Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (328)

Search Parameters:
Keywords = post-flowering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 9219 KB  
Article
Reproductive Constraints and Severe Pollinator Limitation in the Mexican Endemic Orchid Govenia capitata: Implications for Conservation
by Maythe López-Olvera, Gema Galindo-Flores, Ana Laura López-Escamilla and Carlos Lara
Plants 2025, 14(21), 3377; https://doi.org/10.3390/plants14213377 - 4 Nov 2025
Viewed by 277
Abstract
Understanding the reproductive biology of orchids is essential for evaluating population viability and guiding conservation strategies, as their persistence often depends on complex interactions between ecological, physiological, and environmental factors. Govenia capitata, a threatened orchid endemic to the montane forests of central [...] Read more.
Understanding the reproductive biology of orchids is essential for evaluating population viability and guiding conservation strategies, as their persistence often depends on complex interactions between ecological, physiological, and environmental factors. Govenia capitata, a threatened orchid endemic to the montane forests of central Mexico, had not previously been studied in this regard. We examined flowering phenology, floral longevity, stigmatic receptivity, natural and experimental pollination success, seed viability, and asymbiotic germination in two wild populations. Flowering was synchronous, with inflorescences lasting up to 57 days and individual flowers persisting for an average of 20 days. Stigmatic receptivity was detectable from the first day of anthesis and remained evident for at least eight days. Natural fruit set was very low (16.6%), while assisted self- and cross-pollination reached 100% success, demonstrating self-compatibility despite the inability for autonomous selfing due to floral structure. Seed viability differed significantly among treatments, being lowest in selfed capsules (11%) and highest in cross-pollinated ones (32%), representing a 65% reduction and reflecting severe inbreeding depression that extended to germination performance. In vitro germination success also varied, with the L-arginine medium yielding the highest values (46% for cross-pollinated seeds and 44% for naturally pollinated seeds), though post-germination survival requires optimization for conservation applications. Despite the conspicuous floral display, floral visitation was extremely rare and the pollinator identity remains unknown, with only one potentially effective visitor observed during 144 h of monitoring, and most floral visitors were non-pollinating arthropods such as crab spiders, weevils, hymenopterans, and thrips. Population density varied dramatically (26-fold) between sites separated by less than 1 km, indicating pronounced sensitivity to local environmental conditions. These findings reveal that reproduction in G. capitata is constrained by both extrinsic (pollinator limitation) and intrinsic factors (reduced seed viability), which collectively jeopardize long-term population persistence. From a conservation perspective, protecting montane forest remnants and pollinator communities is essential, while the demonstrated potential of asymbiotic germination provides a complementary tool for ex situ propagation and management of this endemic orchid. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

22 pages, 10302 KB  
Article
Study on the Compatibility of Distant Hybridization Between Rhododendron Subgenus Tsutsusi and R. moulmainense, a Fragrant Rhododendron from China
by Hongling Li, Jing Qi, Lele Wang, Jie Song, Yan Zhao, Yefang Li and Wenling Guan
Horticulturae 2025, 11(9), 1116; https://doi.org/10.3390/horticulturae11091116 - 14 Sep 2025
Viewed by 664
Abstract
Fragrant rhododendron varieties remain relatively limited in current germplasm resources, constraining the enhancement of ornamental and aromatic characteristics in rhododendron breeding—this limitation has emerged as a critical bottleneck in the genetic improvement of rhododendrons. This research takes fragrant flower breeding as the breeding [...] Read more.
Fragrant rhododendron varieties remain relatively limited in current germplasm resources, constraining the enhancement of ornamental and aromatic characteristics in rhododendron breeding—this limitation has emerged as a critical bottleneck in the genetic improvement of rhododendrons. This research takes fragrant flower breeding as the breeding objective and conducts hybridization between varieties of the subgenus Tsutsusi, which can flower in multiple seasons and exhibit relatively strong resistance, and the fragrant R. moulmainense. Parallel intraspecific hybridizations within the subgenus Tsutsusi were implemented as experimental controls to quantify hybridization affinity. This study combines floral tube ontogeny histomorphological analysis, ovary paraffin sectioning, and optimized pollination protocols to address hybridization constraints, providing new insights for rhododendron intersubgeneric distant hybridization to create fragrant varieties. The results showed varying fertility among combinations, with some showing sterility or weak fertility due to low pollen germination and abnormal embryo development. Both pre- and post-fertilization reproductive barriers were observed, and different pollination methods significantly influenced ovary expansion and fruit set rates. Regarding limitations, this study lacks an in-depth analysis of reproductive isolation mechanisms, only describing phenotypic characteristics through morphological and histological methods, and it does not employ molecular techniques. The fundamental causes of reproductive isolation between subgenera therefore remain unclear. Additionally, there was no long-term monitoring of seedling emergence rates, hybrid plant growth potential, or flowering traits. This limits the ability to comprehensively evaluate the breeding value and genetic stability of distant hybrids. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
Show Figures

