, Eric Jeziorski, Anne-Françoise Roux and Marjolaine Willems
Diagnostics 2021, 11(9), 1636; https://doi.org/10.3390/diagnostics11091636 - 7 Sep 2021
Cited by 4 | Viewed by 2293
Abstract
We describe a family with both hearing loss (HL) and thrombocytopenia, caused by pathogenic variants in three genes. The proband was a child with neonatal thrombocytopenia, childhood-onset HL, hyper-laxity and severe myopia. The child’s mother (and some of her relatives) presented with moderate [...] Read more.
We describe a family with both hearing loss (HL) and thrombocytopenia, caused by pathogenic variants in three genes. The proband was a child with neonatal thrombocytopenia, childhood-onset HL, hyper-laxity and severe myopia. The child’s mother (and some of her relatives) presented with moderate thrombocytopenia and adulthood-onset HL. The child’s father (and some of his relatives) presented with adult-onset HL. An HL panel analysis, completed by whole exome sequencing, was performed in this complex family. We identified three pathogenic variants in three different genes: MYH9, MYO7A and ACTG1. The thrombocytopenia in the child and her mother is explained by the MYH9 variant. The post-lingual HL in the paternal branch is explained by the MYO7A variant, absent in the proband, while the congenital HL of the child is explained by a de novo ACTG1 variant. This family, in which HL segregates, illustrates that multiple genetic conditions coexist in individuals and make patient care more complex than expected. Full article
(This article belongs to the Special Issue Genetic Testing for Rare Diseases)
Show Figures

Figure 1

8 pages, 2723 KiB  
Article
Novel GRHL2 Gene Variant Associated with Hearing Loss: A Case Report and Review of the Literature
by Katarina Trebusak Podkrajsek, Tine Tesovnik, Nina Bozanic Urbancic and Saba Battelino
Genes 2021, 12(4), 484; https://doi.org/10.3390/genes12040484 - 26 Mar 2021
Cited by 7 | Viewed by 2536
Abstract
In contrast to the recessive form, hearing loss inherited in a dominant manner is more often post-lingual and typically results in a progressive sensorineural hearing loss with variable severity and late onset. Variants in the GRHL2 gene are an extremely rare cause of [...] Read more.
In contrast to the recessive form, hearing loss inherited in a dominant manner is more often post-lingual and typically results in a progressive sensorineural hearing loss with variable severity and late onset. Variants in the GRHL2 gene are an extremely rare cause of dominantly inherited hearing loss. Genetic testing is a crucial part of the identification of the etiology of hearing loss in individual patients, especially when performed with next-generation sequencing, enabling simultaneous analysis of numerous genes, including those rarely associated with hearing loss. We aimed to evaluate the genetic etiology of hearing loss in a family with moderate late-onset hearing loss using next-generation sequencing and to conduct a review of reported variants in the GRHL2 gene. We identified a novel disease-causing variant in the GRHL2 gene (NM_024915: c.1510C>T; p.Arg504Ter) in both affected members of the family. They both presented with moderate late-onset hearing loss with no additional clinical characteristics. Reviewing known GRHL2 variants associated with hearing loss, we can conclude that they are more likely to be truncating variants, while the associated onset of hearing loss is variable. Full article
(This article belongs to the Special Issue Genetic Basis of Sensory and Neurological Disorders)
Show Figures

Figure 1

12 pages, 2350 KiB  
Article
Detailed Clinical Features of Deafness Caused by a Claudin-14 Variant
by Tomohiro Kitano, Shin-ichiro Kitajiri, Shin-ya Nishio and Shin-ichi Usami
Int. J. Mol. Sci. 2019, 20(18), 4579; https://doi.org/10.3390/ijms20184579 - 16 Sep 2019
Cited by 8 | Viewed by 3845
Abstract
Tight junctions are cellular junctions that play a major role in the epithelial barrier function. In the inner ear, claudins, occludin, tricellulin, and angulins form the bicellular or tricellular binding of membrane proteins. In these, one type of claudin gene, CLDN14, was [...] Read more.
Tight junctions are cellular junctions that play a major role in the epithelial barrier function. In the inner ear, claudins, occludin, tricellulin, and angulins form the bicellular or tricellular binding of membrane proteins. In these, one type of claudin gene, CLDN14, was reported to be responsible for human hereditary hearing loss, DFNB29. Until now, nine pathogenic variants have been reported, and most phenotypic features remain unclear. In the present study, genetic screening for 68 previously reported deafness causative genes was carried out to identify CLDN14 variants in a large series of Japanese hearing loss patients, and to clarify the prevalence and clinical characteristics of DFNB29 in the Japanese population. One patient had a homozygous novel variant (c.241C>T: p.Arg81Cys) (0.04%: 1/2549). The patient showed progressive bilateral hearing loss, with post-lingual onset. Pure-tone audiograms indicated a high-frequency hearing loss type, and the deterioration gradually spread to other frequencies. The patient showed normal vestibular function. Cochlear implantation improved the patient’s sound field threshold levels, but not speech discrimination scores. This report indicated that claudin-14 is essential for maintaining the inner ear environment and suggested the possible phenotypic expansion of DFNB29. This is the first report of a patient with a tight junction variant receiving a cochlear implantation. Full article
(This article belongs to the Special Issue The Tight Junction and Its Proteins: More Than Just a Barrier)
Show Figures

Figure 1

10 pages, 1778 KiB  
Article
The Analysis of A Frequent TMPRSS3 Allele Containing P.V116M and P.V291L in A Cis Configuration among Deaf Koreans
by Ah Reum Kim, Juyong Chung, Nayoung K. D. Kim, Chung Lee, Woong-Yang Park, Doo-Yi Oh and Byung Yoon Choi
Int. J. Mol. Sci. 2017, 18(11), 2246; https://doi.org/10.3390/ijms18112246 - 26 Oct 2017
Cited by 6 | Viewed by 4736
Abstract
We performed targeted re-sequencing to identify the genetic etiology of early-onset postlingual deafness and encountered a frequent TMPRSS3 allele harboring two variants in a cis configuration. We aimed to evaluate the pathogenicity of the allele. Among 88 cochlear implantees with autosomal recessive non-syndromic [...] Read more.
We performed targeted re-sequencing to identify the genetic etiology of early-onset postlingual deafness and encountered a frequent TMPRSS3 allele harboring two variants in a cis configuration. We aimed to evaluate the pathogenicity of the allele. Among 88 cochlear implantees with autosomal recessive non-syndromic hearing loss, subjects with GJB2 and SLC26A4 mutations were excluded. Thirty-one probands manifesting early-onset postlingual deafness were sorted. Through targeted re-sequencing, we detected two families with a TMPRSS3 mutant allele containing p.V116M and p.V291L in a cis configuration, p.[p.V116M; p.V291L]. A minor allele frequency was calculated and proteolytic activity was measured. A p.[p.V116M; p.V291L] allele demonstrated a significantly higher frequency compared to normal controls and merited attention due to its high frequency (4.84%, 3/62). The first family showed a novel deleterious splice site variant—c.783-1G>A—in a trans allele, while the other showed homozygosity. The progression to deafness was noted within the first decade, suggesting DFNB10. The proteolytic activity was significantly reduced, confirming the severe pathogenicity. This frequent mutant allele significantly contributes to early-onset postlingual deafness in Koreans. For clinical implication and proper auditory rehabilitation, it is important to pay attention to this allele with a severe pathogenic potential. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Graphical abstract

Back to TopTop