Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = polyhalite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5596 KiB  
Article
Reducing Uneven Fruit Ripening and Improving the Quality of Durian (Durio zibethinus Murr.) Fruit Using Plastic Mulching Combined with Polyhalite Fertilizer
by Nguyen Kim Quyen, Le Van Dang, Ngo Phuong Ngoc, Le Ngoc Quynh, Nguyen Minh Phuong, Le Minh Ly and Ngo Ngoc Hung
Agronomy 2025, 15(3), 631; https://doi.org/10.3390/agronomy15030631 - 1 Mar 2025
Cited by 2 | Viewed by 2702
Abstract
Uneven fruit ripening (UFR) is currently causing a decrease in the quality and value of “Ri 6” durian fruit. The soil moisture and nutrient (K, Ca, and Mg) levels present during the fruit development stage are the two main factors affecting UFR in [...] Read more.
Uneven fruit ripening (UFR) is currently causing a decrease in the quality and value of “Ri 6” durian fruit. The soil moisture and nutrient (K, Ca, and Mg) levels present during the fruit development stage are the two main factors affecting UFR in durian fruit. However, measurements that can be used to determine the decrease in the UFR rate of durian remain unknown. Therefore, this study sought to evaluate the impact of plastic mulching (PM) and polyhalite fertilizer (PH) on improving the UFR rate and quality of durian fruit. A field study was conducted at three different durian orchards in the Vietnamese Mekong Delta (VMD) throughout two seasons (2022–2023 and 2023–2024). We used PM a month before fruit harvesting, combined with PH applied during the fruit development stage. Four treatments were used: (T1) control; (T2) PM, plastic mulching a month before durian fruit harvesting; (T3) PH, polyhalite fertilizer application (3 kg tree−1 year−1); and (T4) PM + PH, polyhalite fertilizer application (3 kg tree−1 year−1) and plastic mulching a month before durian fruit harvesting. The farmer’s fertilization practice (450 g N–450 g P–450 g K per tree−1 during the fruit development period) was used in all treatments. Parameters such as soil physicochemical properties, fruit quality, and leaf mineral nutrient concentration were investigated at the harvesting stage. The results show that using PM + PH decreased soil moisture (>15%) but increased the concentrations of K, Mg, and Ca in both soil and durian leaves, thereby reducing the UFR rate (>80%) compared with the control. Additionally, applying PM + PH increased the aril proportion (>18%) and total soluble solids (approximately 5%) in durian fruit in comparison with the control. In conclusion, combining PM and PH improved the UFR rate and durian fruit quality. Therefore, we recommend that farmers apply these methods to their durian orchards to decrease physiological disorders and enhance fruit quality, thus contributing to achieving sustainable durian production in the VMD. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Graphical abstract

