Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = playa lakes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 12021 KiB  
Article
Assessing the Impact of Groundwater Extraction and Climate Change on a Protected Playa-Lake System in the Southern Iberian Peninsula: La Ratosa Natural Reserve
by Miguel Rodríguez-Rodríguez, Laszlo Halmos, Alejandro Jiménez-Bonilla, Manuel Díaz-Azpiroz, Fernando Gázquez, Joaquín Delgado, Ana Fernández-Ayuso, Inmaculada Expósito, Sergio Martos-Rosillo and José Luis Yanes
Geographies 2025, 5(2), 21; https://doi.org/10.3390/geographies5020021 - 8 May 2025
Viewed by 900
Abstract
We modeled the water level variations in a protected playa-lake system (La Ratosa Natural Reserve, S Spain) comprising two adjacent playa-lakes: La Ratosa and Herriza de los Ladrones. For this purpose, daily water balances were applied to reconstruct the water level. Model results [...] Read more.
We modeled the water level variations in a protected playa-lake system (La Ratosa Natural Reserve, S Spain) comprising two adjacent playa-lakes: La Ratosa and Herriza de los Ladrones. For this purpose, daily water balances were applied to reconstruct the water level. Model results were validated using actual water level monitoring over the past 20 years. We surveyed post-Pliocene geological structures in the endorheic watershed to investigate lake nucleation and to improve the hydrogeological model. Additionally, we investigated the groundwater level evolution in nearby aquifers, which have been profusely affected by groundwater exploitation for domestic and agricultural use. Then, the RCP 4.5 and RCP 8.5 climate change scenarios were applied to forecast the future of this lake system. We found that the playa-lake hydroperiod will shorten, causing the system to shift from seasonal to ephemeral, which appears to be a general trend in this area. However, the impact on the La Ratosa-Herriza de los Ladrones system would be likely more severe due to local stressors, such as groundwater withdrawal for urban demand and agriculture, driving the system to complete desiccation for extended periods. These results highlight the sensitivity of these protected ecosystems to changes in the watershed’s water balance and underscore the urgent need to preserve watersheds from any form of water use, other than ecological purposes. This approach aims to support informed decision-making to mitigate adverse impacts on these fragile ecosystems, ensuring their ecological integrity in the context of climate change and increasing water demand for various uses. Full article
Show Figures

Graphical abstract

22 pages, 9157 KiB  
Article
The Miocene Source-to-Sink Evolution of Fibrous Clay Minerals in Hyperalkaline Playa-Lakes, Duero Basin (Central Spain)
by Pablo del Buey, María Esther Sanz-Montero, Juan Pablo Rodríguez-Aranda, Mónica Sánchez-Román and Fernando Nieto
Minerals 2025, 15(1), 50; https://doi.org/10.3390/min15010050 - 3 Jan 2025
Cited by 1 | Viewed by 1200
Abstract
Palygorskite is assumed to be the predominant clay mineral in playa-lakes, where it may be detrital or authigenic in origin. Discriminating between detrital and authigenic clays is crucial to elucidate paleoenvironmental conditions in lacustrine deposits. This study provides insight into the sedimentary evolution [...] Read more.
Palygorskite is assumed to be the predominant clay mineral in playa-lakes, where it may be detrital or authigenic in origin. Discriminating between detrital and authigenic clays is crucial to elucidate paleoenvironmental conditions in lacustrine deposits. This study provides insight into the sedimentary evolution of clay minerals from source, lacustrine Miocene marlstones and mudstones, to sink, represented by three recent hyperalkaline playa-lakes in Central Spain. XRD, TEM, and AEM analyses show concomitant detrital and authigenic palygorskites in the three playa-lakes. The inherited palygorskites exhibit degradation features, larger widths, and common and ideal compositions, in contrast to neoformed particles. The latter are narrower. Depending on the hydrochemical composition of each playa-lake, neoformed palygorskites are enriched in a different octahedral cation (Al2O3, MgO, and Fe2O3). Iron-rich palygorskites are only formed in association with authigenic saponites in one of the playa-lakes. The same effect of magnesium competition between smectite and palygorskite is observed in Miocene mudstones, where palygorskite is relatively enriched in iron. In hyperalkaline, seasonal playa-lakes lying in the vicinity, slight physicochemical differences play a crucial role in the crystallochemical composition of authigenic palygorskites, highlighting the use of this mineral as a geochemical proxy. Full article
Show Figures

