Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = poly(SBMA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 4682 KB  
Article
Biodegradable Zwitterionic PLA-Based Nanoparticles: Design and Evaluation for pH-Responsive Tumor-Targeted Drug Delivery
by Evi Christodoulou, Alexandros Tsimpolis, Konstantinos Theodorakis, Styliani Axypolitou, Ioannis Tsamesidis, Eleana Kontonasaki, Eleni Pavlidou and Dimitrios N. Bikiaris
Polymers 2025, 17(18), 2495; https://doi.org/10.3390/polym17182495 - 16 Sep 2025
Viewed by 661
Abstract
Background/Objectives: Biodegradable and pH-responsive nanocarriers using zwitterionic moieties represent a promising avenue for targeted delivery of chemotherapeutics. The present study addresses this by developing zwitterionic nanoparticles based on polylactic acid/poly(ethylene adipate) (PLA/PEAd) copolymers grafted with SBMA, designed to combine acid-triggered drug release with [...] Read more.
Background/Objectives: Biodegradable and pH-responsive nanocarriers using zwitterionic moieties represent a promising avenue for targeted delivery of chemotherapeutics. The present study addresses this by developing zwitterionic nanoparticles based on polylactic acid/poly(ethylene adipate) (PLA/PEAd) copolymers grafted with SBMA, designed to combine acid-triggered drug release with stealth-like biocompatibility. Methods: A series of polylactic acid/poly(ethylene adipate) (PLA/PEAd) copolymers with varying compositions (95/5, 90/10, and 75/25 w/w) were synthesized via ring-opening polymerization, followed by controlled radical grafting of the zwitterionic monomer [2-(Methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA), which was then successfully grafted upon their backbone. The resulting zwittenionic copolymers were thoroughly characterized for their structural and physicochemical properties, displaying tunable molecular weights of 3200–4900 g/mol, enhanced hydrophilicity and controlled degradation, with mass loss ranging from 8% to 83% over 30 days, depending on PEAd content and pH. Paclitaxel-loaded nanoparticles of spherical shape with sizes ranging from 220 to 565 nm were then fabricated. Drug release was pH-dependent with significantly higher release at pH 5.0 (up to ~79% for PLAPEAd7525-SBMA) compared to pH 7.4 (~18–35%). Hemolysis assays demonstrated excellent hemocompatibility, and cytotoxicity studies showed strong anticancer activity (>80% cell death in MDA-MB-231) with lower toxicity toward iMEFs, especially for PEAd-rich formulations. Conclusions: Our findings underline the potential of SBMA-functionalized PLA/PEAd nanoparticles as effective nano-carriers for tumor-targeted chemotherapy. Full article
(This article belongs to the Special Issue Polymers and Their Role in Drug Delivery, 2nd Edition)
Show Figures

Figure 1

15 pages, 3272 KB  
Article
Rapid Preparation of Superabsorbent Self-Healing Hydrogels by Frontal Polymerization
by Ying Qin, Hao Li, Hai-Xia Shen, Cai-Feng Wang and Su Chen
Gels 2023, 9(5), 380; https://doi.org/10.3390/gels9050380 - 5 May 2023
Cited by 10 | Viewed by 3428
Abstract
Hydrogels have received increasing interest owing to their excellent physicochemical properties and wide applications. In this paper, we report the rapid fabrication of new hydrogels possessing a super water swelling capacity and self-healing ability using a fast, energy-efficient, and convenient method of frontal [...] Read more.
Hydrogels have received increasing interest owing to their excellent physicochemical properties and wide applications. In this paper, we report the rapid fabrication of new hydrogels possessing a super water swelling capacity and self-healing ability using a fast, energy-efficient, and convenient method of frontal polymerization (FP). Self-sustained copolymerization of acrylamide (AM), 3-[Dimethyl-[2-(2-methylprop-2-enoyloxy)ethyl]azaniumyl]propane-1-sulfonate (SBMA), and acrylic acid (AA) within 10 min via FP yielded highly transparent and stretchable poly(AM-co-SBMA-co-AA) hydrogels. Thermogravimetric analysis and Fourier transform infrared spectroscopy confirmed the successful fabrication of poly(AM-co-SBMA-co-AA) hydrogels with a single copolymer composition without branched polymers. The effect of monomer ratio on FP features as well as porous morphology, swelling behavior, and self-healing performance of the hydrogels were systematically investigated, showing that the properties of the hydrogels could be tuned by adjusting the chemical composition. The resulting hydrogels were superabsorbent and sensitive to pH, exhibiting a high swelling ratio of up to 11,802% in water and 13,588% in an alkaline environment. The rheological data revealed a stable gel network. These hydrogels also had a favorable self-healing ability with a healing efficiency of up to 95%. This work contributes a simple and efficient method for the rapid preparation of superabsorbent and self-healing hydrogels. Full article
(This article belongs to the Special Issue Structure and Properties of Functional Hydrogels)
Show Figures