Figure 1

18 pages, 1655 KB  
Article
Pilot-Scale Evaluation of a Filter Prototype for Bacterial Inactivation in Agro-Food Processing Wastewater
by Piotr Kanarek, Barbara Breza-Boruta and Wojciech Poćwiardowski
Water 2025, 17(17), 2631; https://doi.org/10.3390/w17172631 - 5 Sep 2025
Viewed by 1162
Abstract
The processing of freshly cut fruits and vegetables represents an important niche for implementing circular economy principles, particularly through the reuse of washing water. This is especially relevant as post-wash water is often treated as wastewater and discarded without reuse. One promising research [...] Read more.
The processing of freshly cut fruits and vegetables represents an important niche for implementing circular economy principles, particularly through the reuse of washing water. This is especially relevant as post-wash water is often treated as wastewater and discarded without reuse. One promising research avenue is the use of plant-derived extracts in water sanitation processes. Their antimicrobial properties offer a natural alternative to conventional disinfectants while reducing the formation of harmful disinfection by-products. The aim of this study was to evaluate the effectiveness of different filter bed configurations in removing pathogens from water. These configurations included a hydrogel saturated with natural plant extracts, an ion exchange resin layer, and an activated carbon layer. The most effective composite was also tested using real process water from a fruit washing line. The test materials included concentrated extracts from oak bark (Quercus robur), willow (Salix alba), birch (Betula pendula), raspberry shoots (Rubus idaeus), tea leaves (Camellia sinensis), and linden flowers (Tilia cordata), all immobilized in hydrogel, along with activated carbon and ion-exchange resin. Water samples were artificially inoculated with six opportunistic pathogens and collected process water was also used. Samples were analyzed microbiologically at six time intervals. The composite filter (hydrogel–resin–carbon) achieved a reduction of over 2 log10 in heavily inoculated water (~108 CFU mL−1) and maintained at least a 1 log10 reduction in real process effluents. The proposed solution supports blue water footprint reduction strategies (as the system aims to decrease the demand for freshwater resources through the reuse of treated wastewater) and aligns with the principles of green processing. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