Figure 1

28 pages, 29370 KiB  
Article
Perched Hydrologic Systems of the Monahans and the Kermit Dune Fields, Northern Chihuahuan Desert, West Texas, USA
by Alix Fournier, Steven L. Forman and Connor Mayhack
Water 2024, 16(22), 3188; https://doi.org/10.3390/w16223188 - 7 Nov 2024
Viewed by 1491
Abstract
This study highlights the importance of quantifying groundwater resources for the Monahans and Kermit dune fields in the northern Chihuahua Desert, West Texas, USA, as potential contributors to the regional Pecos Valley Aquifer (PVA). Dunal aquifers in arid environments are often unquantified, may [...] Read more.
This study highlights the importance of quantifying groundwater resources for the Monahans and Kermit dune fields in the northern Chihuahua Desert, West Texas, USA, as potential contributors to the regional Pecos Valley Aquifer (PVA). Dunal aquifers in arid environments are often unquantified, may augment regional groundwater resources, and can be compromised by anthropogenic activity. Sedimentary architecture models of these dune fields show perched aquifers with water tables 1–10 m below the surface and southwestern groundwater flow sub-parallel to a Pleistocene/Pliocene aquitard. The deuterium and oxygen isotopic ratios for groundwater from the Kermit and Monahans dune fields show pronounced evaporative isotopic depletion and less isotopic variability than corresponding rainfall, particularly for deuterium values. The radiocarbon and δ13C analyses of dissolved inorganic carbon (DIC) indicate that recharge occurs through enhanced capture of recent precipitation on mostly bare active dunes where infiltration rates are >250 mm/h. In contrast, more evolved 14C values at the western margin (FM = 0.84) and at 30 m below the surface (FM = 0.76) of the dunes, similar to proximal Fm values from the PVA (0.89–0.82), may indicate dissolution of older (>100 ka) DIC from buried playa-lake sediments and less direct atmospheric influence. Mixing models for DIC source partitioning highlighted possible groundwater contamination with hydrocarbon up to 24% in the PVA and in the dunal aquifers. The perched aquifers of the Monahans and Kermit dune fields each contain water volumes >0.1 km3 and may contribute up to 18% of the total annual recharge to the PVA. Full article
(This article belongs to the Section Hydrology)
Show Figures

Graphical abstract

11 pages, 1631 KiB  
Article
A Balloon Mapping Approach to Forecast Increases in PM10 from the Shrinking Shoreline of the Salton Sea
by Ryan G. Sinclair, Josileide Gaio, Sahara D. Huazano, Seth A. Wiafe and William C. Porter
Geographies 2024, 4(4), 630-640; https://doi.org/10.3390/geographies4040034 - 17 Oct 2024
Cited by 1 | Viewed by 3274
Abstract
Shrinking shorelines and the exposed playa of saline lakes can pose public health and air quality risks for local communities. This study combines a community science method with models to forecast future shorelines and PM10 air quality impacts from the exposed playa of [...] Read more.
Shrinking shorelines and the exposed playa of saline lakes can pose public health and air quality risks for local communities. This study combines a community science method with models to forecast future shorelines and PM10 air quality impacts from the exposed playa of the Salton Sea, near the community of North Shore, CA, USA. The community science process assesses the rate of shoreline change from aerial images collected through a balloon mapping method. These images, captured from 2019 to 2021, are combined with additional satellite images of the shoreline dating back to 2002, and analyzed with the DSAS (Digital Shoreline Analysis System) in ArcGIS desktop. The observed rate of change was greatly increased during the period from 2017 to 2020. The average rate of change rose from 12.53 m/year between 2002 and 2017 to an average of 38.44 m/year of shoreline change from 2017 to 2020. The shoreline is projected to retreat 150 m from its current position by 2030 and an additional 172 m by 2041. To assess potential air quality impacts, we use WRF-Chem, a regional chemical transport model, to predict increases in emissive dust from the newly exposed playa land surface. The model output indicates that the forecasted 20-year increase in exposed playa will also lead to a rise in the amount of suspended dust, which can then be transported into the surrounding communities. The combination of these model projections suggests that, without mitigation, the expanding exposed playa around the Salton Sea is expected to worsen pollutant exposure in local communities. Full article
(This article belongs to the Special Issue Feature Papers of Geographies in 2024)
Show Figures