Graphical abstract

18 pages, 2468 KB  
Communication
A Soft Zwitterionic Hydrogel as Potential Coating on a Polyimide Surface to Reduce Foreign Body Reaction to Intraneural Electrodes
by Manuele Gori, Sara Maria Giannitelli, Gianluca Vadalà, Rocco Papalia, Loredana Zollo, Massimo Sanchez, Marcella Trombetta, Alberto Rainer, Giovanni Di Pino and Vincenzo Denaro
Molecules 2022, 27(10), 3126; https://doi.org/10.3390/molecules27103126 - 13 May 2022
Cited by 15 | Viewed by 3874
Abstract
Invasive intraneural electrodes can control advanced neural-interfaced prostheses in human amputees. Nevertheless, in chronic implants, the progressive formation of a fibrotic capsule can gradually isolate the electrode surface from the surrounding tissue leading to loss of functionality. This is due to a nonspecific [...] Read more.
Invasive intraneural electrodes can control advanced neural-interfaced prostheses in human amputees. Nevertheless, in chronic implants, the progressive formation of a fibrotic capsule can gradually isolate the electrode surface from the surrounding tissue leading to loss of functionality. This is due to a nonspecific inflammatory response called foreign-body reaction (FBR). The commonly used poly(ethylene glycol) (PEG)-based low-fouling coatings of implantable devices can be easily encapsulated and are susceptible to oxidative damage in long-term in vivo applications. Recently, sulfobetaine-based zwitterionic hydrogels have emerged as an important class of robust ultra-low fouling biomaterials, holding great potential to mitigate FBR. The aim of this proof-of-principle in vitro work was to assess whether the organic zwitterionic—poly(sulfobetaine methacrylate) [poly(SBMA)]—hydrogel could be a suitable coating for Polyimide (PI)-based intraneural electrodes to reduce FBR. We first synthesized and analyzed the hydrogel through a mechanical characterization (i.e., Young’s modulus). Then, we demonstrated reduced adhesion and activation of fibrogenic and pro-inflammatory cells (i.e., human myofibroblasts and macrophages) on the hydrogel compared with PEG-coated and polystyrene surfaces using cell viability assays, confocal fluorescence microscopy and high-content analysis of oxidative stress production. Interestingly, we successfully coated PI surfaces with a thin film of the hydrogel through covalent bond and demonstrated its high hydrophilicity via water contact angle measurement. Importantly, we showed the long-term release of an anti-fibrotic drug (i.e., Everolimus) from the hydrogel. Because of the low stiffness, biocompatibility, high hydration and ultra-low fouling characteristics, our zwitterionic hydrogel could be envisioned as long-term diffusion-based delivery system for slow and controlled anti-inflammatory and anti-fibrotic drug release in vivo. Full article
(This article belongs to the Special Issue Polymers in Biomedical Applications)
Show Figures