13 pages, 4156 KiB  
Article
Transformation of Biomass Power Plant Ash into Composite Fertilizers: A Perspective to Prepare a Rain-Controlled Ammonium Ion–Releasing Composite Fertilizer
by László Kótai, Márk Windisch and Kende Attila Béres
J. Compos. Sci. 2024, 8(9), 336; https://doi.org/10.3390/jcs8090336 - 24 Aug 2024
Cited by 2 | Viewed by 1682
Abstract
We have developed a convenient route to transform biomass power plant ashes (BPPA) into porous sponge-like fertilizer composites. The absence of water prevents the chemical reaction and carbon dioxide formation when concentrated sulfuric acid is mixed with BPPA and CaCO3. Adding [...] Read more.
We have developed a convenient route to transform biomass power plant ashes (BPPA) into porous sponge-like fertilizer composites. The absence of water prevents the chemical reaction and carbon dioxide formation when concentrated sulfuric acid is mixed with BPPA and CaCO3. Adding water, however, initiates the protonation reaction of carbonate ion content and starts CO2 evolution. The key element of the method was that the BPPA and, optionally, CaCO3 and/or CaSO4·0.5H2O were mixed with concentrated sulfuric acid to make a paste-like consistency. No gas evolution occurred at this stage; however, with the subsequent and controlled addition of water, CO2 gas evolved and was released through the channels developed in the pastry-like material due to the internal gas pressure, but without foaming. Using a screw-containing tube reactor, the water can be introduced under pressure. Due to the pressure, the pores in the pastry-like material became smaller, and consequently, the mechanical strength of the granulated and solidified mixture became higher than that of the reaction products prepared under atmospheric pressure. The main reaction products were syngenite (K2Ca(SO4)2·H2O) and polyhalite (K2Ca2Mg(SO4)4·2H2O). These compounds are valuable fertilizer components in themselves, but the material’s porous nature helps absorb solutions of microelement fertilizers. Surprisingly, concentrated ammonium nitrate solutions transform the syngenite content of the porous fertilizer into ammonium calcium sulfate ((NH4)2Ca(SO4)2·2H2O, koktaite). Koktaite is slightly soluble in water, thus the amount of ammonium ion released on the dissolution of koktaite depends on the amount of available water. Accordingly, ammonium ion release for plants can be increased with rain or irrigation, and koktaite is undissolved and does not decompose in drought situations. The pores (holes) of this sponge-like fertilizer product can be filled with different solutions containing other fertilizer components (phosphates, zinc, etc.) to adjust the composition of the requested fertilizer compositions for particular soils and plant production. The method allows the preparation of ammonium nitrate composite fertilizers containing metallic microelements, and various solid sponge-like composite materials with adjusted amounts of slowly releasing fertilizer components like syngenite and koktaite. Full article
(This article belongs to the Special Issue From Waste to Advance Composite Materials)
Show Figures

Graphical abstract

16 pages, 4651 KiB  
Article
The Hydrogeochemical Processes of Groundwater in the Bieletan Area, the Western Potash Production Region in China
by Rui Duan, Liang Chang, Xiaofan Gu, Xiaodeng Li, Xiangzhi You, Qunhui Zhang and Qian Wang
Water 2024, 16(13), 1833; https://doi.org/10.3390/w16131833 - 27 Jun 2024
Cited by 2 | Viewed by 1131
Abstract
The hydrogeochemical research of groundwater in the Bieletan area, China’s largest potash producing zone, used a variety of methods, including multivariate analysis, saturation index, and hydrogeochemical modeling. Water samples were collected and analyzed for physicochemical parameters, along with soluble ions from soil cores. [...] Read more.
The hydrogeochemical research of groundwater in the Bieletan area, China’s largest potash producing zone, used a variety of methods, including multivariate analysis, saturation index, and hydrogeochemical modeling. Water samples were collected and analyzed for physicochemical parameters, along with soluble ions from soil cores. The results showed that total dissolved solids (TDS) of groundwater exceeded 300 g/L, with the main hydrochemical characteristics being Cl-Mg type and Cl-Na type. Groundwater is recharged by lake water and canal water, with evaporation being the main factor affecting water chemistry. Hydrogeochemical modeling analyzed the processes occurring from these two different recharge sources: mineral precipitation mainly occurred with lake water recharge, while mineral dissolution mainly occurred with canal water recharge. Regarding potash dissolution, canal water and lake water recharge resulted in 8.860 mmol/L of polyhalite dissolution and 0.278 mmol/L of carnallite dissolution, respectively. This study highlights the complex hydrogeochemical processes controlling groundwater in the potash-rich Bieletan area, providing insights for water resource management and potash mining. Full article
(This article belongs to the Special Issue Mine and Water)
Show Figures