Figure 1

21 pages, 8909 KiB  
Article
Source Attribution of Atmospheric Dust Deposition to Utah Lake
by Justin T. Telfer, Mitchell M. Brown, Gustavious P. Williams, Kaylee B. Tanner, A. Woodruff Miller, Robert B. Sowby and Theron G. Miller
Hydrology 2023, 10(11), 210; https://doi.org/10.3390/hydrology10110210 - 9 Nov 2023
Cited by 2 | Viewed by 2468
Abstract
Atmospheric deposition (AD) is a significant source of nutrient loading to waterbodies around the world. However, the sources and loading rates are poorly understood for major waterbodies and even less understood for local waterbodies. Utah Lake is a eutrophic lake located in central [...] Read more.
Atmospheric deposition (AD) is a significant source of nutrient loading to waterbodies around the world. However, the sources and loading rates are poorly understood for major waterbodies and even less understood for local waterbodies. Utah Lake is a eutrophic lake located in central Utah, USA, and has high-nutrient levels. Recent research has identified AD as a significant source of nutrient loading to the lake, though contributions from dust particles make up 10% of total AD. To better understand the dust AD sources, we sampled suspected source locations and collected deposition samples around the lake. We analyzed these samples using Inductively Coupled Plasma (ICP) for 25 metals to characterize their elemental fingerprints. We then compared the lake samples to the source samples to determine likely source locations. We computed spectral angle, coefficient of determination, multi-dimensional scaling, and radar plots to characterize the similarity of the samples. We found that samples from local dust sources were more similar to dust in lake AD samples than samples from distant sources. This suggests that the major source of the dust portion of AD onto Utah Lake is the local empty fields south and west of the lake, and not the farther playa and desert sources as previously suggested. Preliminary data suggest that dust AD is associated with dry, windy conditions and is episodic in nature. We show that AD from dust particles is likely a small portion of the overall AD nutrient loading on Utah Lake, with the dry and precipitation sources contributing most of the load. This case identifies AD sources to Utah Lake and provides an example of data and methods that can be used to assess similarity or perform attribution for dust, soil, and other environmental data. While we use ICP metals, any number of features can be used with these methods if normalized. Full article
(This article belongs to the Section Surface Waters and Groundwaters)
Show Figures

Figure 1

16 pages, 6398 KiB  
Article
Deciphering Depositional Environment of Playa Lakes Using Grain Size Parameters in the Arid and Semi-Arid Region of Rajasthan, India
by Manish Kumar, Milap Dashora, Rajesh Kumar, Swatantra Kumar Dubey, Pankaj Kumar Gupta and Alok Kumar
Agriculture 2022, 12(12), 2043; https://doi.org/10.3390/agriculture12122043 - 29 Nov 2022
Cited by 2 | Viewed by 3553
Abstract
This study encompasses the grain size distribution of the playa lakes (Pachpadra, Pokhran, and Didwana) of the Thar Desert in Rajasthan, India. The grain size of sediment particles is the most fundamental feature, giving essential information regarding their origin, transport history, and depositional [...] Read more.
This study encompasses the grain size distribution of the playa lakes (Pachpadra, Pokhran, and Didwana) of the Thar Desert in Rajasthan, India. The grain size of sediment particles is the most fundamental feature, giving essential information regarding their origin, transport history, and depositional conditions. The aeolian and fluvial transport processes were evaluated through environmentally sensitive grain size subpopulations to identify the differential sedimentary sources and dynamics in the playas. End-member modelling further determined the sediment grain size distribution through statistical analysis. The playa sediments mainly consist of very fine sand (46–54%) and very coarse silt (22–37%). The results show that the average fine fraction of Pachpadra, Pokhran, and Didwana playa was 46.29%, 66.11%, and 66.28%, respectively. In contrast, the average coarser fraction deposition in Pachpadra, Pokhran, and Didwana corresponds to 53.71%, 33.89%, and 33.72%, respectively. This suggests that the playas mostly contain aeolian sediment rather than fluvial sediment transported by dust/sand storms. Additionally, the textural pattern and depositional distribution of the sediments determined through the Passega CM diagram and bivariate plots indicate that 82% of the samples were poorly sorted, and 18% were very poorly sorted. Furthermore, an environmentally sensitive grain size component (ESGSC) was also assessed to identify the spatial variability and transport processes of sediment between these playas. Three ESGSCs in Pokhran (250 µ, 31 µ, and 2 µ) and Pachpadra (125 µ, 31 µ, and 4 µ), while two ESGSCs in Didwana playa (125 µ and 16 µ) were identified, indicating sediment deposition with moderate velocity in a low energy environment with a mixed sediment population transported by aeolian and fluvial activities. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

