Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = posterior tibial tendonitis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 827 KB  
Article
An Observational Cohort Study of Wharton’s Jelly Tissue Allografts for Posterior Tibial Tendon Degeneration
by Babak Baravarian, Gi Kwon, John Shou, Naomi Lambert, Alexis Lee, Eva Castle and Tyler Barrett
Biomedicines 2025, 13(10), 2398; https://doi.org/10.3390/biomedicines13102398 - 30 Sep 2025
Viewed by 788
Abstract
Introduction: Posterior tibial tendon dysfunction (PTTD) is a progressive degenerative tendinopathy often unresponsive to conservative care, necessitating surgical interventions with significant postoperative risks. Wharton’s jelly (WJ) tissue allograft from the human umbilical cord, with its collagen-rich matrix homologous to tendon tissue, presents a [...] Read more.
Introduction: Posterior tibial tendon dysfunction (PTTD) is a progressive degenerative tendinopathy often unresponsive to conservative care, necessitating surgical interventions with significant postoperative risks. Wharton’s jelly (WJ) tissue allograft from the human umbilical cord, with its collagen-rich matrix homologous to tendon tissue, presents a potential alternative intervention. This study aims to report preliminary findings on the safety and efficacy of WJ allografts for the supplementation of degenerated tissue in patients with PTTD. Material and Methods: Twenty-six patients from the observational repository were identified with PTTD (Stages II-IV) and failed at least three months of conservative care. Patients received one or two ultrasound-guided percutaneous applications of the WJ allograft. Outcomes were tracked using the Numeric Pain Rating Scale (NPRS), the Western Ontario and McMaster University Arthritis Index (WOMAC), and the Quality-of-Life Scale (QOLS) at the initial, 30, 90, and 120-day follow-ups. Results: The cohort was 62% male (n = 16) and 38% female (n = 10), with a mean age predominantly in the 70–89 range. From the initial to final visit (90 days for single applications, 120 days for double applications), the single-application group (n = 22) showed a 48.32% improvement in NPRS and a 22.73% improvement in total WOMAC. The double-application group (n = 8) showed a 50% improvement in NPRS and a 27.86% improvement in total WOMAC. A statistically significant improvement in NPRS was observed in the single-application group (p = 0.042). No adverse events were reported. Discussion: This study provides preliminary evidence that WJ tissue allografts may be a safe and effective minimally invasive application for degeneration of the PTT, which is associated with improvements in pain, function, and quality of life. Key limitations include a lack of a control group and a small cohort size. Conclusions: The positive findings of this study warrant further research through randomized controlled trials to confirm efficacy, establish optimal dosage, and compare WJ to other conservative interventions. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

14 pages, 1579 KB  
Article
Predisposing Anatomical Patellofemoral Factors for Subsequent Patellar Dislocation
by Anna Kupczak, Bartłomiej Wilk, Ewa Tramś, Maciej Liszka, Bartosz Machnio, Aleksandra Jasiniewska, Jerzy Białecki and Rafał Kamiński
Life 2025, 15(8), 1239; https://doi.org/10.3390/life15081239 - 4 Aug 2025
Viewed by 1785
Abstract
Background: Primary patellar dislocation is a relatively uncommon knee injury but carries a high risk of recurrence, particularly in young and physically active adolescent individuals. Anatomical features of the patellofemoral joint have been implicated as key contributors to instability. The purpose of this [...] Read more.
Background: Primary patellar dislocation is a relatively uncommon knee injury but carries a high risk of recurrence, particularly in young and physically active adolescent individuals. Anatomical features of the patellofemoral joint have been implicated as key contributors to instability. The purpose of this study was to evaluate anatomical risk factors associated with recurrent patellar dislocation following a primary traumatic event, using MRI-based parameters. Methods: Fifty-four patients who sustained a first-time lateral patellar dislocation were included. MRI was used to measure tibial tuberosity–trochlear groove (TT–TG) distance, tibial tuberosity–posterior cruciate ligament (TT–PCL) distance, Insall–Salvati ratio (IS), sulcus angle (SA), patellar tilt angle (PTA), patella length, and patellar tendon length. Trochlear dysplasia was assessed according to the Dejour classification. Recurrence was defined as a subsequent dislocation occurring within three years of the primary injury. Results: Significant differences were observed in TT–TG distance and patellar tendon length (p < 0.05). Patients with recurrent dislocation had lower TT–TG values and shorter patellar tendon lengths. Other parameters, including PTA, IS, and patella height, did not show statistically significant differences. Conclusion: Anatomical factors may contribute to the risk of recurrent patellar dislocation. Identifying these variables using imaging may support clinical decision making and guide individualized treatment plans following primary injury. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