Figure 1

23 pages, 5419 KB  
Article
Construction of Enzyme-Responsive Micelles Based on Theranostic Zwitterionic Conjugated Bottlebrush Copolymers with Brush-on-Brush Architecture for Cell Imaging and Anticancer Drug Delivery
by Fangjun Liu, Dun Wang, Jiaqi Wang, Liwei Ma, Cuiyun Yu and Hua Wei
Molecules 2022, 27(9), 3016; https://doi.org/10.3390/molecules27093016 - 7 May 2022
Cited by 10 | Viewed by 3481
Abstract
Bottlebrush copolymers with different chemical structures and compositions as well as diverse architectures represent an important kind of material for various applications, such as biomedical devices. To our knowledge, zwitterionic conjugated bottlebrush copolymers integrating fluorescence imaging and tumor microenvironment-specific responsiveness for efficient intracellular [...] Read more.
Bottlebrush copolymers with different chemical structures and compositions as well as diverse architectures represent an important kind of material for various applications, such as biomedical devices. To our knowledge, zwitterionic conjugated bottlebrush copolymers integrating fluorescence imaging and tumor microenvironment-specific responsiveness for efficient intracellular drug release have been rarely reported, likely because of the lack of an efficient synthetic approach. For this purpose, in this study, we reported the successful preparation of well-defined theranostic zwitterionic bottlebrush copolymers with unique brush-on-brush architecture. Specifically, the bottlebrush copolymers were composed of a fluorescent backbone of polyfluorene derivate (PFONPN) possessing the fluorescence resonance energy transfer with doxorubicin (DOX), primary brushes of poly(2-hydroxyethyl methacrylate) (PHEMA), and secondary graft brushes of an enzyme-degradable polytyrosine (PTyr) block as well as a zwitterionic poly(oligo (ethylene glycol) monomethyl ether methacrylate-co-sulfobetaine methacrylate) (P(OEGMA-co-SBMA)) chain with super hydrophilicity and highly antifouling ability via elegant integration of Suzuki coupling, NCA ROP and ATRP techniques. Notably, the resulting bottlebrush copolymer, PFONPN9-g-(PHEMA15-g-(PTyr16-b-P(OEGMA6-co-SBMA6)2)) (P2) with a lower MW ratio of the hydrophobic side chains of PTyr and hydrophilic side chains of P(OEGMA-co-SBMA) could self-assemble into stabilized unimolecular micelles in an aqueous phase. The resulting unimolecular micelles showed a fluorescence quantum yield of 3.9% that is mainly affected by the pendant phenol groups of PTyr side chains and a drug-loading content (DLC) of approximately 15.4% and entrapment efficiency (EE) of 90.6% for DOX, higher than the other micelle analogs, because of the efficient supramolecular interactions of π–π stacking between the PTyr blocks and drug molecules, as well as the moderate hydrophilic chain length. The fluorescence of the PFONPN backbone enables fluorescence resonance energy transfer (FRET) with DOX and visualization of intracellular trafficking of the theranostic micelles. Most importantly, the drug-loaded micelles showed accelerated drug release in the presence of proteinase K because of the enzyme-triggered degradation of PTyr blocks and subsequent deshielding of P(OEGMA-co-SBMA) corona for micelle destruction. Taken together, we developed an efficient approach for the synthesis of enzyme-responsive theranostic zwitterionic conjugated bottlebrush copolymers with a brush-on-brush architecture, and the resulting theranostic micelles with high DLC and tumor microenvironment-specific responsiveness represent a novel nanoplatform for simultaneous cell image and drug delivery. Full article
(This article belongs to the Special Issue Design of Functional Polymer Materials for Drug Controlled Release)
Show Figures