12 pages, 1797 KiB  
Communication
The Feasibility of Monitoring Great Plains Playa Inundation with the Sentinel 2A/B Satellites for Ecological and Hydrological Applications
by Hannah L. Tripp, Erik T. Crosman, James B. Johnson, William J. Rogers and Nathan L. Howell
Water 2022, 14(15), 2314; https://doi.org/10.3390/w14152314 - 26 Jul 2022
Cited by 5 | Viewed by 3005
Abstract
Playas are ecologically and hydrologically important ephemeral wetlands found in arid and semi-arid regions of the world. Urbanization, changes in agricultural land use and irrigation practices, and climate change all threaten playas. While variations in playa inundation on the Great Plains of North [...] Read more.
Playas are ecologically and hydrologically important ephemeral wetlands found in arid and semi-arid regions of the world. Urbanization, changes in agricultural land use and irrigation practices, and climate change all threaten playas. While variations in playa inundation on the Great Plains of North America have been previously analyzed by satellite using annual and decadal time scales, no study to our knowledge has monitored the Great Plains playa inundation area using sub-monthly time scales. Thousands of playas smaller than ~50 m in diameter, which were not previously identified by the Landsat satellite platform, can now be captured by higher resolution satellite data. In this preliminary study, we demonstrate monitoring spatial and temporal changes in the playa water inundation area on sub-monthly times scales between September 2018 and February 2019 over a region in West Texas, USA, using 10 m spatial resolution imagery from the Sentinel-2A/B satellites. We also demonstrate the feasibility and potential benefits of using the Sentinel-2A/B satellite retrievals, in combination with precipitation and evaporation data, to monitor playas for environmental, ecological, groundwater recharge, and hydrological applications. Full article
Show Figures

Figure 1

21 pages, 3725 KiB  
Article
The Origins of Sulfate in Cenozoic Non-Marine Evaporites in the Basin and-Range Province, Southwestern North America
by Ailiang Gu and Christopher John Eastoe
Geosciences 2021, 11(11), 455; https://doi.org/10.3390/geosciences11110455 - 3 Nov 2021
Cited by 3 | Viewed by 3114
Abstract
Cenozoic evaporites (gypsum and anhydrite) in southwestern North America have wide ranges of δ34S (−30 to +22‰; most +4 to +10‰) and δ18OSO4 (+3 to +19‰). New data are presented for five basins in southern Arizona. The evaporites [...] Read more.
Cenozoic evaporites (gypsum and anhydrite) in southwestern North America have wide ranges of δ34S (−30 to +22‰; most +4 to +10‰) and δ18OSO4 (+3 to +19‰). New data are presented for five basins in southern Arizona. The evaporites were deposited in playas or perennial saline lakes in closed basins of Oligocene or younger age. Very large accumulations in Picacho, Safford and Tucson Basins have isotope compositions plotting close to a linear δ34S-δ18OSO4 relationship corresponding to mixing of two sources of sulfur: (1) sulfate recycled from Permian marine gypsum and (2) sulfate from weathering of Laramide-age igneous rocks that include porphyry copper deposits. In the large evaporites, sulfate with δ34S > +10‰ is dominantly of Permian or Early Cretaceous marine origin, but has locally evolved to higher values as a result of bacterial sulfate reduction (BSR). Sulfate with δ34S < −10‰ formed following exposure of sulfides, possibly formed during supergene enrichment of a porphyry copper deposit by BSR, and have values of δ18OSO4 higher than those of local acid rock drainage because of participation of evaporated water in BSR. Accumulations of 30 to 100 km3 of gypsum in Picacho and Safford Basins are too large to explain as products of contemporaneous erosion of Permian and Laramide source materials, but may represent recycling of Late Cretaceous to Miocene lacustrine sulfate. Full article
Show Figures