24 pages, 2037 KB  
Article
Production and Post-Harvest Quality of Guava Under Saline Water Irrigation Strategies and Foliar Application of Ascorbic Acid
by Jean Telvio Andrade Ferreira, Reynaldo Teodoro de Fátima, Geovani Soares de Lima, Lauriane Almeida dos Anjos Soares, Brencarla de Medeiros Lima, Cassiano Nogueira de Lacerda, Larissa Fernanda Souza Santos, Valeska Karolini Nunes Oliveira, Hans Raj Gheyi, Flávia de Sousa Almeida, Saulo Soares da Silva, Jackson Silva Nóbrega, Luderlândio de Andrade Silva, Vitor Manoel Bezerra da Silva and Carlos Alberto Vieira de Azevedo
Plants 2025, 14(17), 2724; https://doi.org/10.3390/plants14172724 - 1 Sep 2025
Viewed by 820
Abstract
Saline water is a major constraint on irrigated fruit farming in the Brazilian semiarid region, negatively reducing both yield and fruit quality. Developing effective strategies to mitigate salt stress is therefore essential. This study evaluated the effects of foliar application of ascorbic acid [...] Read more.
Saline water is a major constraint on irrigated fruit farming in the Brazilian semiarid region, negatively reducing both yield and fruit quality. Developing effective strategies to mitigate salt stress is therefore essential. This study evaluated the effects of foliar application of ascorbic acid (AsA) on guava production and post-harvest quality under different phase-specific saline water irrigation strategies. The experiment was arranged in a randomized block design with split-plots. The main plots consisted of six irrigation strategies, which consisted of continuous irrigation with moderately saline water (0.9 dS m−1) and irrigation with saline water (3.3 dS m−1) applied during specific growth stages (vegetative, flowering, fruiting, vegetative/flowering, and vegetative/fruiting). Subplots received a control and three AsA concentrations (0, 200, 400, and 600 mg L−1). Irrigation with saline water (3.3 dS m−1) did not reduce yield, as fruit number and weight were maintained relative to the control. The main effect of saline stress was on fruit chemical composition: flavonoid and anthocyanin contents increased under saline irrigation, while stress during the fruiting stage elevated non-reducing sugars and the maturation index. Foliar AsA application acted as a biostimulant, with 600 mg L−1 improving production by increasing average fruit weight and enhancing nutritional quality through higher soluble solid, reducing sugar, and vitamin C contents. These results highlight the potential of combining phase-specific saline irrigation with AsA application to improve guava fruit quality in the Brazilian semiarid region. Full article
Show Figures

Figure 1

14 pages, 3746 KB  
Article
Multi-Stage Transcriptome Analysis Identifies Key Molecular Pathways for Soybean Under Phosphorus-Limited Conditions
by Xiulin Liu, Sobhi F. Lamlom, Xueyang Wang, Chunlei Zhang, Fengyi Zhang, Kezhen Zhao, Rongqiang Yuan, Bixian Zhang and Honglei Ren
Int. J. Mol. Sci. 2025, 26(17), 8385; https://doi.org/10.3390/ijms26178385 - 28 Aug 2025
Viewed by 730
Abstract
Phosphorus deficiency significantly limits soybean production across 74% of China’s arable land. This study investigated the molecular mechanisms enabling soybean to access insoluble phosphorus through transcriptome sequencing of the Heinong 48 variety across four developmental stages (Trefoil, Flower, Podding, and Post-podding). RNA-Seq analysis [...] Read more.
Phosphorus deficiency significantly limits soybean production across 74% of China’s arable land. This study investigated the molecular mechanisms enabling soybean to access insoluble phosphorus through transcriptome sequencing of the Heinong 48 variety across four developmental stages (Trefoil, Flower, Podding, and Post-podding). RNA-Seq analysis identified 2755 differentially expressed genes (DEGs), with 2506 up-regulated and 249 down-regulated genes. Notably, early developmental stages showed the most substantial transcriptional reprogramming, with 3825 DEGs in the Trefoil stage and 10,660 DEGs in the Flower stage, compared to only 523 and 393 DEGs in the Podding and Post-podding stages, respectively. Functional enrichment analysis revealed 44 significantly enriched GO terms in the Trefoil stage and 137 in the Flower stage, with 13 GO terms shared between both stages. KEGG pathway analysis identified 8 significantly enriched pathways in the Trefoil stage and 21 in the Flower stage, including key pathways related to isoflavonoid biosynthesis, alpha-linolenic acid metabolism, and photosynthesis. Among 87 differentially expressed transcription factors from 31 families, bHLH (8.08%), bZIP (7.18%), and WRKY (5.94%) were most prevalent. These findings provide genetic targets for developing soybean varieties with improved phosphorus acquisition capacity, potentially reducing fertilizer requirements and supporting more sustainable agricultural practices. Full article
(This article belongs to the Special Issue Recent Advances in Soybean Molecular Breeding)
Show Figures