Graphical abstract

16 pages, 7740 KiB  
Article
Distribution and Genesis of Potassium-Bearing Minerals in Lop Nor Playa, Xinjiang, China
by Kai Wang, Yu Zhang, Jiahuan Han, Lichun Ma, Mianping Zheng, Yue Wu and Banwang Yang
Minerals 2023, 13(4), 560; https://doi.org/10.3390/min13040560 - 17 Apr 2023
Cited by 6 | Viewed by 2330
Abstract
Lop Nor Playa is the main salt-forming area in the Tarim Basin, which is rich in brine resources. There is a large amount of potassium fertilizer produced from potassium-rich brine in Lop Nor annually, which meets about half of the demands of China’s [...] Read more.
Lop Nor Playa is the main salt-forming area in the Tarim Basin, which is rich in brine resources. There is a large amount of potassium fertilizer produced from potassium-rich brine in Lop Nor annually, which meets about half of the demands of China’s agricultural potash, along with that produced in the Qaidam Basin. In order to investigate the distribution characteristics of potassium-bearing minerals and the origin of potassium-bearing salts in Lop Nor Playa, mineralogy and hydrogeochemistry studies were carried out. The results showed that there are a large number of polyhalite layers distributed in the Luobei Depression and Xinqing Platform. Brines with high content of K+ and Mg2+ have reactions with calcium sulfate minerals, generating secondary polyhalite layers. Carnallite layers are mainly distributed in subbasins along fault zones in all three mining areas with small size. Ca-Cl-type waters rise to the surface along fault zones and mix with ground water as soon as they appear on the ground, forming the deposits of carnallite and bischofite after evaporation. During the generation of potassic salts, fault zones, on the one hand, control the margin of mining areas and the distribution of polyhalite layers. On the other hand, they act as the migration and reaction space for salt spring water, providing large amounts of ore-forming elements such as Ca2+, K+, and Mg2+. This study provides a theoretical basis for the exploration of potassium-rich brine in the Lop Nor Basin. Full article
(This article belongs to the Special Issue Geochemical Exploration for Critical Mineral Resources)
Show Figures

Figure 1

16 pages, 1728 KiB  
Article
Biochar and Polyhalite Fertilizers Improve Soil’s Biochemical Characteristics and Sunflower (Helianthus annuus L.) Yield
by Muhammad Abdullah Aziz, Fahad Masoud Wattoo, Faheem Khan, Zeshan Hassan, Imran Mahmood, Adeel Anwar, Muhammad Fazal Karim, Muhammad Tahir Akram, Rabia Manzoor, Khalid Saifullah Khan and Mosaed A. Majrashi
Agronomy 2023, 13(2), 483; https://doi.org/10.3390/agronomy13020483 - 7 Feb 2023
Cited by 18 | Viewed by 4791
Abstract
Biochar (BC) applications have multiple impacts on crops’ nutrient availability, growth and yield depending on the feedstock type and pyrolysis conditions. Pot and field experiments were conducted to examine the effects of biochars (BCs) prepared from three different feedstocks, Acacia modesta wood biochar [...] Read more.
Biochar (BC) applications have multiple impacts on crops’ nutrient availability, growth and yield depending on the feedstock type and pyrolysis conditions. Pot and field experiments were conducted to examine the effects of biochars (BCs) prepared from three different feedstocks, Acacia modesta wood biochar (AWB), Dalbergia sissoo wood biochar (DWB) and poultry litter biochar (PLB), on soil’s nutrient availability, uptake by wheat (Triticum aestivum) and sunflower (Helianthus annuus) crops and their yield attributes. All BCs were applied at the rate of 10t ha−1 in each treatment in both experiments, and pot and field trials were designed according to a two-factor factorial completely randomized design (CRD) and two-factor factorial randomized complete block design (RCBD), respectively. The concentration of soil NO3-N, NH4-N, Olsen P and extractable K increased by 98.5, 296, 228 and 47%, respectively, in the pot experiment with the application of PLB+polyhalite (PH) treatments. Similarly, in field experiments, NO3-N, NH4-N and Olsen P contents increased by 91, 268 and 156% under the PLB+PH treatment, respectively. However, in both experiments, soil’s microbial biomass phosphorus (MBP) was significantly higher after AWB+PH treatment, and the increments were 127 and 109% while microbial biomass nitrogen (MBN) contents were 16 and 14% higher than the control under DWB+PH and AWB+PH treatments, respectively, in the field experiment. Similarly, combined PLB+PH increased the total organic carbon (TOC) of soil by 193%. Moreover, PLB+PH co-applications with PH significantly increased sunflower grain yields by up to 58% and the harvest index by 45%. Overall, no negative impact with respect to BCs was observed on the soil’s nutrient content and plant growth. Hence, for immediate crop benefits and soil health, using nutrient biochar (PLB) alone or in combination with chemical fertilizers is recommended. Full article
(This article belongs to the Special Issue Soil Health and Crop Management in Conservation Agriculture)
Show Figures