Figure 1

15 pages, 4628 KiB  
Article
Grain Size Characteristics of Sediments Found in Typical Landscapes in the Playa of Ebinur Lake, Arid Central Asia
by Na Wu, Yongxiao Ge and Jilili Abuduwaili
Land 2021, 10(11), 1132; https://doi.org/10.3390/land10111132 - 25 Oct 2021
Cited by 7 | Viewed by 2948
Abstract
A playa usually refers to a salt desert landscape mainly composed of loose and fine lacustrine sediments. Severe wind erosion on a playa causes the playa to become a source of dust and salt dust and poses a threat to vast areas downwind. [...] Read more.
A playa usually refers to a salt desert landscape mainly composed of loose and fine lacustrine sediments. Severe wind erosion on a playa causes the playa to become a source of dust and salt dust and poses a threat to vast areas downwind. Currently, little is known about the impact of wind erosion on the particle size distribution of sediments in different landscapes in the playa. In the present study, six dominant different landscapes in a natural state with the same sedimentary environment in the playa of Ebinur Lake were selected to provide insights into the different characteristics of particle size distribution under the effect of long-term wind erosion. The results reveal that the grain-size composition clearly differed among different landscapes. All samples had a common dominant size group consisting of very fine sand and sand. The very fine sand and sand content of Haloxylon ammodendron desert zone (LS5) was the lowest, while the clay and silt content was the highest at both depths among the six landscapes. The lowest clay and silt fraction and highest sand fraction appeared in the herbal desert zone (LS3) at both depths. Almost all of the sediment samples were of a bimodal distribution mode, with significant differences. The cumulative curve showed a similar S-shape, while the probability cumulative curve showed an inverted S-shape with three subpopulations of granularity characteristics. The smallest mean particle diameter appeared in LS5. The majority of the sediments were moderately to poorly sorted. The mean particle size of the sediments from the six landscapes was significantly different (p < 0.05), while no significant difference was observed among the other three parameters. Generally, it can be inferred that LS5 can reduce wind speed effectively, probably due to the smaller leaves and dense branches of Haloxylon ammodendron, which results in a high level of coverage. The results of the present study will have some implications for the grain size characteristics for changes in intensity in regional wind erosion environment and will also have some basis for wind erosion prevention and control in the playa of Ebinur Lake. Full article
(This article belongs to the Section Land, Soil and Water)
Show Figures

Figure 1

15 pages, 3908 KiB  
Article
Hygroscopicity of Fresh and Aged Salt Mixtures from Saline Lakes
by Jun Li, Wanyu Liu, Linjie Li, Wenjun Gu, Xiying Zhang, Mattias Hallquist, Mingjin Tang, Sen Wang and Xiangrui Kong
Atmosphere 2021, 12(9), 1203; https://doi.org/10.3390/atmos12091203 - 16 Sep 2021
Cited by 1 | Viewed by 2739
Abstract
The high hygroscopicity of salt aerosol particles makes the particles active in aerosol and cloud formations. Inland saline lakes are an important and dynamic source of salt aerosol. The salt particles can be mixed with mineral dust and transported over long distances. During [...] Read more.
The high hygroscopicity of salt aerosol particles makes the particles active in aerosol and cloud formations. Inland saline lakes are an important and dynamic source of salt aerosol. The salt particles can be mixed with mineral dust and transported over long distances. During transportation, these particles participate in atmospheric heterogeneous chemistry and further impact the climate and air quality on a global scale. Despite their importance and potential, relatively little research has been done on saline lake salt mixtures from atmospheric perspectives. In this study, we use experimental and model methods to evaluate the hygroscopic properties of saline lake brines, fresh salt aerosol particles, and aged salt aerosol particles. Both original samples and literature data are investigated. The original brine samples are collected from six salt lakes in Shanxi and Qinghai provinces in China. The ionic compositions of the brines are determined and the hygroscopicity measurements are performed on crystallized brines. The experimental results agree well with theoretical deliquescence relative humidity (DRH) values estimated by a thermodynamic model. The correlations between DRHs of different salt components and the correlations between DRHs and ionic concentrations are presented and discussed. Positive matrix factorization (PMF) analysis is performed on the ionic concentrations data and the hygroscopicity results, and the solutions are interpreted and discussed. The fresh and aged salt aerosol particles are analyzed in the same way as the brines, and the comparison shows that the aged salt aerosol particles completely alter their hygroscopic property, i.e., transferring from MgCl2 governed to NH4NO3 governed. Full article
Show Figures