Figure 1

19 pages, 2523 KB  
Review
The Effect of Boron on Fruit Quality: A Review
by Javier Giovanni Álvarez-Herrera, Marilcen Jaime-Guerrero and Gerhard Fischer
Horticulturae 2025, 11(8), 992; https://doi.org/10.3390/horticulturae11080992 - 21 Aug 2025
Viewed by 3068
Abstract
Boron (B) is a crucial micronutrient for the initial formation, development, and final quality of fruits, as it affects their physical and chemical properties and helps prevent various functional disorders. Recently, numerous physiological disorders in fruits have been reported, which have been linked [...] Read more.
Boron (B) is a crucial micronutrient for the initial formation, development, and final quality of fruits, as it affects their physical and chemical properties and helps prevent various functional disorders. Recently, numerous physiological disorders in fruits have been reported, which have been linked to B deficiency. However, there is still uncertainty about whether these issues are directly related to B, other nutrients, their combinations, or environmental conditions. This review aims to compile current and accurate information on how B is absorbed by plants, its role in the cell wall and membrane, its impact on flowering and fruit set, and its influence on physical and chemical properties, as well as its role in preventing physiological disorders. This review examines the latest studies on B published in major scientific journals (Elsevier, Springer, MDPI, Frontiers, Hindawi, Wiley, and SciELO). Boron is mobile in the xylem and slightly mobile in the phloem, and it plays a crucial role in pollination and fruit set. It reduces mass loss, maintains firmness, improves color, and results in larger, heavier fruits. Also, boron increases soluble solids, regulates total titratable acidity and pH, decreases respiration rate, and stabilizes ascorbic acid by delaying its breakdown. It also helps prevent disorders such as splitting, cork spots, internal rot, shot berry in grapes, blossom end rot, and segment drying in citrus. Foliar or soil application of B enhances fruit yield and post-harvest quality. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

28 pages, 3103 KB  
Article
First Complete Genome Sequence of Palo Verde Broom Emaravirus, Virus-Derived siRNA Signatures, and Phytohormone-Metabolite Profiling of Witches’ Broom-Affected Palo Verde Trees
by Raphael O. Adegbola, Muhammad Ilyas, Dinusha C. Maheepala, Ursula K. Schuch and Judith K. Brown
Viruses 2025, 17(8), 1122; https://doi.org/10.3390/v17081122 - 15 Aug 2025
Cited by 1 | Viewed by 850
Abstract
Witches’ broom disease of blue palo verde (Parkinsonia florida) was reported more than sixty years ago. Characteristic symptoms consist of dense clusters of shortened, brittle branches and stunted leaves. The suspect causal agent has been identified as palo verde broom virus [...] Read more.
Witches’ broom disease of blue palo verde (Parkinsonia florida) was reported more than sixty years ago. Characteristic symptoms consist of dense clusters of shortened, brittle branches and stunted leaves. The suspect causal agent has been identified as palo verde broom virus (PVBV), genus, Emaravirus, family, Fimoviridae. Here, the first complete PVBV genome sequence was determined, and virus small interfering RNAs (vsiRNAs), primary metabolites, and phytohormone profiles were characterized from infected palo verde leaves, adventitious shoots, flowers, and seeds. Based on pairwise distances, PVBV RNAs 1–4 shared 54–65% nucleotide identity and 19–51% amino acid similarity, respectively, with other emaraviruses, while PVBV RNA 5 shared no sequence homology with any emaravirus. The 21–24-nt virus-derived vsiRNAs, indicative of post-transcriptional gene silencing (PTGS), represented nearly the entire PVBV genome in flowers, leaves, seeds, and adventitious shoots; however, PVBV RNA 3 and RNA 4 were most heavily targeted in all plant parts. Evidence that six major phytohormones were altered in PVBV-infected compared to virus-free trees indicated that emaravirus-infected trees mount classical defense responses to virus infection and/or eriophyid mite infestations. Detection of PVBV RNA genome segments 1–5, accumulation of predominantly 21-nt vsiRNAs, homologous to the PVBV genome and transcripts, and altered levels of phytohormones and metabolites in PVBV-infected trees strongly implicate PVBV as the causal agent of witches’ broom disease. Full article
Show Figures