Graphical abstract

26 pages, 6243 KiB  
Article
Trace Elements and Mineralogy of Upper Permian (Zechstein) Potash Deposits in Poland
by Grzegorz Czapowski, Hanna Tomassi-Morawiec, Bartosz Handke, Jacek Wachowiak and Tadeusz Marek Peryt
Appl. Sci. 2022, 12(14), 7183; https://doi.org/10.3390/app12147183 - 16 Jul 2022
Cited by 8 | Viewed by 3068
Abstract
Mineral composition and content analysis of selected trace elements (Ag, As, Ba, Be, Br, Cd, Ce, Co, Cr, Cs, Cu, Ga, I, La, Li, Mn, Mo, Ni, Pb, Rb, Sb, Se, Sn, Sr, Ti, Tl, U, V, and Zn; 308 rock samples) were [...] Read more.
Mineral composition and content analysis of selected trace elements (Ag, As, Ba, Be, Br, Cd, Ce, Co, Cr, Cs, Cu, Ga, I, La, Li, Mn, Mo, Ni, Pb, Rb, Sb, Se, Sn, Sr, Ti, Tl, U, V, and Zn; 308 rock samples) were studied in the Upper Permian (Zechstein) potash-bearing deposits in Poland. They represented K–Mg chlorides of PZ2 and PZ3 cyclothems from four salt domes and stratiform K–Mg sulphates of PZ1 cyclothem. The dominant mineral components of K–Mg sulphates (polyhalite) are anhydrite and polyhalite. The most common minerals of the K–Mg salts of PZ2 cyclothem are halite, sylvite, kieserite, and anhydrite, and the most common of PZ3 cyclothem are halite, carnallite, kieserite, and anhydrite. Most analysed trace elements in the Zechstein potash-bearing deposits show a low content (up to 26 mg/kg) that eliminates them as potential profitable source rocks of such required elements as Ce, Cs, La, Li, or Rb. Common elements, such as Br, Fe, and Sr, are more easily exploited from natural brines, sulphate, and ore deposits. Full article
(This article belongs to the Special Issue Mineralogy of Critical Elements Deposits)
Show Figures

Figure 1

16 pages, 3305 KiB  
Article
Towards Balanced Fertilizer Management in South China: Enhancing Wax Gourd (Benincasa hispida) Yield and Produce Quality
by Xiao Chen, Xiaodong Chen, Jiabin Jiao, Fusuo Zhang, Xinping Chen, Guohua Li, Zhao Song, Eldad Sokolowski, Patricia Imas, Hillel Magen, Amnon Bustan, Yuzhi He, Dasen Xie and Baige Zhang
Sustainability 2022, 14(9), 5646; https://doi.org/10.3390/su14095646 - 7 May 2022
Cited by 6 | Viewed by 3664
Abstract
Balanced fertilizer management promotes plant growth, enhances produce quality, minimizes inputs, and reduces negative environmental impacts. Wax gourd (Benincasa hispida) is an important vegetable crop species in China and in South Asia. Two crop nutrition options, NPK and the natural mineral [...] Read more.
Balanced fertilizer management promotes plant growth, enhances produce quality, minimizes inputs, and reduces negative environmental impacts. Wax gourd (Benincasa hispida) is an important vegetable crop species in China and in South Asia. Two crop nutrition options, NPK and the natural mineral polyhalite, were tested, separately and combined, with the aim of enhancing wax gourd yield and quality and simultaneously to increase nutrient use efficiency and reducing inputs. The experiments tested the optimization of NPK by reducing the proportion of phosphorus (P), and the effect of enriching the soil with essential macronutrients by the use of the supplementary mineral fertilizer polyhalite containing magnesium (Mg), calcium (Ca) and sulfur (S). Two experiments were carried out in Foshan County, Guangdong, China, in 2018 and 2019. Experiments included four treatments: (1) Conventional NPK (15:15:15); (2) Optimized NPK (16:8:18); (3) Conventional NPK + polyhalite; (4) Optimized NPK + polyhalite. Fertilizers were applied prior to planting. While optimized NPK alone had no effects on fruit yield and quality, supplementary polyhalite resulted in a 10–17% increase in yield and significantly improved produce quality due to increased nutrient uptake from polyhalite, resulting in better foliar biomass. We conclude that the combined crop nutrition options improved yield and quality, enhanced nutrient use efficiency, and reduced risks of nutrient pollution. Inclusion of polyhalite in balanced fertilization practices as a supplementary source of secondary macronutrients seems promising. Nevertheless, plenty of space remains open for further adjustments of NPK application management, focusing on reduced rates, optimized ratio, and accurate timing of application for each nutrient. Full article
Show Figures