Figure 1

10 pages, 596 KiB  
Article
Historical Zooplankton Composition Indicates Eutrophication Stages in a Neotropical Aquatic System: The Case of Lake Amatitlán, Central America
by Sarahi Jaime, Adrián Cervantes-Martínez, Martha A. Gutiérrez-Aguirre, Eduardo Suárez-Morales, Julio R. Juárez-Pernillo, Elena M. Reyes-Solares and Victor H. Delgado-Blas
Diversity 2021, 13(9), 432; https://doi.org/10.3390/d13090432 - 8 Sep 2021
Cited by 5 | Viewed by 3816
Abstract
This paper presents a study of freshwater zooplankton biodiversity, deemed as a reliable indicator of water quality. The Guatemalan Lake Amatitlán, currently used as a water source, has shown signs of progressive eutrophication, with perceptible variations of the local zooplankton diversity. Biotic and [...] Read more.
This paper presents a study of freshwater zooplankton biodiversity, deemed as a reliable indicator of water quality. The Guatemalan Lake Amatitlán, currently used as a water source, has shown signs of progressive eutrophication, with perceptible variations of the local zooplankton diversity. Biotic and abiotic parameters were determined at four sites of Lake Amatitlán (Este Centro, Oeste Centro, Bahía Playa de Oro, and Michatoya) in 2016 and 2017. The local composition, the species richness and abundance of zooplankton, and the system environmental parameters were analyzed during both years surveyed. Biological data suggesting eutrophication of this tropical system were obtained, including a high rotifer abundance (11 species: the rotifers Brachionushavanaensis (109 ind L−1) and Keratellaamericana (304 ind L−1) were the most abundant species in this lake). The presumably endemic diaptomid copepod species, Mastigodiaptomusamatitlanensis, was absent in our samples, but we report the unprecedented occurrence of two Asian cyclopoid copepods (i.e., Thermocyclopscrassus and Mesocyclops thermocyclopoides) for Lake Amatitlán and Guatemala. The presence of larger zooplankters like adults and immature copepods (i.e., Arctodiaptomusdorsalis) and cladocerans (Ceriodaphnia sp.) at site “Este Centro” indicates a relatively healthy zooplankton community and represents a focal point for managing the conservation of this lake. Full article
Show Figures

Graphical abstract

19 pages, 7504 KiB  
Article
Relationships between Alluvial Facies/Depositional Environments, Detrital Zircon U-Pb Geochronology, and Bulk-Rock Geochemistry in the Cretaceous Neungju Basin (Southwest Korea)
by Hyojong Lee, Min Gyu Kwon, Seungwon Shin, Hyeongseong Cho, Jong-Sun Kim, Yul Roh, Min Huh and Taejin Choi
Minerals 2020, 10(11), 1023; https://doi.org/10.3390/min10111023 - 17 Nov 2020
Cited by 10 | Viewed by 3086
Abstract
Zircon U-Pb geochronology and bulk-rock geochemistry analyses were carried out to investigate their relationship with depositional environments of the non-marine Neungju Basin sediments in South Korea. The Neungju Basin was formed in an active continental margin setting during the Late Cretaceous with associated [...] Read more.
Zircon U-Pb geochronology and bulk-rock geochemistry analyses were carried out to investigate their relationship with depositional environments of the non-marine Neungju Basin sediments in South Korea. The Neungju Basin was formed in an active continental margin setting during the Late Cretaceous with associated volcanism. Detrital zircon age distributions of the Neungju Basin reveal that the source rocks surrounding the basin supplied sediments into the basin from all directions, making different zircon age populations according to the depositional environments. Mudstone geochemistry with support of detrital zircon U-Pb age data reveals how the heterogeneity affects the geochemical characteristics of tectonic setting and weathering intensity. The sediments in the proximal (alluvial fan to sandflat) and distal (playa lake) environments differ compositionally because sediment mixing occurred exclusively in the distal environment. The proximal deposits show a passive margin signature, reflecting their derivation from the adjacent metamorphic and granitic basement rocks. The distal deposits properly indicate an active continental margin setting due to the additional supply of reworked volcaniclastic sediments. The proximal deposits indicate a minor degree of chemical weathering corresponding to fossil and sedimentological records of the basin, whereas the distal deposits show lower weathering intensity by reworking of unaltered volcaniclastic detritus from unstable volcanic and volcaniclastic terranes. Overall, this study highlights that compositional data obtained from a specific location and depositional environments may not describe the overall characteristic of the basin. Full article
Show Figures

