Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = polyprenylated benzophenone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5732 KB  
Article
Development of a Benzophenone-Free Red Propolis Extract and Evaluation of Its Efficacy against Colon Carcinogenesis
by Iara Silva Squarisi, Victor Pena Ribeiro, Arthur Barcelos Ribeiro, Letícia Teixeira Marcos de Souza, Marcela de Melo Junqueira, Kátia Mara de Oliveira, Gaelle Hayot, Thomas Dickmeis, Jairo Kenupp Bastos, Rodrigo Cassio Sola Veneziani, Sérgio Ricardo Ambrósio and Denise Crispim Tavares
Pharmaceuticals 2024, 17(10), 1340; https://doi.org/10.3390/ph17101340 - 8 Oct 2024
Cited by 2 | Viewed by 2135
Abstract
Background/Objectives: Brazilian red propolis has attracted attention for its pharmacological properties. However, signs of toxicity were recently observed in long-term studies using the hydroalcoholic extract of red propolis (RPHE), likely due to polyprenylated benzophenones. This study aimed to develop a benzophenone-free red propolis [...] Read more.
Background/Objectives: Brazilian red propolis has attracted attention for its pharmacological properties. However, signs of toxicity were recently observed in long-term studies using the hydroalcoholic extract of red propolis (RPHE), likely due to polyprenylated benzophenones. This study aimed to develop a benzophenone-free red propolis extract (BFRP) and validate an HPLC-PDA method to quantify its main constituents: isoliquiritigenin, vestitol, neovestitol, medicarpine, and 7-O-methylvestitol. Methods: BFRP’s toxicity was assessed in zebrafish larvae through a vibrational startle response assay (VSRA) and morphological analysis. Genotoxicity was evaluated using the micronucleus test in rodents, and the extract’s effects on chemically induced preneoplastic lesions in rat colon were studied. An HPLC-PDA method was used to quantify BFRP’s main compounds. Results: BFRP primarily contained vestitol (128.24 ± 1.01 μg/mL) along with isoliquiritigenin, medicarpin, neovestitol, and 7-O-methylvestitol. Zebrafish larvae exposed to 40 µg/mL of BFRP exhibited toxicity, higher than the 10 µg/mL for RPHE, though no morphological differences were found. Fluorescent staining in the notochord, branchial arches, and mouth was observed in larvae treated with both BFRP and RPHE. No genotoxic or cytotoxic effects were observed up to 2000 mg/kg in rodents, with no impact on hepatotoxicity or nephrotoxicity markers. Chemoprevention studies showed a 41.6% reduction in preneoplastic lesions in rats treated with 6 mg/kg of BFRP. Conclusions: These findings indicate that BFRP is a safe, effective propolis-based extract with potential applications for human health, demonstrating reduced toxicity and chemopreventive properties. Full article
Show Figures