Figure 1

18 pages, 7011 KB  
Article
Monitoring Chrysanthemum Cultivation Areas Using Remote Sensing Technology
by Yin Ye, Meng-Ting Wu, Chun-Juan Pu, Jing-Mei Chen, Zhi-Xian Jing, Ting-Ting Shi, Xiao-Bo Zhang and Hui Yan
Horticulturae 2025, 11(8), 933; https://doi.org/10.3390/horticulturae11080933 - 7 Aug 2025
Viewed by 636
Abstract
Chrysanthemum has a long history of medicinal use with rich germplasm resources and extensive cultivation. Traditional chrysanthemum cultivation involves complex patterns and long flowering periods, with the ongoing expansion of planting areas complicating statistical surveys. Currently, reliable, timely, and universally applicable standardized monitoring [...] Read more.
Chrysanthemum has a long history of medicinal use with rich germplasm resources and extensive cultivation. Traditional chrysanthemum cultivation involves complex patterns and long flowering periods, with the ongoing expansion of planting areas complicating statistical surveys. Currently, reliable, timely, and universally applicable standardized monitoring methods for chrysanthemum cultivation areas remain underdeveloped. This research employed 16 m resolution satellite imagery spanning 2021 to 2023 alongside 2 m resolution data acquired in 2022 to quantify chrysanthemum cultivation extent across Sheyang County, Jiangsu Province, China. After evaluating multiple classifiers, Maximum Likelihood Classification was selected as the optimal method. Subsequently, time-series-based post-classification processing was implemented: initial cultivation information extraction was performed through feature comparison, supervised classification, and temporal analysis. Accuracy validation via Overall Accuracy, Kappa coefficient, Producer’s Accuracy, and User’s Accuracy identified critical issues, followed by targeted refinement of spectrally confused features to obtain precise area estimates. The chrysanthemum cultivation area in 2022 was quantified as 46,950,343 m2 for 2 m resolution and 46,332,538 m2 for 16 m resolution. Finally, the conversion ratio characteristics between resolutions were analyzed, yielding adjusted results of 38,466,192 m2 for 2021 and 47,546,718 m2 for 2023, respectively. These outcomes demonstrate strong alignment with local agricultural statistics, confirming method viability for chrysanthemum cultivation area computation. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

21 pages, 3832 KB  
Article
Effects of Water Use Efficiency Combined with Advancements in Nitrogen and Soil Water Management for Sustainable Agriculture in the Loess Plateau, China
by Hafeez Noor, Fida Noor, Zhiqiang Gao, Majed Alotaibi and Mahmoud F. Seleiman
Water 2025, 17(15), 2329; https://doi.org/10.3390/w17152329 - 5 Aug 2025
Viewed by 698
Abstract
In China’s Loess Plateau, sustainable agricultural end products are affected by an insufficiency of water resources. Rising crop water use efficiency (WUE) through field management pattern improvement is a crucial plan of action to address this issue. However, there is no agreement among [...] Read more.
In China’s Loess Plateau, sustainable agricultural end products are affected by an insufficiency of water resources. Rising crop water use efficiency (WUE) through field management pattern improvement is a crucial plan of action to address this issue. However, there is no agreement among researchers on the most appropriate field management practices regarding WUE, which requires further integrated quantitative analysis. We conducted a meta-analysis by quantifying the effect of agricultural practices surrounding nitrogen (N) fertilizer management. The two experimental cultivars were Yunhan–20410 and Yunhan–618. The subplots included nitrogen 0 kg·ha−1 (N0), 90 kg·ha−1 (N90), 180 kg·ha−1 (N180), 210 kg·ha−1 (N210), and 240 kg·ha−1 (N240). Our results show that higher N rates (up to N210) enhanced water consumption during the node-flowering and flowering-maturity time periods. YH–618 showed higher water use during the sowing–greening and node-flowering periods but decreased use during the greening-node and flowering-maturity periods compared to YH–20410. The N210 treatment under YH–618 maximized water use efficiency (WUE). Increased N rates (N180–N210) decreased covering temperatures (Tmax, Tmin, Taver) during flowering, increasing the level of grain filling. Spike numbers rose with N application, with an off-peak at N210 for strong-gluten wheat. The 1000-grain weight was at first enhanced but decreased at the far end of N180–N210. YH–618 with N210 achieved a harvest index (HI) similar to that of YH–20410 with N180, while excessive N (N240) or water reduced the HI. Dry matter accumulation increased up to N210, resulting in earlier stabilization. Soil water consumption from wintering to jointing was strongly correlated with pre-flowering dry matter biological process and yield, while jointing–flowering water use was linked to post-flowering dry matter and spike numbers. Post-flowering dry matter accumulation was critical for yield, whereas spike numbers positively impacted yield but negatively affected 1000-grain weight. In conclusion, our results provide evidence for determining suitable integrated agricultural establishment strategies to ensure efficient water use and sustainable production in the Loess Plateau region. Full article
(This article belongs to the Special Issue Soil–Water Interaction and Management)
Show Figures