Figure 1

34 pages, 1739 KiB  
Article
Patterns of Rotifer Diversity in the Chihuahuan Desert
by Patrick D. Brown, Thomas Schröder, Judith V. Ríos-Arana, Roberto Rico-Martinez, Marcelo Silva-Briano, Robert L. Wallace and Elizabeth J. Walsh
Diversity 2020, 12(10), 393; https://doi.org/10.3390/d12100393 - 13 Oct 2020
Cited by 13 | Viewed by 5277
Abstract
Desert aquatic systems are widely separated, lack hydrologic connections, and are subject to drought. However, they provide unique settings to investigate distributional patterns of micrometazoans, including rotifers. Thus, to understand rotifer biodiversity we sampled 236 sites across an array of habitats including rock [...] Read more.
Desert aquatic systems are widely separated, lack hydrologic connections, and are subject to drought. However, they provide unique settings to investigate distributional patterns of micrometazoans, including rotifers. Thus, to understand rotifer biodiversity we sampled 236 sites across an array of habitats including rock pools, springs, tanks, flowing waters, playas, lakes, and reservoirs in the Chihuahuan Desert of the USA (n = 202) and Mexico (n = 34) over a period of >20 years. This allowed us to calculate diversity indices and examine geographic patterns in rotifer community composition. Of ~1850 recognized rotifer species, we recorded 246 taxa (~13%), with greatest diversity in springs (n = 175), lakes (n = 112), and rock pools (n = 72). Sampling effort was positively related to observed richness in springs, lakes, rivers, and tanks. Nestedness analyses indicated that rotifers in these sites, and most subsets thereof, were highly nested (support from 4 null models). Distance was positively correlated with species composition dissimilarity on small spatial scales. We predicted species richness for unsampled locations using empirical Bayesian kriging. These findings provide a better understanding of regional rotifer diversity in aridlands and provide information on potential biodiversity hotspots for aquatic scientists and resource managers. Full article
(This article belongs to the Special Issue Biodiversity of Rotifers)
Show Figures