Figure 1

11 pages, 3127 KB  
Article
Electrospun Nanofiber Membranes from 1,8-Naphthimide-Based Polymer/Poly(vinyl alcohol) for pH Fluorescence Sensing
by Le Xu, Xi Liu, Jiao Jia, Hao Wu, Juan Xie and Yongtang Jia
Molecules 2022, 27(2), 520; https://doi.org/10.3390/molecules27020520 - 14 Jan 2022
Cited by 8 | Viewed by 2758
Abstract
Accurately and sensitively sensing and monitoring the pH in the environment is a key fundamental issue for human health. Nanomaterial and nanotechnology combined with fluorescent materials can be emerged as excellent possible methods to develop high-performance sensing membranes and help monitor pH. Herein, [...] Read more.
Accurately and sensitively sensing and monitoring the pH in the environment is a key fundamental issue for human health. Nanomaterial and nanotechnology combined with fluorescent materials can be emerged as excellent possible methods to develop high-performance sensing membranes and help monitor pH. Herein, a series of fluorescent nanofiber membranes (NFMs) containing poly-1,8-naphthimide derivative-3-[dimethyl-[2-(2-methylprop-2-enoyloxy)ethyl]azaniumyl]propane-1-sulfonate (PNI-SBMA) are fabricated by electrospinning the solution of PNI-SBMA blended with poly(vinyl alcohol) (PVA). The surfactant-like functionalities in side chains of PNI-SBMA endow the NFMs with outstanding hydrophilicity, and the naphthimide derivatives are sensitive to pH by photoinduced electron transfer effect, which contribute to highly efficient pH fluorescence sensing applications of NFMs. Specifically, the PNI-SBMA/PVA NFM with a ratio of 1:9 (NFM2) shows high sensitivity and good cyclability to pH. This work demonstrates an effective strategy to realize a fluorescent sensor NFM that has a fast and sensitive response to pH, which will benefit its application of pH sensor monitoring in the water treatment process. Full article
Show Figures

Graphical abstract

12 pages, 3178 KB  
Article
Simultaneous Ultrasound-Assisted Hybrid Polyzwitterion/Antimicrobial Peptide Nanoparticles Synthesis and Deposition on Silicone Urinary Catheters for Prevention of Biofilm-Associated Infections
by Aleksandra Ivanova, Kristina Ivanova and Tzanko Tzanov
Nanomaterials 2021, 11(11), 3143; https://doi.org/10.3390/nano11113143 - 21 Nov 2021
Cited by 20 | Viewed by 3795
Abstract
Nosocomial infections caused by antibiotic-resistant bacteria are constantly growing healthcare threats, as they are the reason for the increased mortality, morbidity, and considerable financial burden due to the poor infection outcomes. Indwelling medical devices, such as urinary catheters, are frequently colonized by bacteria [...] Read more.
Nosocomial infections caused by antibiotic-resistant bacteria are constantly growing healthcare threats, as they are the reason for the increased mortality, morbidity, and considerable financial burden due to the poor infection outcomes. Indwelling medical devices, such as urinary catheters, are frequently colonized by bacteria in the form of biofilms that cause dysfunction of the device and severe chronic infections. The current treatment strategies of such device-associated infections are impaired by the resistant pathogens but also by a risk of prompting the appearance of new antibiotic-resistant bacterial mechanisms. Herein, the one-step sonochemical synthesis of hybrid poly(sulfobetaine) methacrylate/Polymyxin B nanoparticles (pSBMA@PM NPs) coating was employed to engineer novel nanoenabled silicone catheters with improved antifouling, antibacterial, and antibiofilm efficiencies. The synergistic mode of action of nanohybridized zwitterionic polymer and antimicrobial peptide led to complete inhibition of the nonspecific protein adsorption and up to 97% reduction in Pseudomonas aeruginosa biofilm formation, in comparison with the pristine silicone. Additionally, the bactericidal activity in the hybrid coating reduced the free-floating and surface-attached bacterial growth by 8 logs, minimizing the probability for further P. aeruginosa spreading and host invasion. This coating was stable for up to 7 days under conditions simulating the real scenario of catheter usage and inhibited by 80% P. aeruginosa biofilms. For the same time of use, the pSBMA@PM NPs coating did not affect the metabolic activity and morphology of mammalian cells, demonstrating their capacity to control antibiotic-resistant biofilm-associated bacterial infections. Full article
(This article belongs to the Special Issue Antimicrobial Nano Coatings)
Show Figures