Graphical abstract

17 pages, 3038 KB  
Article
Brazilian Amazon Red Propolis: Leishmanicidal Activity and Chemical Composition of a New Variety of Red Propolis
by Richard Pereira Dutra, Marcos Marinho de Sousa, Maria Simone Pereira Maciel Mignoni, Karla Gabriela Mota de Oliveira, Euzineti Borges Pereira, Aline Santana Figueredo, Arthur André Castro da Costa, Tatielle Gomes Dias, Cleydlenne Costa Vasconcelos, Lucilene Amorim Silva, Aramys Silva Reis and Alberto Jorge Oliveira Lopes
Metabolites 2023, 13(9), 1027; https://doi.org/10.3390/metabo13091027 - 21 Sep 2023
Cited by 18 | Viewed by 4397
Abstract
Leishmaniasis is caused by protozoans of the genus Leishmania, and its treatment is highly toxic, leading to treatment discontinuation and the emergence of resistant strains. In this study, we assessed the leishmanicidal activity and chemical composition of red propolis collected from the [...] Read more.
Leishmaniasis is caused by protozoans of the genus Leishmania, and its treatment is highly toxic, leading to treatment discontinuation and the emergence of resistant strains. In this study, we assessed the leishmanicidal activity and chemical composition of red propolis collected from the Amazon-dominated region of northern Tocantins State, Brazil. The MTT assay was employed to determine the samples’ activity against Leishmania amazonensis promastigotes and their cytotoxicity against RAW macrophages. Spectrophotometric assays were utilised to measure the concentrations of total phenolics and flavonoids, while high-performance liquid chromatography coupled to a mass spectrometer (LC-MS/MS) was used to determine the chemical composition. An in silico study was conducted to evaluate which compounds from Brazilian Amazon red propolis may correlate with this biological activity. Brazilian Amazon red propolis exhibited a high concentration of phenolic compounds and an inhibitory activity against L. amazonensis, with an IC50 ranging from 23.37 to 36.10 µg/mL. Moreover, fractionation of the propolis yielded a fraction with enhanced bioactivity (16.11 µg/mL). Interestingly, neither the propolis nor its most active fraction showed cytotoxicity towards macrophages at concentrations up to 200 µg/mL. The red colour and the presence of isoflavonoid components (isoflavones, isoflavans, and pterocarpans) confirm that the substance is Brazilian red propolis. However, the absence of polyprenylated benzophenones suggests that this is a new variety of Brazilian red propolis. The in silico study performed with two of the main leishmanicidal drug targets using all compounds identified in Amazon red propolis reported that liquiritigenin was the compound that exhibited the best electronic interaction parameters, which was confirmed in an assay with promastigotes using a standard. The findings indicate that Amazon red propolis possesses leishmanicidal activity, low toxicity, and significant biotechnological potential. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Graphical abstract

19 pages, 2184 KB  
Article
Improvement of the In Vitro Cytotoxic Effect on HT-29 Colon Cancer Cells by Combining 5-Fluorouacil and Fluphenazine with Green, Red or Brown Propolis
by Soraia I. Falcão, Diana Duarte, Moustapha Diallo, Joana Santos, Eduarda Ribeiro, Nuno Vale and Miguel Vilas-Boas
Molecules 2023, 28(8), 3393; https://doi.org/10.3390/molecules28083393 - 12 Apr 2023
Cited by 17 | Viewed by 4548
Abstract
Cancer is regard as one of the key factors of mortality and morbidity in the world. Treatment is mainly based on chemotherapeutic drugs that, when used in targeted therapies, have serious side effects. 5-fluorouracil (5-FU) is a drug commonly used against colorectal cancer [...] Read more.
Cancer is regard as one of the key factors of mortality and morbidity in the world. Treatment is mainly based on chemotherapeutic drugs that, when used in targeted therapies, have serious side effects. 5-fluorouracil (5-FU) is a drug commonly used against colorectal cancer (CRC), despite its side effects. Combination of this compound with natural products is a promising source in cancer treatment research. In recent years, propolis has become the subject of intense pharmacological and chemical studies linked to its diverse biological properties. With a complex composition rich in phenolic compounds, propolis is described as showing positive or synergistic interactions with several chemotherapeutic drugs. The present work evaluated the in vitro cytotoxic activity of the most representative propolis types, such as green, red and brown propolis, in combination with chemotherapeutic or CNS drugs on HT-29 colon cancer cell lines. The phenolic composition of the propolis samples was evaluated by LC-DAD-ESI/MSn analysis. According to the type of propolis, the composition varied; green propolis was rich in terpenic phenolic acids and red propolis in polyprenylated benzophenones and isoflavonoids, while brown propolis was composed mainly of flavonoids and phenylpropanoids. Generally, for all propolis types, the results demonstrated that combing propolis with 5-FU and fluphenazine successfully enhances the in vitro cytotoxic activity. For green propolis, the combination demonstrated an enhancement of the in vitro cytotoxic effect compared to green propolis alone, at all concentrations, while for brown propolis, the combination in the concentration of 100 μg/mL gave a lower number of viable cells, even when compared with 5-FU or fluphenazine alone. The same was observed for the red propolis combination, but with a higher reduction in cell viability. The combination index, calculated based on the Chou–Talalay method, suggested that the combination of 5-FU and propolis extracts had a synergic growth inhibitory effect in HT-29 cells, while with fluphenazine, only green and red propolis, at a concentration of 100 μg/mL, presented synergism. Full article
(This article belongs to the Special Issue Propolis in Human and Bee Health)
Show Figures

