The Impact of Spring Ligament Injuries on Flatfoot Deformity: An Exploratory Study of Morphological and Radiographic Changes in 198 Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Clinical Diagnosis
2.2. Imaging Diagnosis
2.3. Surgical Exploration
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Campbell, K.J.; Michalski, M.P.; Wilson, K.J.; Goldsmith, M.T.; Wijdicks, C.A.; Laprade, R.F.; Clanton, T.O. The ligament anatomy of the deltoid complex of the ankle: A qualitative and quantitative anatomical study. J. Bone Jt. Surg. Am. 2014, 96, e62. [Google Scholar] [CrossRef] [PubMed]
- Cromeens, B.P.; Kirchhoff, C.A.; Patterson, R.M.; Motley, T.; Stewart, D.; Fisher, C.; Reeves, R.E. An attachment-based description of the medial collateral and spring ligament complexes. Foot Ankle Int. 2015, 36, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Golano, P.; Farinas, O.; Saenz, I. The anatomy of the navicular and periarticular structures. Foot Ankle Clin. 2004, 9, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Hintermann, B.; Golanó, P. The Anatomy and Function of the Deltoid Ligament. Tech. Foot Ankle Surg. 2014, 13, 67–72. [Google Scholar] [CrossRef]
- Hintermann, B.; Ruiz, R. Foot and Ankle Instability—A Clinical Guide To Diagnosis and Surgical Management, 1st ed.; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar]
- Jennings, M.M.; Christensen, J.C. The effects of sectioning the spring ligament on rearfoot stability and posterior tibial tendon efficiency. J. Foot Ankle Surg. 2008, 47, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Abousayed, M.M.; Alley, M.C.; Shakked, R.; Rosenbaum, A.J. Adult-Acquired Flatfoot Deformity: Etiology, Diagnosis and Management. JBJS Rev. 2017, 5, e7. [Google Scholar] [CrossRef]
- Van Boerum, D.H.; Sangeorzan, B.J. Biomechanics and pathophysiology of flat foot. Foot Ankle Clin. 2003, 8, 419–430. [Google Scholar] [CrossRef]
- Hintermann, B.; Ruiz, R. Biomechanics of Medial Ankle and Peritalar Instability. Foot Ankle Clin. 2021, 26, 249–267. [Google Scholar] [CrossRef]
- Deland, J.T.; de Asla, R.J.; Sung, I.H.; Ernberg, L.A.; Potter, H.G. Posterior tibial tendon insufficiency: Which ligaments are involved? Foot Ankle Int. 2005, 26, 427–435. [Google Scholar] [CrossRef]
- Williams, G.; Widnall, J.; Evans, P.; Platt, S. Could failure of the spring ligament complex be the driving force behind the development of the adult flatfoot deformity? J. Foot Ankle Surg. 2014, 53, 152–155. [Google Scholar] [CrossRef]
- Myerson, M.S. Adult acquired flatfoot deformity: Treatment of dysfunction of the posterior tibial tendon. Instr. Course Lect. 1997, 46, 393–405. [Google Scholar] [PubMed]
- Gazdag, A.R.; Cracchiolo, A., 3rd. Rupture of the posterior tibial tendon. Evaluation of injury of the spring ligament and clinical assessment of tendon transfer and ligament repair. J. Bone Jt. Surg. Am. 1997, 79, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Ribbans, W.J.; Garde, A. Tibialis posterior tendon and deltoid and spring ligament injuries in the elite athlete. Foot Ankle Clin. 2013, 18, 255–291. [Google Scholar] [CrossRef] [PubMed]