22 pages, 46566 KB  
Article
The Impact of Spring Ligament Injuries on Flatfoot Deformity: An Exploratory Study of Morphological and Radiographic Changes in 198 Patients
by Roxa Ruiz, Roman Susdorf and Beat Hintermann
J. Clin. Med. 2025, 14(14), 5109; https://doi.org/10.3390/jcm14145109 - 18 Jul 2025
Cited by 1 | Viewed by 1165
Abstract
Background: Spring ligament (SL) injuries are primarily associated with progressive collapsing flatfoot deformity, but can also occur due to trauma. It remains unclear whether the morphological changes following trauma differ from those caused by chronic overload. The aim of this study was [...] Read more.
Background: Spring ligament (SL) injuries are primarily associated with progressive collapsing flatfoot deformity, but can also occur due to trauma. It remains unclear whether the morphological changes following trauma differ from those caused by chronic overload. The aim of this study was (1) to analyze whether a relationship exists between the injury pattern and foot deformity and (2) to evaluate whether there is a distinction between trauma-related and non-trauma-related injuries. Method: We prospectively enrolled 198 patients with a median age of 57 years (range, 13 to 86 years; female, 127 (64%); male, 71 (36%)) who had a clinically diagnosed, surgically confirmed, and classified SL injury. We used weight-bearing standard X-rays to assess foot deformity. The control group consisted of 30 patients (median age 51 years, range, 44–66; female, 21 (70.0%); male, 9 (30.0%)) with no foot deformities or prior foot surgeries. Results: A 41.9% incidence of trauma was identified as the cause of these injuries, accounting for 16 (20.8%) of isolated injuries to the SL, 30 (42.9%) of SL injury accompanied by a posterior tibial (PT) tendon avulsion, and 37 (72.5%) of SL injury alongside a bony avulsion at the navicular injuries. The odds of being post-traumatic decreased with each year of age by a factor of 0.97 (95% CI: 0.95–0.99). Conclusions: While all radiographic measurements for flatfoot deformity became pathological after an injury to the SL, they did not accurately predict the injury patterns of the SL and distal PT tendon. Generally, post-traumatic cases exhibited lower severity of foot deformity, suggesting that other structures beyond the SL may contribute to the development of flatfoot deformity. Full article
(This article belongs to the Special Issue Foot and Ankle Surgery: Current Advances and Prospects)
Show Figures

Figure 1

18 pages, 3511 KB  
Article
Analysis of Quadriceps Fatigue Effects on Lower Extremity Injury Risks During Landing Phases in Badminton Scissor Jump
by Jun Wen, Datao Xu, Huiyu Zhou, Zanni Zhang, Liangliang Xiang, Goran Munivrana and Yaodong Gu
Sensors 2025, 25(8), 2536; https://doi.org/10.3390/s25082536 - 17 Apr 2025
Cited by 4 | Viewed by 2817
Abstract
The scissor jump (SKJ) is vital in badminton, particularly for backcourt shots, but fatigue increases lower limb load and injury risk. This study investigates how quadriceps fatigue affects biomechanical characteristics and load during SKJ landing, aiming to understand its impact on injury risk. [...] Read more.
The scissor jump (SKJ) is vital in badminton, particularly for backcourt shots, but fatigue increases lower limb load and injury risk. This study investigates how quadriceps fatigue affects biomechanical characteristics and load during SKJ landing, aiming to understand its impact on injury risk. This study involved 27 amateur male badminton players from Ningbo University. Quadriceps fatigue was induced via knee exercises and footwork drills. Biomechanical data before (prior fatigue—PRF) and after fatigue (post fatigue—POF) were recorded using a force platform and motion capture system. Muscle activation was measured with EMG and analyzed through musculoskeletal modeling, with paired t-tests and SPM 1D (Statistical Parametric Mapping 1D) for statistical analysis. Under the POF condition, knee flexion angle increased, and power decreased (p < 0.001, p < 0.001, respectively); ankle plantarflexion angle increased, and power decreased (p < 0.001, p < 0.001, respectively). As fatigue progressed, joint reaction forces initially decreased but later increased. Joint energy dissipation decreased, with differences more pronounced in the coronal than sagittal plane. Achilles tendon force and anterior–posterior tibial shear force decreased, while coronal plane center-of-mass displacement increased. Findings show quadriceps fatigue harms limb stability, upping knee and ankle loads, disrupting the movement pattern, and risking coronal plane injuries. It is recommended that athletes enhance quadriceps endurance, improve neuromuscular control, and refine landing techniques to maintain stability and prevent injuries when fatigued. Full article
(This article belongs to the Special Issue Advanced Sensors in Biomechanics and Rehabilitation)
Show Figures