Figure 1

14 pages, 7100 KB  
Article
Surface Modification of Polyurethane Membrane with Various Hydrophilic Monomers and N-Halamine: Surface Characterization and Antimicrobial Properties Evaluation
by Chi-Hui Cheng, Han-Cheng Liu and Jui-Che Lin
Polymers 2021, 13(14), 2321; https://doi.org/10.3390/polym13142321 - 15 Jul 2021
Cited by 11 | Viewed by 4011
Abstract
Reducing microbial infections associated with biomedical devices or articles/furniture noted in a hospital or outpatient clinic remains a great challenge to researchers. Due to its stability and low toxicity, the N-halamine compound has been proposed as a potential antimicrobial agent. It can be [...] Read more.
Reducing microbial infections associated with biomedical devices or articles/furniture noted in a hospital or outpatient clinic remains a great challenge to researchers. Due to its stability and low toxicity, the N-halamine compound has been proposed as a potential antimicrobial agent. It can be incorporated into or blended with the FDA-approved biomaterials. Surface grafting or coating of N-halamine was also reported. Nevertheless, the hydrophobic nature associated with its chemical configuration may affect the microbial interactions with the chlorinated N-halamine-containing substrate. In this study, a polymerizable N-halamine compound was synthesized and grafted onto a polyurethane surface via a surface-initiated atom transfer radical polymerization (SI-ATRP) scheme. Further, using the sequential SI-ATRP reaction method, different hydrophilic monomers, namely poly (ethylene glycol) methacrylate (PEGMA), hydroxyethyl methacrylate (HEMA), and [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide (SBMA), were also grafted onto the polyurethane (PU) substrate before the N-halamine grafting reaction to change the surface properties of the N-halamine-modified substrate. It was noted that the chains containing the hydrophilic monomer and the polymerizable N-halamine compound were successfully grafted onto the PU substrate. The degree of chlorination was improved with the introduction of a hydrophilic monomer, except the HEMA. All of these hydrophilic monomer-containing N-halamine-modified PU substrates demonstrated a more than 2 log CFU reduction after microbial incubation. In contrast, the surface modified with N-halamine only exhibited significantly less antimicrobial efficacy instead. This is likely due to the synergistic effects caused by the reduced chlorine content, as well as the reduced surface interactions with the microbes. Full article
(This article belongs to the Special Issue Polymer Surface Modification: From Structure to Properties)
Show Figures

Graphical abstract

13 pages, 2355 KB  
Article
Biomimetic Mineralization of Tannic Acid-Supplemented HEMA/SBMA Nanocomposite Hydrogels
by Tai-Yu Chen, Shih-Fu Ou and Hsiu-Wen Chien
Polymers 2021, 13(11), 1697; https://doi.org/10.3390/polym13111697 - 22 May 2021
Cited by 15 | Viewed by 5343
Abstract
This study developed a tannic acid (TA)-supplemented 2-hydroxyethyl methacrylate-co-sulfobetaine methacrylate (HEMA-co-SBMA) nanocomposite hydrogel with mineralization and antibacterial functions. Initially, hybrid hydrogels were synthesized by incorporating SBMA into the HEMA network and the influence of SBMA on the chemical structure, water content, mechanical properties, [...] Read more.
This study developed a tannic acid (TA)-supplemented 2-hydroxyethyl methacrylate-co-sulfobetaine methacrylate (HEMA-co-SBMA) nanocomposite hydrogel with mineralization and antibacterial functions. Initially, hybrid hydrogels were synthesized by incorporating SBMA into the HEMA network and the influence of SBMA on the chemical structure, water content, mechanical properties, and antibacterial characteristics of the hybrid HEMA/SBMA hydrogels was examined. Then, nanoclay (Laponite XLG) was introduced into the hybrid HEMA/SBMA hydrogels and the effects evaluated of the nanoclay on the chemical structure, water content, and mechanical properties of these supplemented hydrogels. The 50/50 hybrid HEMA/SBMA hydrogel with 30 mg/mL nanoclay showed outstanding mechanical properties (3 MPa) and water content (60%) compared to pure polyHEMA hydrogels. TA then went on to be incorporated into these hybrid nanocomposite hydrogels and its effects investigated on biomimetic mineralization. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) showed that bone-like spheroidal precipitates with a Ca/P ratio of 1.67% were observed after 28 days within these mineralized hydrogels. These mineralized hydrogels demonstrated an almost 1.5-fold increase in compressive moduli compared to the hydrogels without mineralization. These multifunctional hydrogels display good mechanical and biomimetic properties and may have applications in bone regeneration therapies. Full article
(This article belongs to the Special Issue State-of-the-Art Polymer Science and Technology in Taiwan (2021,2022))
Show Figures