- Ferran, N.A.; Oliva, F.; Maffulli, N. Ankle instability. Sports Med Arthrosc. Rev. 2009, 17, 139–145. [Google Scholar] [CrossRef]
- Cifuentes-De la Portilla, C.; Larrainzar-Garijo, R.; Bayod, J. Biomechanical stress analysis of the main soft tissues associated with the development of adult acquired flatfoot deformity. Clin. Biomech. 2019, 61, 163–171. [Google Scholar] [CrossRef]
- Deland, J.T. Adult-acquired flatfoot deformity. J. Am. Acad. Orthop. Surg. 2008, 16, 399–406. [Google Scholar] [CrossRef]
- Kelly, M.; Masqoodi, N.; Vasconcellos, D.; Fowler, X.; Osman, W.S.; Elfar, J.C.; Olles, M.W.; Ketz, J.P.; Flemister, A.S.; Oh, I. Spring ligament tear decreases static stability of the ankle joint. Clin. Biomech. 2019, 61, 79–83. [Google Scholar] [CrossRef]
- Orr, J.D.; Nunley, J.A. Isolated spring ligament failure as a cause of adult-acquired flatfoot deformity. Foot Ankle Int. 2013, 34, 818–823. [Google Scholar] [CrossRef]
- Bastias, G.F.; Dalmau-Pastor, M.; Astudillo, C.; Pellegrini, M.J. Spring Ligament Instability. Foot Ankle Clin. 2018, 23, 659–678. [Google Scholar] [CrossRef]
- Masaragian, H.J.; Massetti, S.; Perin, F.; Coria, H.; Cicarella, S.; Mizdraji, L.; Retga, L. Flatfoot Deformity Due to Isolated Spring Ligament Injury. J. Foot Ankle Surg. 2020, 59, 469–478. [Google Scholar] [CrossRef]
- Saltzman, C.L.; Brandser, E.A.; Berbaum, K.S.; DeGnore, L.; Holmes, J.R.; Katcherian, D.A.; Tetasdall, R.D.; Alexander, I.J. Reliability of standard foot radiographic measurements. Foot Ankle Int. 1994, 15, 661–665. [Google Scholar] [CrossRef] [PubMed]
- Hintermann, B.; Nigg, B.M.; Sommer, C. Foot movement and tendon excursion: An in vitro study. Foot Ankle Int. 1994, 15, 386–395. [Google Scholar] [CrossRef]
- Bloome, D.M.; Marymont, J.V.; Varner, K.E. Variations on the insertion of the posterior tibialis tendon: A cadaveric study. Foot Ankle Int. 2003, 24, 780–783. [Google Scholar] [CrossRef]
- Olewnik, L. A proposal for a new classification for the tendon of insertion of tibialis posterior. Clin. Anat. 2019, 32, 557–565. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, D.; Kwon, H.W.; Lee, M.; Choi, Y.J.; Park, K.R.; Youn, K.H.; Cho, J. A New Anatomical Classification for Tibialis Posterior Tendon Insertion and Its Clinical Implications: A Cadaveric Study. Diagnostics 2021, 11, 1619. [Google Scholar] [CrossRef]
- Willegger, M.; Seyidova, N.; Schuh, R.; Windhager, R.; Hirtler, L. The tibialis posterior tendon footprint: An anatomical dissection study. J. Foot Ankle Res. 2020, 13, 25. [Google Scholar] [CrossRef]
- Blackman, A.J.; Blevins, J.J.; Sangeorzan, B.J.; Ledoux, W.R. Cadaveric flatfoot model: Ligament attenuation and Achilles tendon overpull. J. Orthop. Res. 2009, 27, 1547–1554. [Google Scholar] [CrossRef] [PubMed]