Figure 1

17 pages, 3747 KB  
Article
The Association of Genetic Variants Within the Type XII Collagen and Tenascin C Genes with Knee Joint Laxity Measurements
by Samantha Beckley, Roopam Dey, Shaun Stinton, Willem van der Merwe, Thomas Branch, Alison V. September, Michael Posthumus and Malcolm Collins
Genes 2025, 16(2), 164; https://doi.org/10.3390/genes16020164 - 27 Jan 2025
Viewed by 1250
Abstract
Background/Objectives: Types I, V, and XI collagen gene variants have been reported to associate with measurements of knee joint laxity and/or absolute knee ligament length changes. Type XII collagen and tenascin C are also ligament structural proteins whose expression is regulated by mechanical [...] Read more.
Background/Objectives: Types I, V, and XI collagen gene variants have been reported to associate with measurements of knee joint laxity and/or absolute knee ligament length changes. Type XII collagen and tenascin C are also ligament structural proteins whose expression is regulated by mechanical loading. This study investigated whether COL12A1 and TNC variants are associated with knee laxity and/or ligament length changes. Methods: Genu recurvatum, anterior–posterior tibial translation, external–internal tibial rotation, and ligament length changes were measured in 128 healthy participants. They were genotyped for COL12A1 (rs970547) and TNC (rs1061494, rs2104772, rs1138545). Results: Both the COL12A1 AA and TNC rs1061494 TT genotypes were associated with decreased external (p = 0.007, p = 0.010) and internal (p = 0.025, p = 0.002) rotation, as well as slack (p = 0.033, p = 0.014), in the dominant leg. Both genotypes, together with sex, weight, and/or COL1A1 genotypes, explained 26% and 32% of the variance in external and internal rotation, respectively. The TNC genotype, sex, and BMI explained 23% of the variance in slack. The COL12A1 AA and the TNC rs1061494 TT genotypes were associated with smaller changes in the MCL (aMCL: COL12A1 p = 0.009, TNC p = 0.045; iMCL: COL12A1 p = 0.004, TNC p = 0.043; pMCL: COL12A1 p = 0.003, TNC p = 0.067; aDMCL: COL12A1 p = 0.007, TNC p = 0.020; pDMCL: COL12A1 p = 0.007, TNC p = 0.023) and/or LCL (COL12A1 p = 0.652, TNC p = 0.049) lengths within the dominant knee. The TNC rs1061494 CC genotype was associated with larger changes in the non-dominant anterior (p = 0.021) and posterior (p < 0.001) ACL bundle lengths. Conclusions: These findings suggest that COL12A1 and TNC variants are associated with internal–external tibial rotation and knee ligament length changes in healthy individuals. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