Figure 1

30 pages, 10711 KiB  
Article
Stratigraphy, Paleogeography and Depositional Setting of the K–Mg Salts in the Zechstein Group of Netherlands—Implications for the Development of Salt Caverns
by Alexandre Pichat
Minerals 2022, 12(4), 486; https://doi.org/10.3390/min12040486 - 16 Apr 2022
Cited by 17 | Viewed by 6525
Abstract
The 1 km thick evaporitic Permian Zechstein group in the Netherlands is subdivided into 5 halite rich evaporitic sequences including K–Mg salts (polyhalite, kieserite, sylvite, carnallite and bischofite) for which the position in the Zechstein stratigraphy is still poorly constrained. Understanding the repartition [...] Read more.
The 1 km thick evaporitic Permian Zechstein group in the Netherlands is subdivided into 5 halite rich evaporitic sequences including K–Mg salts (polyhalite, kieserite, sylvite, carnallite and bischofite) for which the position in the Zechstein stratigraphy is still poorly constrained. Understanding the repartition of K–Mg salts is especially important for the development of salt caverns which require a salt as pure as possible in halite. By compiling well log and seismic data in the offshore and onshore domains of the Netherlands, regional cross-sections and isopach maps were performed in order to update the lithostratigraphy of the Zechstein group by including the K–Mg salts. Results enable (i) to propose paleogeographic maps representing the spatial repartition and the thickness variations of one to two K–Mg rich intervals in each evaporite cycle, (ii) to constrain the depositional setting of the different type of salts and the hydrological conditions which influenced the Zechstein stratigraphic architecture and (iii) to develop over the Netherlands risking maps assessing the risk of encountering K–Mg salts in salt pillows or salt diapirs eligible in term of depth and thickness for the development of salt caverns. Full article
Show Figures