Figure 1

17 pages, 3177 KB  
Article
Enhancement of the Fouling Resistance of Zwitterion Coated Ceramic Membranes
by Max Storms, Abbas J. Kadhem, Shuting Xiang, Matthew Bernards, Guillermina J. Gentile and María M. Fidalgo de Cortalezzi
Membranes 2020, 10(9), 210; https://doi.org/10.3390/membranes10090210 - 29 Aug 2020
Cited by 6 | Viewed by 3597
Abstract
Ceramic membranes suffer from rapid permeability loss during filtration of organic matter due to their fouling propensity. To address this problem, iron oxide ultrafiltration membranes were coated with poly(sulfobetaine methacrylate) (polySBMA), a superhydrophilic zwitterionic polymer. The ceramic-organic hybrid membrane was characterized by scanning [...] Read more.
Ceramic membranes suffer from rapid permeability loss during filtration of organic matter due to their fouling propensity. To address this problem, iron oxide ultrafiltration membranes were coated with poly(sulfobetaine methacrylate) (polySBMA), a superhydrophilic zwitterionic polymer. The ceramic-organic hybrid membrane was characterized by scanning electron microscopy (SEM) and optical profilometry (OP). Membranes with and without polySBMA coating were subjected to fouling with bovine serum albumin solution. Hydraulic cleaning was significantly more effective for the coated membrane than for the non-coated one, as 56%, 66%, and 100% of the fouling was removed for the first, second, and third filtration cycle, respectively. Therefore, we can highlight the improved cleaning due to an increased fouling reversibility. Although some loss of polymer during operation was detected, it did not affect the improved behavior of the tested membranes. Full article
(This article belongs to the Section Inorganic Membranes)
Show Figures

Graphical abstract

12 pages, 2813 KB  
Article
Zwitterionic Polymer Brush Grafted on Polyvinylidene Difluoride Membrane Promoting Enhanced Ultrafiltration Performance with Augmented Antifouling Property
by Yu-Hsuan Chiao, Shu-Ting Chen, Mani Sivakumar, Micah Belle Marie Yap Ang, Tanmoy Patra, Jorge Almodovar, S. Ranil Wickramasinghe, Wei-Song Hung and Juin-Yih Lai
Polymers 2020, 12(6), 1303; https://doi.org/10.3390/polym12061303 - 7 Jun 2020
Cited by 54 | Viewed by 6797
Abstract
Superhydrophilic zwitterions on the membrane surface have been widely exploited to improve antifouling properties. However, the problematic formation of a <20 nm zwitterionic layer on the hydrophilic surface remains a challenge in wastewater treatment. In this work, we focused on the energy consumption [...] Read more.
Superhydrophilic zwitterions on the membrane surface have been widely exploited to improve antifouling properties. However, the problematic formation of a <20 nm zwitterionic layer on the hydrophilic surface remains a challenge in wastewater treatment. In this work, we focused on the energy consumption and time control of polymerization and improved the strong hydrophilicity of the modified polyvinylidene difluoride (PVDF) membrane. The sulfobetaine methacrylate (SBMA) monomer was treated with UV-light through polymerization on the PVDF membrane at a variable time interval of 30 to 300 s to grow a poly-SBMA (PSBMA) chain and improve the membrane hydrophilicity. We examined the physiochemical properties of as-prepared PVDF and PVDF–PSBMAx using numeric analytical tools. Then, the zwitterionic polymer with controlled performance was grafted onto the SBMA through UV-light treatment to improve its antifouling properties. The PVDF–PSBMA120s modified membrane exhibited a greater flux rate and indicated bovine serum albumin (BSA) rejection performance. PVDF–PSBMA120s and unmodified PVDF membranes were examined for their antifouling performance using up to three cycles dynamic test using BSA as foulant. The PVDF-modified PSBMA polymer improved the antifouling properties in this experiment. Overall, the resulting membrane demonstrated an enhancement in the hydrophilicity and permeability of the membrane and simultaneously augmented its antifouling properties. Full article
(This article belongs to the Special Issue Wettabilities and Surface Properties of Polymer Materials)
Show Figures