10 pages, 4765 KB  
Article
Joint Preservation Surgery Using Supramalleolar Osteotomy Combined with Posterior Tibial Tendon Release and Lateral Ligament Augmentation in Advanced Varus Ankle Arthritis
by Chul Hyun Park, Jeong-Jin Park and In-Ha Woo
J. Clin. Med. 2024, 13(16), 4803; https://doi.org/10.3390/jcm13164803 - 15 Aug 2024
Cited by 3 | Viewed by 2045
Abstract
Background: Recent studies utilizing weight-bearing computed tomography have identified abnormal internal rotation of the talus in advanced varus ankle arthritis (VAA) with a large talar tilt (TT), influenced by the posterior tibial tendon (PTT). This study aimed to evaluate the clinical and [...] Read more.
Background: Recent studies utilizing weight-bearing computed tomography have identified abnormal internal rotation of the talus in advanced varus ankle arthritis (VAA) with a large talar tilt (TT), influenced by the posterior tibial tendon (PTT). This study aimed to evaluate the clinical and radiographic results of supramalleolar osteotomy (SMO) combined with PTT release and lateral ligament augmentation for VAA with a large TT. Methods: From January 2015 to September 2018, 15 patients with VAA and a large TT (greater than 5°) underwent SMO combined with PTT release. Clinical results, including visual analog scale (VAS) for pain, American Orthopedic Foot and Ankle Society (AOFAS) ankle-hindfoot score, and ankle osteoarthritis scale (AOS), were assessed. Radiographic results were assessed with various parameters, including medial distal tibial angle (MDTA), anterior distal tibial angle (ADTA), talar tilt (TT), talus center migration (TCM), Meary angle, hindfoot alignment angle (HAA), and hindfoot moment arm (HMA) on foot and ankle weight-bearing radiographs. Clinical and radiographic results were evaluated preoperatively and at the last follow-up. Results: VAS, AOFAS ankle-hindfoot score, and AOS improved significantly from 7.5, 54.4, and 72.6 preoperatively to 3.1, 82.5, and 34.5 postoperatively, respectively. All radiographic parameters exhibited significant changes postoperatively, with the exception of the Meary angle, which demonstrated no significant change. Four patients exhibited improvement in radiographic stage postoperatively; however, average radiographic stage did not significantly improve postoperatively in all patients. One patient progressed to end-stage arthritis postoperatively, necessitating additional ankle arthrodesis. Conclusions: In conclusion, lengthening and lateral ligament augmentation combined with bony realignment procedures may be a reasonable option for treating VAA with a large TT greater that 5°. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

12 pages, 2466 KB  
Article
Association between Elastic Modulus of Foot Soft Tissues and Gait Characteristics in Young Individuals with Flatfoot
by Xin Jiao, Tianyi Hu, Yongjin Li, Binbin Wang, Mirabel Ewura Esi Acquah, Zengguang Wang, Qianqian Chen, Yaokai Gan and Dongyun Gu
Bioengineering 2024, 11(7), 728; https://doi.org/10.3390/bioengineering11070728 - 18 Jul 2024
Cited by 6 | Viewed by 3275
Abstract
Flatfoot is a common foot deformity, causing foot pain, osteoarthritis of the midfoot, and even knee and hip dysfunction. The elastic modulus of foot soft tissues and its association with gait biomechanics still remain unclear. For this study, we recruited 20 young individuals [...] Read more.
Flatfoot is a common foot deformity, causing foot pain, osteoarthritis of the midfoot, and even knee and hip dysfunction. The elastic modulus of foot soft tissues and its association with gait biomechanics still remain unclear. For this study, we recruited 20 young individuals with flatfoot and 22 age-matched individuals with normal foot arches. The elastic modulus of foot soft tissues (posterior tibial tendon, flexor digitorum brevis, plantar fascia, heel fat pad) was obtained via ultrasound elastography. Gait data were acquired using an optical motion capture system. The association between elastic modulus and gait data was analyzed via correlation analysis. The elastic modulus of the plantar fascia (PF) in individuals with flatfoot was higher than that in individuals with normal foot arches. There was no significant difference in the elastic modulus of the posterior tibial tendon (PTT), the flexor digitorum brevis (FDB), or the heel fat pad (HFD), or the thickness of the PF, PTT, FDB, and HFD. Individuals with flatfoot showed greater motion of the hip and pelvis in the coronal plane, longer double-support phase time, and greater maximum hip adduction moment during walking. The elastic modulus of the PF in individuals with flatfoot was positively correlated with the maximum hip extension angle (r = 0.352, p = 0.033) and the maximum hip adduction moment (r = 0.429, p = 0.039). The plantar fascia is an important plantar structure in flatfoot. The alteration of the plantar fascia’s elastic modulus is likely a significant contributing factor to gait abnormalities in people with flatfoot. More attention should be given to the plantar fascia in the young population with flatfoot. Full article
(This article belongs to the Section Biomechanics and Sports Medicine)
Show Figures