Figure 1

13 pages, 736 KB  
Article
Birding via Facebook—Methodological Considerations When Crowdsourcing Observations of Bird Behavior via Social Media
by Dirk H. R. Spennemann
Birds 2025, 6(3), 39; https://doi.org/10.3390/birds6030039 - 28 Jul 2025
Cited by 1 | Viewed by 915
Abstract
This paper outlines a methodology to compile geo-referenced observational data of Australian birds acting as pollinators of Strelitzia sp. (Bird of Paradise) flowers and dispersers of their seeds. Given the absence of systematic published records, a crowdsourcing approach was employed, combining data from [...] Read more.
This paper outlines a methodology to compile geo-referenced observational data of Australian birds acting as pollinators of Strelitzia sp. (Bird of Paradise) flowers and dispersers of their seeds. Given the absence of systematic published records, a crowdsourcing approach was employed, combining data from natural history platforms (e.g., iNaturalist, eBird), image hosting websites (e.g., Flickr) and, in particular, social media. Facebook emerged as the most productive channel, with 61.4% of the 301 usable observations sourced from 43 ornithology-related groups. The strategy included direct solicitation of images and metadata via group posts and follow-up communication. The holistic, snowballing search strategy yielded a unique, behavior-focused dataset suitable for analysis. While the process exposed limitations due to user self-censorship on image quality and completeness, the approach demonstrates the viability of crowdsourced behavioral ecology data and contributes a replicable methodology for similar studies in under-documented ecological contexts. Full article
Show Figures

Figure 1

19 pages, 1940 KB  
Article
Linkages Between Sorghum bicolor Root System Architectural Traits and Grain Yield Performance Under Combined Drought and Heat Stress Conditions
by Alec Magaisa, Elizabeth Ngadze, Tshifhiwa P. Mamphogoro, Martin P. Moyo and Casper N. Kamutando
Agronomy 2025, 15(8), 1815; https://doi.org/10.3390/agronomy15081815 - 26 Jul 2025
Viewed by 807
Abstract
Breeding programs often overlook the use of root traits. Therefore, we investigated the relevance of sorghum root traits in explaining its adaptation to combined drought and heat stress (CDHS). Six (i.e., three pre-release lines + three checks) sorghum genotypes were established at two [...] Read more.
Breeding programs often overlook the use of root traits. Therefore, we investigated the relevance of sorghum root traits in explaining its adaptation to combined drought and heat stress (CDHS). Six (i.e., three pre-release lines + three checks) sorghum genotypes were established at two low-altitude (i.e., <600 masl) locations with a long-term history of averagely very high temperatures in the beginning of the summer season, under two management (i.e., CDHS and well-watered (WW)) regimes. At each location, the genotypes were laid out in the field using a randomized complete block design (RCBD) replicated two times. Root trait data, namely root diameter (RD), number of roots (NR), number of root tips (NRT), total root length (TRL), root depth (RDP), root width (RW), width–depth ratio (WDR), root network area (RNA), root solidity (RS), lower root area (LRA), root perimeter (RP), root volume (RV), surface area (SA), root holes (RH) and root angle (RA) were gathered using the RhizoVision Explorer software during the pre- and post-flowering stage of growth. RSA traits differentially showed significant (p < 0.05) correlations with grain yield (GY) at pre- and post-flowering growth stages and under CDHS and WW conditions also revealing genotypic variation estimates exceeding 50% for all the traits. Regression models varied between pre-flowering (p = 0.013, R2 = 47.15%, R2 Predicted = 29.32%) and post-flowering (p = 0.000, R2 = 85.64%, R2 Predicted = 73.30%) growth stages, indicating post-flowering as the optimal stage to relate root traits to yield performance. RD contributed most to the regression model at post-flowering, explaining 51.79% of the 85.64% total variation. The Smith–Hazel index identified ICSV111IN and ASAREACA12-3-1 as superior pre-release lines, suitable for commercialization as new varieties. The study demonstrated that root traits (in particular, RD, RW, and RP) are linked to crop performance under CDHS conditions and should be incorporated in breeding programs. This approach may accelerate genetic gains not only in sorghum breeding programs, but for other crops, while offering a nature-based breeding strategy for stress adaptation in crops. Full article
Show Figures