- Kido, M.; Ikoma, K.; Imai, K.; Tokunaga, D.; Inoue, N.; Kubo, T. Load response of the medial longitudinal arch in patients with flatfoot deformity: In vivo 3D study. Clin. Biomech. 2013, 28, 568–573. [Google Scholar] [CrossRef] [PubMed]
- McCormack, A.P.; Niki, H.; Kiser, P.; Tencer, A.F.; Sangeorzan, B.J. Two reconstructive techniques for flatfoot deformity comparing contact characteristics of the hindfoot joints. Foot Ankle Int. 1998, 19, 452–461. [Google Scholar] [CrossRef]
- McCormack, A.P.; Ching, R.P.; Sangeorzan, B.J. Biomechanics of procedures used in adult flatfoot deformity. Foot Ankle Clin. 2001, 6, 15–23. [Google Scholar] [CrossRef]
- Niki, H.; Hirano, T.; Akiyama, Y.; Beppu, M. Accessory talar facet impingement in pathologic conditions of the peritalar region in adults. Foot Ankle Int. 2014, 35, 1006–1014. [Google Scholar] [CrossRef] [PubMed]
- Hintermann, B.; Deland, J.T.; de Cesar Netto, C.; Ellis, S.J.; Johnson, J.E.; Myerson, M.S.; Sangeorzan, B.J.; Thordarson, D.B.; Schon, L.C. Consensus on Indications for Isolated Subtalar Joint Fusion and Naviculocuneiform Fusions for Progressive Collapsing Foot Deformity. Foot Ankle Int. 2020, 41, 1295–1298. [Google Scholar] [CrossRef] [PubMed]
- Netto, C.C.; Behrens, A.; Lalevee, M.; Ehret, A.; Mansur, N.S.; Anderson, D.D.; Femino, J.E.; Lintz, F.; Bernasconi, A. Three-Dimensional Coverage Maps in the Assessment of Chopart Subluxation in Progressive Collapsing Foot Deformity. Foot Ankle Orthop. 2022, 7. [Google Scholar] [CrossRef]
- Shakoor, D.; de Cesar Netto, C.; Thawait, G.K.; Ellis, S.J.; Richter, M.; Schon, L.C.; Detmehri, S. Weight-bearing radiographs and cone-beam computed tomography examinations in adult acquired flatfoot deformity. Foot Ankle Surg. 2021, 27, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Benink, R.J. The constraint-mechanism of the human tarsus. A roentgenological experimental study. Acta Orthop. Scand. Suppl. 1985, 215, 1–135. [Google Scholar] [CrossRef]
- Johnson, J.E.; Sangeorzan, B.J.; de Cesar Netto, C.; Deland, J.T.; Ellis, S.J.; Hintermann, B.; Schon, L.C.; Thordarson, D.B.; Myerson, M.S. Consensus on Indications for Medial Cuneiform Opening Wedge (Cotton) Osteotomy in the Treatment of Progressive Collapsing Foot Deformity. Foot Ankle Int. 2020, 41, 1289–1291. [Google Scholar] [CrossRef]
- Kunas, G.C.; Do, H.T.; Aiyer, A.; Deland, J.T.; Ellis, S.J. Contribution of Medial Cuneiform Osteotomy to Correction of Longitudinal Arch Collapse in Stage IIb Adult-Acquired Flatfoot Deformity. Foot Ankle Int. 2018, 39, 885–893. [Google Scholar] [CrossRef]
- Michelson, J.D.; Waldman, B. An axially loaded model of the ankle after pronation external rotation injury. Clin. Orthop. Relat. Res. 1996, 328, 285–293. [Google Scholar] [CrossRef]
Type A | Type B | Type C | |