Graphical abstract

13 pages, 1615 KB  
Article
Sensory Stimulation of the Triceps Surae Muscle Complex Modulates Spinal Reflex Responses—A Comparison between Tapotement Massage and Repetitive Peripheral Magnetic Stimulation (rPMS)
by Volker R. Zschorlich, Fengxue Qi, Jörg Schorer and Dirk Büsch
Brain Sci. 2024, 14(2), 119; https://doi.org/10.3390/brainsci14020119 - 24 Jan 2024
Cited by 4 | Viewed by 3208
Abstract
Background: The reduction of muscular hypertonia is important in the treatment of various diseases or rehabilitation. This study aims to test the efficacy of a 5 Hz mechanical muscle stimulation (tapotement massage) in comparison to a 5 Hz repetitive peripheral magnetic stimulation (rPMS) [...] Read more.
Background: The reduction of muscular hypertonia is important in the treatment of various diseases or rehabilitation. This study aims to test the efficacy of a 5 Hz mechanical muscle stimulation (tapotement massage) in comparison to a 5 Hz repetitive peripheral magnetic stimulation (rPMS) on the neuromuscular reflex response. Methods: In a randomized control trial, 15 healthy volunteers were administered with either 5 Hz rPMS, tapotement massage, or rPMS sham stimulation. The posterior tibial nerve was stimulated with rPMS and sham stimulation. The Achilles tendon was exposed to a mechanically applied high-amplitude 5 Hz repetitive tendon tapotement massage (rTTM). The tendon reflex (TR) was measured for the spinal response of the soleus muscle. Results: After rPMS, there was a reduction of the TR response (−9.8%, p ≤ 0.034) with no significant changes after sham stimulation. Likewise, TR decreased significantly (−17.4%, p ≤ 0.002) after Achilles tendon tapotement intervention. Conclusions: These findings support the hypothesis that both afferent 5 Hz sensory stimulations contributed to a modulation within the spinal and/or supraspinal circuits, which resulted in a reduction of the spinal reflex excitability. The effects could be beneficial for patients with muscle hypertonia and could improve the functional results of rehabilitation programs. Full article
Show Figures

Graphical abstract

14 pages, 4315 KB  
Review
Adult Acquired Flatfoot Deformity: A Narrative Review about Imaging Findings
by Chiara Polichetti, Maria Ilaria Borruto, Francesco Lauriero, Silvio Caravelli, Massimiliano Mosca, Giulio Maccauro, Tommaso Greco and Carlo Perisano
Diagnostics 2023, 13(2), 225; https://doi.org/10.3390/diagnostics13020225 - 7 Jan 2023
Cited by 20 | Viewed by 16866
Abstract
Adult acquired flatfoot deformity (AAFD) is a disorder caused by repetitive overloading, which leads to progressive posterior tibialis tendon (PTT) insufficiency. It mainly affects middle-aged women and occurs with foot pain, malalignment, and loss of function. After clinical examination, imaging plays a key [...] Read more.
Adult acquired flatfoot deformity (AAFD) is a disorder caused by repetitive overloading, which leads to progressive posterior tibialis tendon (PTT) insufficiency. It mainly affects middle-aged women and occurs with foot pain, malalignment, and loss of function. After clinical examination, imaging plays a key role in the diagnosis and management of this pathology. Imaging allows confirmation of the diagnosis, monitoring of the disorder, outcome assessment and complication identification. Weight-bearing radiography of the foot and ankle are gold standard for the diagnosis of AAFD. Magnetic Resonance Imaging (MRI) is not routinely needed for the diagnosis; however, it can be used to evaluate the spring ligament and the degree of PTT damage which can help to guide surgical plans and management in patients with severe deformity. Ultrasonography (US) can be considered another helpful tool to evaluate the condition of the PTT and other soft-tissue structures. Computed Tomography (CT) provides enhanced, detailed visualization of the hindfoot, and it is useful both in the evaluation of bone abnormalities and in the accurate evaluation of measurements useful for diagnosis and post-surgical follow-up. Other state-of-the-art imaging examinations, like multiplanar weight-bearing imaging, are emerging as techniques for diagnosis and preoperative planning but are not yet standardized and their scope of application is not yet well defined. The aim of this review, performed through Pubmed and Web of Science databases, was to analyze the literature relating to the role of imaging in the diagnosis and treatment of AAFD. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