Figure 1

24 pages, 7662 KiB  
Article
Nutrient Status of Cucumber Plants Affects Powdery Mildew (Podosphaera xanthii)
by Yigal Elad, Dor Barnea, Dalia Rav-David and Uri Yermiyahu
Plants 2021, 10(10), 2216; https://doi.org/10.3390/plants10102216 - 19 Oct 2021
Cited by 8 | Viewed by 3273
Abstract
We examined the effects of applications of N, P, K, Mg, and Ca through an irrigation solution and spraying K, Ca, and Mg salts on cucumber powdery mildew (CPM, Podosphaera xanthii) in potted plants and under commercial-like conditions. Spraying CaCl2 and [...] Read more.
We examined the effects of applications of N, P, K, Mg, and Ca through an irrigation solution and spraying K, Ca, and Mg salts on cucumber powdery mildew (CPM, Podosphaera xanthii) in potted plants and under commercial-like conditions. Spraying CaCl2 and MgCl2, or KCl and K2SO4, decreased CPM. There were significant negative correlations between the anion-related molar concentrations of the salts and disease severity. Among the sprayed treatments, NaCl provided significantly less CPM control when applied at a low (0.05 M) concentration, as compared with CaCl2 and MgCl2. When sprayed applications of Mg and K salts were analyzed separately from the untreated control, the Cl salts were found to be more effective than the SO4−2 salts. High N and Mg concentrations in the irrigation water delivered to young, fruit-less cucumber plants reduced CPM, whereas more CPM was observed when the irrigation solution contained a medium amount of P and a high amount of K. In contrast, mature, fruit-bearing plants had less severe CPM at higher N, lower P, and higher K levels. Spraying mature plants with monopotassium phosphate, polyhalite (K2Ca2Mg(SO4)4·2H2O), and the salts mentioned above over an entire growing season suppressed CPM. CPM severity was also reduced by spray applications of Ca, Mg, and KSO4−2 and Cl salts. Spray applications provided better CPM control than fertigation treatments. Induced resistance is probably involved in the effects of nutrients on CPM. Full article
(This article belongs to the Special Issue Weaponizing Plants: Biocontrol and Biosecurity in Plant Protection)
Show Figures

Figure 1

15 pages, 1334 KiB  
Article
Polyhalite Positively Influences the Growth, Yield and Quality of Sugarcane (Saccharum officinarum L.) in Potassium and Calcium-Deficient Soils in the Semi-Arid Tropics
by Rajan Bhatt, Paramjit Singh, Omar M. Ali, Arafat Abdel Hamed Abdel Latef, Alison M. Laing and Akbar Hossain
Sustainability 2021, 13(19), 10689; https://doi.org/10.3390/su131910689 - 26 Sep 2021
Cited by 18 | Viewed by 5337
Abstract
In semi-arid tropics, sugarcane yield and quality are affected by deficiencies in soil nutrients, including potassium and calcium. We examined the effects of two different potassium fertilizers, a traditional muriate of potash (MOP) and polyhalite (which contains potassium and calcium), on sugarcane growth, [...] Read more.
In semi-arid tropics, sugarcane yield and quality are affected by deficiencies in soil nutrients, including potassium and calcium. We examined the effects of two different potassium fertilizers, a traditional muriate of potash (MOP) and polyhalite (which contains potassium and calcium), on sugarcane growth, yield, and quality. Experimental treatments compared a control 0 kg K ha−1 (T1) to potassium applied as MOP only at 80 kg K ha−1 (T2) and at 120 kg K ha−1 (T3), and potassium applied as an equal split of MOP and polyhalite at 80 kg K ha−1 (T4) and at 120 kg K ha−1 (T5). Relative to the control the potassium-enhanced treatments had improved rates of key growth parameters, and of cane yields, which were 4.4, 6.2, 8.2, and 9.9% higher in T2, T3, T4,, and T5, respectively, than in T1. Regardless of fertilizer used, potassium applied at 80 kg K ha−1 achieved the highest sugar purity and commercial cane sugar content. All potassium fertilizer treatments had reduced (although non-significant) incidences of three key sugarcane insect pests. The economic benefits of polyhalite were reduced due to its higher cost relative to MOP. Combining MOP and polyhalite equally to achieve an application rate of 80 kg K ha−1 is recommended to enhance sugarcane growth and yield. Full article
(This article belongs to the Special Issue Sustainable Soil Health Management)
Show Figures