Figure 1

23 pages, 2406 KB  
Review
Current Research on Quantifying Cotton Yield Responses to Waterlogging Stress: Indicators and Yield Vulnerability
by Long Qian, Yunying Luo and Kai Duan
Plants 2025, 14(15), 2293; https://doi.org/10.3390/plants14152293 - 25 Jul 2025
Viewed by 619
Abstract
Cotton (Gossypium spp.) is an important industrial crop, but it is vulnerable to waterlogging stress. The relationship between cotton yields and waterlogging indicators (CY-WI) is fundamental for waterlogging disaster reduction. This review systematically summarized and analyzed literature containing CY-WI relations across 1970s–2020s. [...] Read more.
Cotton (Gossypium spp.) is an important industrial crop, but it is vulnerable to waterlogging stress. The relationship between cotton yields and waterlogging indicators (CY-WI) is fundamental for waterlogging disaster reduction. This review systematically summarized and analyzed literature containing CY-WI relations across 1970s–2020s. China conducted the most CY-WI experiments (67%), followed by Australia (17%). Recent decades (2010s, 2000s) contributed the highest proportion of CY-WI works (49%, 15%). Surface waterlogging form is mostly employed (74%) much more than sub-surface waterlogging. The flowering and boll-forming stage, followed by the budding stage, performed the most CY-WI experiments (55%), and they showed stronger negative relations of CY-WI than other stages. Some compound stresses enhance negative relations of CY-WI, such as accompanying high temperatures, low temperatures, and shade conditions, whereas some others weaken the negative CY-WI relations, such as prior/post drought and waterlogging. Anti-waterlogging applications significantly weaken negative CY-WI relations. Regional-scale CY-WI research is increasing now, and they verified the influence of compound stresses. In future CI-WI works, we should emphasize the influence of compound stresses, establish regional CY-WI relations regarding cotton growth features, examine more updated cotton cultivars, focus on initial and late cotton stages, and explore the consequence of high-deep submergence. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

22 pages, 1670 KB  
Review
Molecular Control of Flower Colour Change in Angiosperms
by Fernanda M. Rezende, Magdalena Rossi and Cláudia M. Furlan
Plants 2025, 14(14), 2185; https://doi.org/10.3390/plants14142185 - 15 Jul 2025
Viewed by 1683
Abstract
Floral pigmentation contributes directly to reproductive strategies and fitness by shaping pollinator behaviour, and its regulation therefore represents a critical aspect of flower development. Additionally, it is a major determinant of aesthetic and economic value in the ornamental plant industry. This review explores [...] Read more.
Floral pigmentation contributes directly to reproductive strategies and fitness by shaping pollinator behaviour, and its regulation therefore represents a critical aspect of flower development. Additionally, it is a major determinant of aesthetic and economic value in the ornamental plant industry. This review explores the genetic, biochemical, and ecological bases of floral colour change, focusing on the biosynthesis and regulation of the three major classes of plant pigments: carotenoids, flavonoids (particularly anthocyanins), and betalains. These pigments, derived from primary metabolism through distinct biosynthetic pathways, define the spatial and temporal variability of floral colouration. We discuss the molecular mechanisms underlying flower colour change from opening to senescence, highlighting pigment biosynthesis and degradation, pH shifts, metal complexation, and co-pigmentation. Additionally, we address the regulatory networks, including transcription factors (MYB, bHLH, and WDR) and post-transcriptional control, that influence pigment production. Finally, we provide a comprehensive survey of angiosperm species exhibiting dynamic petal colour changes, emphasizing how these mechanisms are regulated. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Flower Development and Plant Reproduction)
Show Figures