18 pages, 723 KB  
Review
Characteristics and Future Direction of Tibialis Posterior Tendinopathy Research: A Scoping Review
by Hye Chang Rhim, Ravi Dhawan, Ashley E. Gureck, Daniel E. Lieberman, David C. Nolan, Ramy Elshafey and Adam S. Tenforde
Medicina 2022, 58(12), 1858; https://doi.org/10.3390/medicina58121858 - 16 Dec 2022
Cited by 13 | Viewed by 9924
Abstract
Background and Objectives: Tibialis posterior tendon pathologies have been traditionally categorized into different stages of posterior tibial tendon dysfunction (PTTD), or adult acquired flatfoot deformity (AAFD), and more recently to progressive collapsing foot deformity (PCFD). The purpose of this scoping review is [...] Read more.
Background and Objectives: Tibialis posterior tendon pathologies have been traditionally categorized into different stages of posterior tibial tendon dysfunction (PTTD), or adult acquired flatfoot deformity (AAFD), and more recently to progressive collapsing foot deformity (PCFD). The purpose of this scoping review is to synthesize and characterize literature on early stages of PTTD (previously known as Stage I and II), which we will describe as tibialis posterior tendinopathy (TPT). We aim to identify what is known about TPT, identify gaps in knowledge on the topics of TPT, and propose future research direction. Materials and Methods: We included 44 studies and categorized them into epidemiology, diagnosis, evaluation, biomechanics outcome measure, imaging, and nonsurgical treatment. Results: A majority of studies (86.4%, 38 of 44 studies) recruited patients with mean or median ages greater than 40. For studies that reported body mass index (BMI) of the patients, 81.5% had mean or median BMI meeting criteria for being overweight. All but two papers described study populations as predominantly or entirely female gender. Biomechanical studies characterized findings associated with TPT to include increased forefoot abduction and rearfoot eversion during gait cycle, weak hip and ankle performance, and poor balance. Research on non-surgical treatment focused on orthotics with evidence mostly limited to observational studies. The optimal exercise regimen for the management of TPT remains unclear due to the limited number of high-quality studies. Conclusions: More epidemiological studies from diverse patient populations are necessary to better understand prevalence, incidence, and risk factors for TPT. The lack of high-quality studies investigating nonsurgical treatment options is concerning because, regardless of coexisting foot deformity, the initial treatment for TPT is typically conservative. Additional studies comparing various exercise programs may help identify optimal exercise therapy, and investigation into further nonsurgical treatments is needed to optimize the management for TPT. Full article
(This article belongs to the Special Issue Orthopedic Surgeries in Sports Medicine)
Show Figures

Figure 1

12 pages, 1041 KB  
Article
The Association of Variants within Types V and XI Collagen Genes with Knee Joint Laxity Measurements
by Samantha Beckley, Roopam Dey, Shaun Stinton, Willem van der Merwe, Thomas Branch, Alison V. September, Mike Posthumus and Malcolm Collins
Genes 2022, 13(12), 2359; https://doi.org/10.3390/genes13122359 - 14 Dec 2022
Cited by 5 | Viewed by 2990
Abstract
Joint laxity is a multifactorial phenotype with a heritable component. Mutations or common polymorphisms within the α1(V) (COL5A1), α1(XI) (COL11A1) and α2(XI) (COL11A2) collagen genes have been reported or proposed to associate with joint hypermobility, range [...] Read more.
Joint laxity is a multifactorial phenotype with a heritable component. Mutations or common polymorphisms within the α1(V) (COL5A1), α1(XI) (COL11A1) and α2(XI) (COL11A2) collagen genes have been reported or proposed to associate with joint hypermobility, range of motion and/or genu recurvatum. The aim of this study was to investigate whether polymorphisms within these collagen-encoding genes are associated with measurements of knee joint laxity and computed ligament length changes within the non-dominant leg. One hundred and six healthy participants were assessed for genu recurvatum (knee hyperextension), anterior-posterior tibial translation, external-internal tibial rotation and ligament length changes during knee rotation of their non-dominant leg. Participants were genotyped for COL5A1 rs12722 (T/C), COL11A1 rs3753841 (C/T), COL11A1 rs1676486 (T/C) and COL11A2 rs1799907 (A/T). The genotype-genotype combination of any two or more of the four COL5A1 rs12722 CC, COL11A1 rs3753841 CC, COL11A1 rs1676486 TT and COL11A2 rs1799907 AA genotypes was associated with decreased active and passive knee hyperextension. These genotype-genotype combinations, including sex (male), increased age and decreased body mass collectively, also contributed to decreased passive knee hyperextension. These findings suggest that COL5A1, COL11A1 and COL11A2 gene-gene interactions are associated with knee hyperextension measurements of the non-dominant leg of healthy individuals. Full article
(This article belongs to the Special Issue Genetics and Epigenetics of Musculoskeletal Pathologies)
Show Figures