Graphical abstract

14 pages, 1135 KB  
Article
Constituents of the Stem Bark of Symphonia globulifera Linn. f. with Antileishmanial and Antibacterial Activities
by Ruland Tchuinkeu Nguengang, Billy Toussie Tchegnitegni, Eric Carly Nono Nono, Georges Bellier Tabekoueng, Yannick Stéphane Fotsing Fongang, Jean Jules Kezetas Bankeu, Jean Rodolphe Chouna, Céline Nguefeu Nkenfou, Fabrice Boyom Fekam, Norbert Sewald and Bruno Ndjakou Lenta
Molecules 2023, 28(6), 2473; https://doi.org/10.3390/molecules28062473 - 8 Mar 2023
Cited by 5 | Viewed by 2825
Abstract
The chemical investigation of the n-hexane fraction from the methanol extract of the stem bark of Symphonia globulifera Linn f., which displayed good in vitro activity against Leishmania donovani NR-48822 promastigotes (IC50 43.11 µg/mL), led to the isolation of three previously [...] Read more.
The chemical investigation of the n-hexane fraction from the methanol extract of the stem bark of Symphonia globulifera Linn f., which displayed good in vitro activity against Leishmania donovani NR-48822 promastigotes (IC50 43.11 µg/mL), led to the isolation of three previously unreported polyprenylated benzophenones, guttiferone U (1), V (2)/W (3), and a new tocotrienol derivative named globuliferanol (4), along with 11 known compounds (515). Their structures were elucidated based on their NMR and MS data. Some isolated compounds were assessed for both their antileishmanial and cytotoxic activities against L. donovani and Vero cells, respectively. Guttiferone K (5) exhibited the best potency (IC50 3.30 μg/mL), but with low selectivity to Vero cells. The n-hexane fraction and some compounds were also assessed in vitro for their antibacterial activity against seven bacterial strains. All the samples exhibited moderate to potent antibacterial activity (MICs ≤ 15.6 µg/mL) against at least one of the tested strains. Full article
(This article belongs to the Special Issue Biological Activity of Phenolics and Polyphenols in Nature Products)
Show Figures

Graphical abstract

18 pages, 1919 KB  
Article
Biological Activity Evaluation and In Silico Studies of Polyprenylated Benzophenones from Garcinia celebica
by Yenni Pintauli Pasaribu, Arif Fadlan, Sri Fatmawati and Taslim Ersam
Biomedicines 2021, 9(11), 1654; https://doi.org/10.3390/biomedicines9111654 - 10 Nov 2021
Cited by 15 | Viewed by 3942
Abstract
This study aimed to isolate polyprenylated benzophenones from the rootbark of Garcinia celebica and assess their activities in vitro and in silico. The antioxidant activity was evaluated by the DPPH, ABTS, and FRAP methods. The cytotoxicity was evaluated against HeLa, MCF-7, A549, and [...] Read more.
This study aimed to isolate polyprenylated benzophenones from the rootbark of Garcinia celebica and assess their activities in vitro and in silico. The antioxidant activity was evaluated by the DPPH, ABTS, and FRAP methods. The cytotoxicity was evaluated against HeLa, MCF-7, A549, and B16 cancer cell lines. The antiplasmodial activity was performed against the chloroquine-sensitive Plasmodium falciparum strain 3D7. Molecular docking was analyzed on alpha-estrogen receptor (3ERT) and P. falciparum lactate dehydrogenase enzyme (1CET). The prediction of ADMET for the compounds was also studied. For the first time, (-)-cycloxanthochymol, isoxanthochymol, and xanthochymol were isolated from the root bark of Garcinia celebica. The antioxidant and cytotoxicity evaluation showed that all benzophenones exhibited antioxidant activity compared to gallic acid and quercetin as positive controls and also exhibited strong activity against HeLa, MCF-7, A549, and B16 cell lines compared to cisplatin as the positive control. The antiplasmodial evaluation showed that isoxanthochymol exhibited activity against the chloroquine-sensitive P. falciparum strain 3D7. In addition, the in silico molecular docking study supported in vitro activities. The ADMET analysis also indicated the isolated benzophenones are potential oral drug candidates. Full article
(This article belongs to the Topic Compounds with Medicinal Value)
Show Figures