Figure 1

14 pages, 1924 KiB  
Article
Potassium Positively Affects Skin Characteristics of Sweet Potato Storage Roots
by Liron Klipcan, Ruth van Oss, Alexandra Keren-Kieserman, Uri Yermiyahu and Idit Ginzberg
Agronomy 2020, 10(9), 1385; https://doi.org/10.3390/agronomy10091385 - 14 Sep 2020
Cited by 11 | Viewed by 5307
Abstract
Sweet potato (Ipomoea batatas) growth faces two critical problems: variability in storage root (SR) number and size among individual plants, and skinning injuries that render the SR susceptible to pathogen infections during storage. We hypothesized that application of potassium (K) fertilizer, [...] Read more.
Sweet potato (Ipomoea batatas) growth faces two critical problems: variability in storage root (SR) number and size among individual plants, and skinning injuries that render the SR susceptible to pathogen infections during storage. We hypothesized that application of potassium (K) fertilizer, an essential mineral for sweet potato, would contribute to increased yield, uniformity, and skin quality of SRs. Sweet potatoes were grown in sandy soil, which is poor in K, and in loess soil. The fertilizers potassium chloride (KCl) and polyhalite were applied before planting. Polyhalite is a hydrated sulfate of K, calcium, and magnesium that has been shown to improve potato skin appearance. Soil type was the major factor affecting SR yield—higher in sandy vs. loess soil. The K fertilizers did not affect yield in either soil type, or improve SR uniformity. However, the skin of the SRs from loess soil had more phellem layers and larger phellem cells following fertilization, mainly with KCl. Accordingly, the expression of suberin marker genes was significantly higher in mature vs. immature skin of SRs fertilized with KCl. Overall, soil type was the major factor affecting sweet potato yield, and addition of K positively affected skin morphology and related gene expression. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

18 pages, 6367 KiB  
Article
Diagenetic Origin of Bipyramidal Quartz and Hydrothermal Aragonites within the Upper Triassic Saline Succession of the Iberian Basin: Implications for Interpreting the Burial–Thermal Evolution of the Basin
by María J. Herrero, Rafaela Marfil, Jose I. Escavy, Ihsan Al-Aasm and Michael Scherer
Minerals 2020, 10(2), 177; https://doi.org/10.3390/min10020177 - 15 Feb 2020
Cited by 4 | Viewed by 4479
Abstract
Within the Upper Triassic successions in the Iberian Basin (Spain), the occurrence of both idiomorphic bipyramidal quartz crystals as well as pseudohexagonal aragonite crystals are related to mudstone and evaporite bearing sequences. Bipyramidal-euhedral quartz crystals occur commonly at widespread locations and similar idiomorphic [...] Read more.
Within the Upper Triassic successions in the Iberian Basin (Spain), the occurrence of both idiomorphic bipyramidal quartz crystals as well as pseudohexagonal aragonite crystals are related to mudstone and evaporite bearing sequences. Bipyramidal-euhedral quartz crystals occur commonly at widespread locations and similar idiomorphic crystals have been described in other formations and ages from Europe, America, Pakistan, and Africa. Similarly, pseudohexagonal aragonite crystals are located at three main sites in the Iberian Range and are common constituents of deposits of this age in France, Italy, and Morocco. This study presents a detailed description of the geochemical and mineralogical characteristics of the bipyramidal quartz crystals to decipher their time of formation in relation to the diagenetic evolution of the sedimentary succession in which they formed. Petrographic and scanning electron microscopy (SEM) analyses permit the separation of an inner part of quartz crystals with abundant anhydrite and organic-rich inclusions. This inner part resulted from near-surface recrystallization (silicification) of an anhydrite nodule, at temperatures that were <40 °C. Raman spectra reveal the existence of moganite and polyhalite, which reinforces the evaporitic character of the original depositional environment. The external zone of the quartz contains no anhydrite or organic inclusions and no signs of evaporites in the Raman spectra, being interpreted as quartz overgrowths formed during burial, at temperatures between 80 to 90 °C. Meanwhile, the aragonite that appears in the same Keuper deposits was precipitated during the Callovian, resulting from the mixing of hydrothermal fluids with infiltrated waters of marine origin, at temperatures ranging between 160 and 260 °C based on fluids inclusion analyses. Although both pseudohexagonal aragonite crystals and bipyramidal quartz appear within the same succession, they formed at different phases of the diagenetic and tectonic evolution of the basin: bipyramidal quartz crystals formed in eo-to mesodiagenetic environments during a rifting period at Upper Triassic times, while aragonite formed 40 Ma later as a result of hydrothermal fluids circulating through normal faults. Full article
Show Figures

Figure 1

Back to TopTop