Spring ligament | rupture/avulsion | (partial) avulsion | (partial) tear |
Posterior tibial tendon | intact | bony avulsion (with os tibial externum) | avulsion from navicular tuberosity |
Measurement | Abbreviation | Unit/Criteria | Normal (Interquartile Range for Control Group) | Figure |
---|---|---|---|---|
DP-View (horizontal plane) | ||||
| TNC | degree | 7–15 degrees | Figure 2A |
| TM | degree | 4–11 degrees | Figure 2A |
Lateral view (sagittal plane) | ||||
| MA | degree | 4–9 degrees | Figure 2B |
| CP | degree | 19–24 degrees | Figure 2B |
| TC | degree | 44–51 degrees | Figure 2B |
| TCO | mm | 34–44% | Figure 2C |
| NCO | mm | 51–66% | Figure 2C |
| TNS | mm | 0 mm | Figure 2C |
Hindfoot alignment view | ||||
| HMA | mm | −6–5 mm | Figure 2D |
Deltoid Ligament | Lesion/Tear | no lesion/intact |
partial or complete lesion | ||
Spring ligament | Lesion/Tear | partial lesion |
complete lesion | ||
Location | intermediate | |
distal |
Injury Group | Control Group | |||||||
---|---|---|---|---|---|---|---|---|
Overall | Rupture Type | Associated Variables | p-Value 1 | |||||
A | B | C | ||||||
N (%) | 198 (100) | 77 (39) | 70 (35) | 51 (26) | Name | Coefficients and CI based on AICc selection | 30 | - |
Age (median, range) | 57 (13–86) | 60 (20–84) | 60 (13–86) | 38 (14–81) | Type | A: 14.6 (8.1–21.2) B: 14.8 (8.5–21.0) C: ref | 51 (40–66) | 0.299 |
Trauma (Yes) | −7.7 (−13.0–−2.5) | |||||||
Sex M | −0.9 (−5.8–4.0) | |||||||
Sex (females, %) | 127 (64) | 46 (60) | 44 (63) | 37 (73) | Type | A: 1.8 (0.8–3.8) B: 1.6 (0.7–3.4) | 21 (70) | 0.750 |
Trauma (N, %) | 83 (42) | 16 (21) | 30 (43) | 37 (73) | Type | A: 0.15 (0.06–0.35) B: 0.43 (0.18–0.99) | - | - |
Age | 0.97 (0.95–0.99) | |||||||
Sex M | 1.2 (0.6–2.4) |
Lesion/Location | Type A | Type B | Type C | Total | |||||
n | % | n | % | n | % | n | % | ||
Patients (n) | 77 | 38.9 | 70 | 35.3 | 51 | 25.8 | 198 | 100.0 | |
DL lesion | None/intact | 30 | 39.0 | 52 | 74.3 | 47 | 92.2 | 129 | 65.2 |
Partial/incomplete | 45 | 58.4 | 18 | 25.7 | 4 | 7.8 | 67 | 33.8 | |
Transmural/complete | 2 | 2.6 | 0 | 0.0 | 0 | 0.0 | 2 | 1.0 | |
SL lesion | Partial/incomplete | 38 | 49.4 | 42 | 60.0 | 24 | 47.1 | 104 | 52.5 |
Transmural/complete | 39 | 50.6 | 28 | 40.0 | 27 | 52.9 | 94 | 47.5 | |
Interligamentous | 72 | 93.5 | 2 | 2.9 | 0 | 0.0 | 74 | 37.4 | |
Distal | 5 | 6.5 | 68 | 97.1 | 51 | 100.0 | 124 | 62.6 | |
PT lesion | None/intact | 25 | 32.5 | 0 | 0.0 | 0 | 0.0 | 25 | 100.0 |
Diseased/partial | 48 | 62.3 | 0 | 0.0 | 0 | 0.0 | 48 | 24.2 | |
Avulsion without bone | 4 | 5.2 | 70 | 100.0 | 0 | 0.0 | 74 | 37.4 | |
Bony avulsion | 0 | 0.0 | 0 | 0.0 | 51 | 100.0 | 51 | 25.8 |
Response Variable | Associated Variables Coefficients and CI | |
---|---|---|
Name | ||
TNC angle | SL lesion | partial: ref complete: 1.6 (−1.2–4.3) |
SL lesion location | distal: ref intermediate: −1.5 (−4.4–1.5) | |
DL lesion | no: ref yes: 0.9 (−2.0–3.8) | |