Graphical abstract

34 pages, 6584 KiB  
Article
Li and Ca Enrichment in the Bristol Dry Lake Brine Compared to Brines from Cadiz and Danby Dry Lakes, Barstow-Bristol Trough, California, USA
by Michael R. Rosen, Lisa L. Stillings, Tyler Kane, Kate Campbell, Matthew Vitale and Ray Spanjers
Minerals 2020, 10(3), 284; https://doi.org/10.3390/min10030284 - 21 Mar 2020
Cited by 9 | Viewed by 5364
Abstract
Relatively few discharging playas in western United States extensional basins have high concentrations of lithium (Li) and calcium (Ca) in the basin-center brines. However, the source of both these ions is not well understood, and it is not clear why basins in close [...] Read more.
Relatively few discharging playas in western United States extensional basins have high concentrations of lithium (Li) and calcium (Ca) in the basin-center brines. However, the source of both these ions is not well understood, and it is not clear why basins in close proximity within the same extensional trough have notably different concentrations of Li and Ca. In the Barstow-Bristol Trough, California, USA, three playas in separate topographically closed basins vary in Li and Ca concentrations from northwest to southeast: 71–110 mg/L Li and 17–65 g/L Ca at Bristol Dry Lake, 20–80 mg/L Li and 7.5–40 g/L Ca at Cadiz Dry Lake, and <5 mg/L Li and <0.5 g/L Ca at Danby Dry Lake. Using new and historic data from recently drilled wells (2017–2018), it has been determined that there is minimal variation of temperature, Li, and major ion concentrations with depth (down to 500 m), suggesting that the brines are well mixed and likely to circulate slowly due to density driven flow. Although it has been postulated that geothermal fluids supply the Li and Ca to Bristol and Cadiz closed basins, there is little to no surface evidence for geothermal fluids, except for a young (80,000-year-old) volcanic crater in Bristol Dry Lake. However, major-ion chemistry of fluid inclusions in bedded halite deposits show no change in brine chemistry over the last 3 million years in Bristol Dry Lake indicating that the source of lithium is not related to these recent basaltic eruptions. Mg–Li geothermometry of basin-center brines indicates that Bristol and Cadiz brines have possibly been heated to near 160 °C at some time and Danby brine water has been heated to less than 100 °C, although Cadiz and Danby lakes have no known surface geothermal features. The difference in Li concentrations between the different basins is likely caused by variable sources of both ions and the hydrology of the playas, including differences in how open or closed the basins are, recharge rates, evaporative concentration, permeability of basin-center sediments, and the possible amount of geothermal heating. The differences in Ca concentrations are more difficult to determine. However, historic groundwater data in the basins indicate that less saline groundwater on the north side of the basins has molar Ca:HCO3 and Ca:SO4 ratios greater than one, which indicates a non-saline groundwater source for at least some of the Ca. The similar Li and Ca concentrations in Bristol and Cadiz lakes may be because they are separated only by a low topographic divide and may have been connected at times in the past three million years. All three basins are at least Miocene in age, as all three basins have been interpreted to contain Bouse Formation sediments at various depths or in outcrop. The age of the basins indicates that there is ample time for concentration of Li and Ca in the basins even at low evaporation rates or low geothermal inputs. The source of Li for brines in Bristol and Cadiz basins is postulated to be from ancient geothermal fluids that no longer exist in the basin. The source of Li to the sediment may be either geothermal fluids or dissolution and concentration of Li from tephra layers and detrital micas or clays that are present in the sediments, or a combination of both. The source of Ca must at least partially come from groundwater in the alluvial fans, as some wells have Ca:HCO3 ratios that are greater than one. The source of Ca could be from the dissolution of Ca-bearing igneous rocks in the surrounding catchments with limited HCO3 contribution, or dilute geothermal water migrating up through faults in the basin margin. The relatively low concentration of Li and Ca in Danby playa is likely caused by a lack of sources in the basin and because the basin was (or is) partially hydrologically open to the south, reducing the effectiveness of evaporative concentration of solutes. Bristol Dry Lake is likely the only hydrologically closed basin of the three because although Cadiz has a similar brine chemistry and salinity, there is almost no halite deposition in the basin. It is only Bristol Dry Lake that contains 40% halite in its basin center. Full article
(This article belongs to the Special Issue Evolution of Li-rich Brines)
Show Figures

Figure 1

21 pages, 8355 KiB  
Article
In-Flight Radiometric Calibration of Compact Infrared Camera (CIRC) Instruments Onboard ALOS-2 Satellite and International Space Station
by Hideyuki Tonooka, Michito Sakai, Ayaka Kumeta and Koji Nakau
Remote Sens. 2020, 12(1), 58; https://doi.org/10.3390/rs12010058 - 22 Dec 2019
Cited by 5 | Viewed by 4546
Abstract
The Compact Infrared Camera (CIRC) instruments onboard the Advanced Land Observing Satellite-2 (ALOS-2) and the Calorimetric Electron Telescope (CALET) attached to the International Space Station are satellite-borne 2D-array thermal infrared cameras for technical demonstrations in fields such as forest fire monitoring, volcano monitoring, [...] Read more.
The Compact Infrared Camera (CIRC) instruments onboard the Advanced Land Observing Satellite-2 (ALOS-2) and the Calorimetric Electron Telescope (CALET) attached to the International Space Station are satellite-borne 2D-array thermal infrared cameras for technical demonstrations in fields such as forest fire monitoring, volcano monitoring, and heat island analysis. Since they have the characteristics of low cost and low power consumption and have no onboard calibrator such as a blackbody or shutter, in-flight calibration should be performed by vicarious calibration (VC) and cross-calibration (CC). In this study, we determined the recalibration coefficients for both of the CIRC instruments as a function of time based on VC experiments in Lake Kasumigaura (Japan) and Railroad Valley Playa (USA), VC with telemetry data from three lakes in Japan and the USA, and CC with imagers onboard two geostationary satellites (MTSAT-2 and Himawari-8). As a result, the derived recalibration coefficients improved the accuracy of the ground-testing-based radiance remarkably in both of the CIRC instruments, suggesting that the recalibrated radiance can satisfy the target accuracy of CIRC, given as 2 K at 300 K. These coefficients, as a function of time, will be applied to all CIRC images by reprocessing planned in the near future. Full article
(This article belongs to the Special Issue Cross-Calibration and Interoperability of Remote Sensing Instruments)
Show Figures

Graphical abstract

Back to TopTop