Graphical abstract

23 pages, 6599 KB  
Article
Polyglutamine-Expanded Androgen Receptor Alteration of Skeletal Muscle Homeostasis and Myonuclear Aggregation Are Affected by Sex, Age and Muscle Metabolism
by Mathilde Chivet, Caterina Marchioretti, Marco Pirazzini, Diana Piol, Chiara Scaramuzzino, Maria Josè Polanco, Vanina Romanello, Emanuela Zuccaro, Sara Parodi, Maurizio D’Antonio, Carlo Rinaldi, Fabio Sambataro, Elena Pegoraro, Gianni Soraru, Udai Bhan Pandey, Marco Sandri, Manuela Basso and Maria Pennuto
Cells 2020, 9(2), 325; https://doi.org/10.3390/cells9020325 - 30 Jan 2020
Cited by 32 | Viewed by 8379
Abstract
Polyglutamine (polyQ) expansions in the androgen receptor (AR) gene cause spinal and bulbar muscular atrophy (SBMA), a neuromuscular disease characterized by lower motor neuron (MN) loss and skeletal muscle atrophy, with an unknown mechanism. We generated new mouse models of SBMA for constitutive [...] Read more.
Polyglutamine (polyQ) expansions in the androgen receptor (AR) gene cause spinal and bulbar muscular atrophy (SBMA), a neuromuscular disease characterized by lower motor neuron (MN) loss and skeletal muscle atrophy, with an unknown mechanism. We generated new mouse models of SBMA for constitutive and inducible expression of mutant AR and performed biochemical, histological and functional analyses of phenotype. We show that polyQ-expanded AR causes motor dysfunction, premature death, IIb-to-IIa/IIx fiber-type change, glycolytic-to-oxidative fiber-type switching, upregulation of atrogenes and autophagy genes and mitochondrial dysfunction in skeletal muscle, together with signs of muscle denervation at late stage of disease. PolyQ expansions in the AR resulted in nuclear enrichment. Within the nucleus, mutant AR formed 2% sodium dodecyl sulfate (SDS)-resistant aggregates and inclusion bodies in myofibers, but not spinal cord and brainstem, in a process exacerbated by age and sex. Finally, we found that two-week induction of expression of polyQ-expanded AR in adult mice was sufficient to cause premature death, body weight loss and muscle atrophy, but not aggregation, metabolic alterations, motor coordination and fiber-type switch, indicating that expression of the disease protein in the adulthood is sufficient to recapitulate several, but not all SBMA manifestations in mice. These results imply that chronic expression of polyQ-expanded AR, i.e. during development and prepuberty, is key to induce the full SBMA muscle pathology observed in patients. Our data support a model whereby chronic expression of polyQ-expanded AR triggers muscle atrophy through toxic (neomorphic) gain of function mechanisms distinct from normal (hypermorphic) gain of function mechanisms. Full article
(This article belongs to the Special Issue Key Signalling Molecules in Aging and Neurodegeneration)
Show Figures