Figure 1

9 pages, 4219 KB  
Article
Anatomical Study of Sites and Surface Area of the Attachment Region of Tibial Posterior Tendon Attachment
by Inori Uchiyama, Mutsuaki Edama, Hirotake Yokota, Ryo Hirabayashi, Chie Sekine, Sae Maruyama, Mayuu Shagawa, Ryoya Togashi, Yuki Yamada and Ikuo Kageyama
Int. J. Environ. Res. Public Health 2022, 19(24), 16510; https://doi.org/10.3390/ijerph192416510 - 8 Dec 2022
Cited by 3 | Viewed by 2830
Abstract
Background: The purpose of this study was not only to examine the attachment site but also to quantify the effect of the tibialis posterior tendon (TPT) on each attachment site by examining the surface area of the attachment region. Methods: We examined 100 [...] Read more.
Background: The purpose of this study was not only to examine the attachment site but also to quantify the effect of the tibialis posterior tendon (TPT) on each attachment site by examining the surface area of the attachment region. Methods: We examined 100 feet from 50 Japanese cadavers. The TPT attachment to the navicular bone (NB), medial cuneiform bone (MCB), and lateral cuneiform bone (LCB) were set as the main attachment sites (Type I). The attachment seen in Type I with the addition of one additional site of attachment was defined as Type II. Furthermore, surface area was measured using a three-dimensional scanner. Results: Attachment to the NB, MCB, and LCB was present in all specimens. The TPT attachment to the NB, MCB, and LCB comprised 75.1% of total attachment surface area. The ratio of the NB, MCB, and LCB in each type was about 90% in Types II and III, and 70–80% in Types IV–VII. Conclusion: The quantitative results demonstrated the NB, MCB, and LCB to be the main sites of TPT attachment, although individual differences in attachment sites exist, further developing the findings of previous studies. Full article
(This article belongs to the Special Issue 2nd Edition of Treatment of Foot and Ankle Injury and Public Health)
Show Figures

Figure 1

13 pages, 10948 KB  
Article
Adult-Acquired Flatfoot Deformity: Combined Talonavicular Arthrodesis and Calcaneal Displacement Osteotomy versus Double Arthrodesis
by Sebastian Fischer, Julia Oepping, Jan Altmeppen, Yves Gramlich, Oliver Neun, Sebastian Manegold and Reinhard Hoffmann
J. Clin. Med. 2022, 11(3), 840; https://doi.org/10.3390/jcm11030840 - 5 Feb 2022
Cited by 3 | Viewed by 5016
Abstract
Background: Adult-acquired flatfoot deformity due to posterior tibial tendon dysfunction (PTTD) is one of the most common foot deformities among adults. Hypothesis: Our study aimed to confirm that the combined procedures of calcaneal displacement osteotomy and talonavicular arthrodesis are equivalent to double arthrodesis. [...] Read more.
Background: Adult-acquired flatfoot deformity due to posterior tibial tendon dysfunction (PTTD) is one of the most common foot deformities among adults. Hypothesis: Our study aimed to confirm that the combined procedures of calcaneal displacement osteotomy and talonavicular arthrodesis are equivalent to double arthrodesis. Methods: Between 2016 and 2020, 41 patients (13 male and 28 females, mean age of 63 years) were retrospectively enrolled in the comparative study. All deformities were classified into Stages II and III of PTTD, according to Johnson and Strom. All patients underwent isolated bony realignment of the deformity: group A (n = 19) underwent calcaneal displacement osteotomy and talonavicular arthrodesis, and group B (n = 23) underwent double arthrodesis. Measurements from the Foot Function Index-D (FFI-D) and the SF-12 questionnaire were collected, with a comparison of pre- and post-operative radiographs conducted. The mean follow-up period for patients was 3.4 years. Results: The mean FFI-D was 33.9 (group A: 34.5; group B: 33.5), the mean SF-12 physical component summary was 43.13 (group A: 40.9; group B: 44.9), and the mean SF-12 mental component summary was 43.13 (group A: 40.9; group B: 44.9). The clinical data and corrected angles showed no significant intergroup differences. Conclusion: Based on the available data, our study confirmed that the combined procedures of talonavicular arthrodesis and calcaneal shift, with preservation of the subtalar joint, can be considered equivalent to the established double arthrodesis, with no significant differences in terms of clinical and radiological outcomes. Full article
Show Figures