Figure 1

7 pages, 885 KB  
Communication
Dalbergia ecastaphyllum (L.) Taub. and Symphonia globulifera L.f.: The Botanical Sources of Isoflavonoids and Benzophenones in Brazilian Red Propolis
by Gari Vidal Ccana-Ccapatinta, Jennyfer Andrea Aldana Mejía, Matheus Hikaru Tanimoto, Milton Groppo, Jean Carlos Andrade Sarmento de Carvalho and Jairo Kenupp Bastos
Molecules 2020, 25(9), 2060; https://doi.org/10.3390/molecules25092060 - 28 Apr 2020
Cited by 70 | Viewed by 5749
Abstract
The Brazilian red propolis (BRP) constitutes an important commercial asset for northeast Brazilian beekeepers. The role of Dalbergia ecastaphyllum (L.) Taub. (Fabaceae) as the main botanical source of this propolis has been previously confirmed. However, in addition to isoflavonoids and other phenolics, which [...] Read more.
The Brazilian red propolis (BRP) constitutes an important commercial asset for northeast Brazilian beekeepers. The role of Dalbergia ecastaphyllum (L.) Taub. (Fabaceae) as the main botanical source of this propolis has been previously confirmed. However, in addition to isoflavonoids and other phenolics, which are present in the resin of D. ecastaphyllum, samples of BRP are reported to contain substantial amounts of polyprenylated benzophenones, whose botanical source was unknown. Therefore, field surveys, phytochemical and chromatographic analyses were undertaken to confirm the botanical sources of the red propolis produced in apiaries located in Canavieiras, Bahia, Brazil. The results confirmed D. ecastaphyllum as the botanical source of liquiritigenin (1), isoliquiritigenin (2), formononetin (3), vestitol (4), neovestitol (5), medicarpin (6), and 7-O-neovestitol (7), while Symphonia globulifera L.f. (Clusiaceae) is herein reported for the first time as the botanical source of polyprenylated benzophenones, mainly guttiferone E (8) and oblongifolin B (9), as well as the triterpenoids β-amyrin (10) and glutinol (11). The chemotaxonomic and economic significance of the occurrence of polyprenylated benzophenones in red propolis is discussed. Full article
Show Figures

Graphical abstract

9 pages, 260 KB  
Article
Novel Polyprenylated Phloroglucinols from Hypericum sampsonii
by Jih-Jung Chen, Hong-Jhang Chen and Yun-Lian Lin
Molecules 2014, 19(12), 19836-19844; https://doi.org/10.3390/molecules191219836 - 28 Nov 2014
Cited by 11 | Viewed by 6933
Abstract
Hypericum sampsonii Hance (Clusiaceae) is a folk medicine used in Taiwan to treat blood stasis, relieve swelling, and as an anti-hepatitis drug. Two new polyprenylated phloroglucinol derivatives, hypersampsone R (1) and hypersampsone S (2), and a known prenylated benzophenone, [...] Read more.
Hypericum sampsonii Hance (Clusiaceae) is a folk medicine used in Taiwan to treat blood stasis, relieve swelling, and as an anti-hepatitis drug. Two new polyprenylated phloroglucinol derivatives, hypersampsone R (1) and hypersampsone S (2), and a known prenylated benzophenone, hyperibone K (3) were isolated from the aerial parts of H. sampsonii. Their structures were determined by extensive 1D and 2D NMR, and MS spectral analyses. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

Back to TopTop