Graphical abstract

16 pages, 2394 KB  
Article
Antimicrobial and Conductive Nanocellulose-Based Films for Active and Intelligent Food Packaging
by Carla Vilela, Catarina Moreirinha, Eddy M. Domingues, Filipe M. L. Figueiredo, Adelaide Almeida and Carmen S. R. Freire
Nanomaterials 2019, 9(7), 980; https://doi.org/10.3390/nano9070980 - 6 Jul 2019
Cited by 91 | Viewed by 7487
Abstract
Bacterial nanocellulose (BNC) is becoming an important substrate for engineering multifunctional nanomaterials with singular and tunable properties for application in several domains. Here, antimicrobial conductive nanocomposites composed of poly(sulfobetaine methacrylate) (PSBMA) and BNC were fabricated as freestanding films for application in food packaging. [...] Read more.
Bacterial nanocellulose (BNC) is becoming an important substrate for engineering multifunctional nanomaterials with singular and tunable properties for application in several domains. Here, antimicrobial conductive nanocomposites composed of poly(sulfobetaine methacrylate) (PSBMA) and BNC were fabricated as freestanding films for application in food packaging. The nanocomposite films were prepared through the one-pot polymerization of sulfobetaine methacrylate (SBMA) inside the BNC nanofibrous network and in the presence of poly(ethylene glycol) diacrylate as cross-linking agent. The ensuing films are macroscopically homogeneous, more transparent than pristine BNC, and present thermal stability up to 265 °C in a nitrogen atmosphere. Furthermore, the films have good mechanical performance (Young’s modulus ≥ 3.1 GPa), high water-uptake capacity (450–559%) and UV-blocking properties. The zwitterion film with 62 wt.% cross-linked PSBMA showed bactericidal activity against Staphylococcus aureus (4.3–log CFU mL−1 reduction) and Escherichia coli (1.1–log CFU mL−1 reduction), and proton conductivity ranging between 1.5 × 10−4 mS cm−1 (40 °C, 60% relative humidity (RH)) and 1.5 mS cm−1 (94 °C, 98% RH). Considering the current set of properties, PSBMA/BNC nanocomposites disclose potential as films for active food packaging, due to their UV-barrier properties, moisture scavenging ability, and antimicrobial activity towards pathogenic microorganisms responsible for food spoilage and foodborne illness; and also for intelligent food packaging, due to the proton motion relevant for protonic-conduction humidity sensors that monitor food humidity levels. Full article
(This article belongs to the Special Issue Nanocellulose-Based Materials for Active Food Packaging)
Show Figures

Figure 1

12 pages, 2269 KB  
Article
Synthesis of Zwitterionic Copolymers via Copper-Mediated Aqueous Living Radical Grafting Polymerization on Starch
by Yifei Fan, Nicola Migliore, Patrizio Raffa, Ranjita K. Bose and Francesco Picchioni
Polymers 2019, 11(2), 192; https://doi.org/10.3390/polym11020192 - 22 Jan 2019
Cited by 25 | Viewed by 6935
Abstract
[2-(Methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) is a well-studied sulfobetaine-methacrylate as its zwitterionic structure allows the synthesis of polymers with attractive properties like antifouling and anti-polyelectrolyte behavior. In the present work, we report the Cu0-mediated living radical polymerization (Cu0-mediated LRP) of SBMA [...] Read more.
[2-(Methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) is a well-studied sulfobetaine-methacrylate as its zwitterionic structure allows the synthesis of polymers with attractive properties like antifouling and anti-polyelectrolyte behavior. In the present work, we report the Cu0-mediated living radical polymerization (Cu0-mediated LRP) of SBMA in sodium nitrate aqueous solution instead of previously reported solvents like trifluoroethanol and sodium chloride aqueous/alcoholic solution. Based on this, starch-g-polySBMA (St-g-PSBMA) was also synthesized homogeneously by using a water-soluble waxy potato starch-based macroinitiator and CuBr/hexamethylated tris(2-aminoethyl)amine (Me6TREN) as the catalyst. The structure of the macroinitiator was characterized by 1H-NMR, 13C-NMR, gHSQC, and FT-IR, while samples of PSBMA and St-g-PSBMA were characterized by 1H-NMR and FT-IR. Monomer conversion was monitored by 1H-NMR, on the basis of which the reaction kinetics were determined. Both kinetic study and GPC results indicate reasonable controlled polymerization. Furthermore, a preliminary study of the thermal response behavior was also carried through rheological tests performed on aqueous solutions of the prepared materials. Results show that branched zwitterionic polymers are more thermal-sensitive than linear ones. Full article
Show Figures

Graphical abstract

Back to TopTop