TM angle | - | - |
MA angle | SL lesion | partial: ref complete: 0.6 (−2.0–3.2) |
SL lesion location | distal: ref intermediate: 1.7 (−1.0–4.5) | |
DL lesion | no: ref yes: 1.7 (−1.1–4.4) | |
CP angle | SL lesion location | distal: ref intermediate: −0.9 (−2.6–0.7) |
DL lesion | no: ref yes: −1.0 (−2.7–0.6) | |
TC angle | SL lesion | partial: ref complete: 0.8 (−1.0–2.5) |
SL lesion location | distal: ref intermediate: 1.3 (−0.7–3.2) | |
DL lesion | no: ref yes: 1.1 (−0.8–3.0) | |
TCO | SL lesion | partial: ref complete: 2.6 (−1.6–6.8) |
SL lesion location | distal: ref intermediate: 2.3 (−2.1–6.8) | |
DL lesion | no: ref yes: 1.9 (−2.4–6.3) | |
NCO | SL lesion | partial: ref complete: 1.7 (−2.9–6.4) |
SL lesion location | distal: ref intermediate: 4.0 (−1.0–9.1) | |
DL lesion | no: ref yes: 2.7 (−2.5–7.8) | |
TNS | SL lesion | partial: ref complete: 0.6 (0.0–1.3) |
SL lesion location | distal: ref intermediate: 0.8 (0.1–1.4) | |
HMA | SL lesion location | distal: ref intermediate: 3.5 (0.3–6.8) |
DL lesion | no: ref yes: 1.6 (−1.7–5.0) |
Patients | Medial Sliding | Lateral Column | No Osteotomy | ||||||
---|---|---|---|---|---|---|---|---|---|
Total | No Trauma | Trauma | No Trauma | Trauma | No Trauma | Trauma | No Trauma | Trauma | |
N (%) | N (%) | N (%) | N (%) | N (%) | N (%) | N (%) | N (%) | N (%) | |
Type A | 77 (38.8) | 61 (79.2) | 16 (20.8) | 15 (24.6) | 1 (6.3) | 35 (57.4) | 3 (18.7) | 11 (18.0) | 12 (75.0) |
Type B | 70 (35.4) | 40 (57.1) | 30 (42.9) | 7 (17.5) | 2 (6.7) | 24 (60.0) | 9 (30.0) | 9 (22.5) | 19 (63.3) |
Type C | 51 (25.8) | 14 (27.5) | 37 (72.5) | 2 (14.3) | 0 (0.0) | 8 (57.1) | 3 (8.1) | 4 (28.6) | 34 (91.9) |
Overall | 198 (100.0) | 115 (58.1) | 83 (41.9) | 24 (20.9) | 3 (3.6) | 67 (58.2) | 15 (18.1) | 24 (20.9) | 65 (78.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz, R.; Susdorf, R.; Hintermann, B. The Impact of Spring Ligament Injuries on Flatfoot Deformity: An Exploratory Study of Morphological and Radiographic Changes in 198 Patients. J. Clin. Med. 2025, 14, 5109. https://doi.org/10.3390/jcm14145109
Ruiz R, Susdorf R, Hintermann B. The Impact of Spring Ligament Injuries on Flatfoot Deformity: An Exploratory Study of Morphological and Radiographic Changes in 198 Patients. Journal of Clinical Medicine. 2025; 14(14):5109. https://doi.org/10.3390/jcm14145109
Chicago/Turabian StyleRuiz, Roxa, Roman Susdorf, and Beat Hintermann. 2025. "The Impact of Spring Ligament Injuries on Flatfoot Deformity: An Exploratory Study of Morphological and Radiographic Changes in 198 Patients" Journal of Clinical Medicine 14, no. 14: 5109. https://doi.org/10.3390/jcm14145109
APA StyleRuiz, R., Susdorf, R., & Hintermann, B. (2025). The Impact of Spring Ligament Injuries on Flatfoot Deformity: An Exploratory Study of Morphological and Radiographic Changes in 198 Patients. Journal of Clinical Medicine, 14(14), 5109. https://doi.org/10.3390/jcm14145109