Figure 1

9 pages, 903 KB  
Article
Postural Control Differences between Patients with Posterior Tibial Tendon Dysfunction and Healthy People during Gait
by Junsig Wang, L. Daniel Latt, Robert D. Martin and Erin M. Mannen
Int. J. Environ. Res. Public Health 2022, 19(3), 1301; https://doi.org/10.3390/ijerph19031301 - 24 Jan 2022
Cited by 6 | Viewed by 4307
Abstract
Background: Patients with posterior tibial tendon dysfunction (PTTD) may exhibit postural instability during walking likely due to a loss of medial longitudinal arch, abnormal foot alignment, and pain. While many studies have investigated gait alterations in PTTD, there is no understanding of dynamic [...] Read more.
Background: Patients with posterior tibial tendon dysfunction (PTTD) may exhibit postural instability during walking likely due to a loss of medial longitudinal arch, abnormal foot alignment, and pain. While many studies have investigated gait alterations in PTTD, there is no understanding of dynamic postural control mechanisms in this population during gait, which will help guide rehabilitation and gait training programs for patients with PTTD. The purpose of the study was to assess dynamic postural control mechanisms in patients with stage II PTTD as compared to age and gender matched healthy controls. Methods: Eleven patients with stage II PTTD (4 males and 7 females; age 59 ± 1 years; height 1.66 ± 0.12 m; mass 84.2 ± 16.0 kg) and ten gender and age matched controls were recruited in this study. Participants were asked to walk along a 10 m walkway. Ten Vicon cameras and four AMTI force platforms were used to collect kinematic and center of pressure (COP) data while participants performed gait. To test differences between PTTD vs. control groups, independent t-tests (set at α < 0.05) were performed. Results: Patients with PTTD had significantly higher double stance ratio (+23%) and anterior-posterior (AP) time to contact (TTC) percentage (+16%) as compared to healthy control. However, PTTD had lower AP COP excursion (−19%), AP COP velocity (−30%), and medial-lateral (ML) COP velocity (−40%) as compared to healthy controls. Mean ML COP trace values for PTTD were significantly decreased (−23%) as compared to controls, indicating COP trace for PTTD tends to be closer to the medial boundary than controls during single-support phase of walking. Conclusion: PTTD patients showed more conservative and cautious postural strategies which may help maintain balance and reduce the need for postural adjustment during PTTD gait. They also showed more medially shifted COP patterns than healthy controls during single-support phase of walking. Dynamic postural control outcomes could be used to develop effective gait training programs aimed at alleviating a medial shift of COP (everted foot) for individuals with PTTD in order to improve their functionality and gait efficiency. Full article
(This article belongs to the Special Issue Advances in Kinesiology and Health)
Show Figures

Figure 1

11 pages, 2339 KB  
Article
A New Anatomical Classification for Tibialis Posterior Tendon Insertion and Its Clinical Implications: A Cadaveric Study
by Jeong-Hyun Park, Digud Kim, Hyung-Wook Kwon, Mijeong Lee, Yu-Jin Choi, Kwang-Rak Park, Kwan Hyun Youn and Jaeho Cho
Diagnostics 2021, 11(9), 1619; https://doi.org/10.3390/diagnostics11091619 - 4 Sep 2021
Cited by 8 | Viewed by 8997
Abstract
The variations in the tibialis posterior tendon (TPT) could not be defined by previous classification; thus, this study used a larger-scale cadaver with the aim to classify the types of TPT insertion based on the combination of the number and location of TPT [...] Read more.
The variations in the tibialis posterior tendon (TPT) could not be defined by previous classification; thus, this study used a larger-scale cadaver with the aim to classify the types of TPT insertion based on the combination of the number and location of TPT insertions. A total of 118 feet from adult formalin-fixed cadavers were dissected (68 males, 50 females). The morphological characteristics and measurements of TPT insertion were evaluated. Four types of TPT insertions were classified, wherein the most common type was type 4 (quadruple insertions, 78 feet, 66.1%), which was divided into four new subtypes that were not defined in the previous classification. The second most common type was type 3 (triple insertions, 25 feet, 21.2%) with three subtypes, including the new subtype. Type 2 was found in 13 feet (11%), and the rarest type was type 1 (2 feet, 1.7%), wherein the main tendon was only attached to the navicular bone and the medial cuneiform bone. We suggest high morphological variability of the TPT in relation to the insertion location, along with the possibility of significant differences according to race and gender. Moreover, this classification will help clinicians understand adult flatfoot deformity-related posterior tibial tendon dysfunction (PTTD). Full article
(This article belongs to the Special Issue Advances in Anatomy)
Show Figures

Figure 1

Back to TopTop