Figure 1

15 pages, 3793 KB  
Article
Dynamic Changes in Fatty Acids in Macadamia Fruit During Growth and Development
by Mingqun Cao, Birong Zhang, Minxian Duan, Hanyao Zhang, Suyun Yan, Fan Yang, Wenbin Shi, Xiaomeng Fu, Hongxia Yang, Jinxue Li and Xianyan Zhou
Agronomy 2025, 15(7), 1682; https://doi.org/10.3390/agronomy15071682 - 11 Jul 2025
Viewed by 991
Abstract
Fatty acids tend to undergo dynamic changes during the growth and development of fruits. In this study, we analyzed the variations in fruit morphology and kernel fatty acid fractions and contents at seven post-flowering stages in the fruit of ‘A4’ and ‘OC’, two [...] Read more.
Fatty acids tend to undergo dynamic changes during the growth and development of fruits. In this study, we analyzed the variations in fruit morphology and kernel fatty acid fractions and contents at seven post-flowering stages in the fruit of ‘A4’ and ‘OC’, two main macadamia cultivars in Yunnan, China. The single fruit weight and longitudinal and transverse diameters showed a ‘fast–slow–stable’ growth trend, and the fruit shape index gradually decreased with fruit development. A total of 13 saturated fatty acids, 18 monounsaturated fatty acids, and 10 polyunsaturated fatty acids were detected in macadamia kernels at seven developmental stages. The total fatty acid content in ‘OC’ and ‘A4’ tended to first increase and then decrease. The fatty acid content accounted for 8.81% and 6.33% of the total fatty acids at 50 days after flowering (DAF), and peaked at 95 DAF and 125 DAF (the fatty acid content accounted for 25.61% and 20.69% of the total fatty acids), indicating that these two periods are critical for fatty acid accumulation in the two cultivars. In addition, oleic acid, palmitoleic acid, cis-Vaccenic acid, and hexadecenoic acid were determined as the main fatty acids. This study reveals the dynamic changes in fatty acid composition and content in ‘OC’ and ‘A4’ during fruit development, providing a scientific basis for determining the appropriate harvesting time for macadamia nuts. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

21 pages, 3305 KB  
Article
Unlocking Potato Phenology: Harnessing Sentinel-1 and Sentinel-2 Synergy for Precise Crop Stage Detection
by Diego Gomez, Pablo Salvador, Jorge Gil and Juan Fernando Rodrigo
Remote Sens. 2025, 17(14), 2336; https://doi.org/10.3390/rs17142336 - 8 Jul 2025
Cited by 2 | Viewed by 1214
Abstract
Global challenges such as climate change and population growth require improvements in crop monitoring models. To address these issues, this study advances the identification of potato crop phenological stages using satellite remote sensing, a field where cereals have been the primary focus. We [...] Read more.
Global challenges such as climate change and population growth require improvements in crop monitoring models. To address these issues, this study advances the identification of potato crop phenological stages using satellite remote sensing, a field where cereals have been the primary focus. We introduce a methodology using Sentinel-1 (S1) and Sentinel-2 (S2) time series data to pinpoint critical phenological stages—emergence, canopy closure, flowering, senescence onset, and harvest timing—at the field scale. Our approach utilizes analysis of NDVI, fAPAR, and IRECI2 from S2, alongside VH and VV polarizations from S1, informed by domain knowledge of the spectral and morphological responses of potato crops. We propose the integration of NDVI and VH indices, NDVI_VH, to improve stage detection accuracy. Comparative analysis with ground-observed stages validated the method’s effectiveness, with NDVI proving to be one of the most informative indices, achieving RMSEs of 12 and 14 days for emergence and closure, and 17 days for the onset of senescence. The integrated NDVI_VH approach complemented NDVI, particularly in harvest and flowering stages, where VH enhanced accuracy, achieving an overall R2 value of 0.80. The study demonstrates the potential of combining SAR and optical data for post-season crop phenology analysis, providing insights that can inform the development of new methods and strategies to enhance on-season crop monitoring and yield forecasting. Full article
(This article belongs to the Special Issue Remote Sensing for Precision Farming and Crop Phenology)
Show Figures

Figure 1

Back to TopTop