Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = plastoglobules

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3052 KiB  
Article
Insights into the Photosynthetic Efficiency and Chloroplast Ultrastructure of Heat-Stressed Edamame Cultivars During the Reproductive Stages
by Makoena Joyce Moloi, Csilla Tóth, Arslan Hafeez and Brigitta Tóth
Agronomy 2025, 15(2), 301; https://doi.org/10.3390/agronomy15020301 - 25 Jan 2025
Cited by 2 | Viewed by 1193
Abstract
High temperatures have adverse impacts on the photosynthetic efficiency and yield of many crop plants. This study investigated how high temperatures affect the photosynthetic efficiency parameters and chloroplast ultrastructure of three edamame cultivars (AGS354, UVE17, and UVE14) at the reproductive stages (flowering and [...] Read more.
High temperatures have adverse impacts on the photosynthetic efficiency and yield of many crop plants. This study investigated how high temperatures affect the photosynthetic efficiency parameters and chloroplast ultrastructure of three edamame cultivars (AGS354, UVE17, and UVE14) at the reproductive stages (flowering and pod-filling). Heat stress (HS) treatments were performed under controlled conditions in climate chambers set at 25/18 °C (control), 30/23 °C (HS-I), and 35/28 °C (HS-II). The AGS354 cultivar exhibited the greatest susceptibility under HS-II treatment, characterised by a reduction in the photochemical reactions, decreased chlorophyll-a (chl-a) and carotenoid accumulation, the highest increase in the starch grain traits, and reduced plastoglobule and grana area traits. In UVE 14 and UVE17, the HS-II treatment enhanced chl-a and chl-b accumulation. Elevated carotenoid levels in UVE14 and UVE17 likely protected chlorophyll from degradation and mitigated photooxidative damage. The HS-II treatment also enhanced the grana traits, supporting improved light-harvesting capacity during heat stress in UVE14 and 17. However, heat stress disrupted the photochemical reactions (quantum efficiency of photosystem II, performance index absorbance, and performance index), indicating that elevated carotenoids alone do not exhibit complete tolerance to heat stress. Since plastoglobules play an essential in carotenoid biosynthesis, increased or stabilised plastoglobule traits in UVE14 and UVE17 under HS-II treatment strongly indicate improved heat stress tolerance. Overall, UVE14 and UVE17 emerged as the most heat-tolerant cultivars, with AGS354 being the most susceptible. These findings provide valuable insights into heat stress adaptation mechanisms and suggest the UVE14 and UVE17 cultivars as potential candidates for breeding heat-tolerant edamame cultivars. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

13 pages, 2354 KiB  
Article
OsFBN6 Enhances Brown Spot Disease Resistance in Rice
by Fang-Yuan Cao, Yuting Zeng, Ah-Rim Lee, Backki Kim, Dongryung Lee, Sun-Tae Kim and Soon-Wook Kwon
Plants 2024, 13(23), 3302; https://doi.org/10.3390/plants13233302 - 25 Nov 2024
Cited by 2 | Viewed by 1617
Abstract
Brown spot (BS) is caused by necrotrophs fungi Cochliobolus miyabeanus (C. miyabeanus) which affects rainfed and upland production in rice, resulting in significant losses in yield and grain quality. Here, we explored the meJA treatment that leads to rice resistance to [...] Read more.
Brown spot (BS) is caused by necrotrophs fungi Cochliobolus miyabeanus (C. miyabeanus) which affects rainfed and upland production in rice, resulting in significant losses in yield and grain quality. Here, we explored the meJA treatment that leads to rice resistance to BS. Fibrillins (FBNs) family are constituents of plastoglobules in chloroplast response to biotic and abiotic stress, many research revealed that OsFBN1 and OsFBN5 are not only associated with the rice against disease but also with the JA pathway. The function of FBN6 was only researched in the Arabidopsis. We revealed gene expression levels of OsFBN1, OsFBN5, OsFBN6 and the JA pathway synthesis first specific enzyme OsAOS2 following infection with C. miyabeanus, OsAOS2 gene expression showed great regulation after C. miyabeanus and meJA treatment, indicating JA pathway response to BS resistance in rice. Three FBN gene expressions showed different significantly regulated modes in C. miyabeanus and meJA treatment. The haplotype analysis results showed OsFBN1 and OsFBN5 the diverse Haps significant with BS infection score, and the OsFBN6 showed stronger significance (**** p < 0.0001). Hence, we constructed OsFBN6 overexpression lines, which showed more resistance to BS compared to the wild type, revealing OsFBN6 positively regulated rice resistance to BS. We developed OsFBN6 genetic markers by haplotype analysis from 130 rice varieties according to whole-genome sequencing results, haplotype analysis, and marker development to facilitate the screening of BS-resistant varieties in rice breeding. The Caps marker developed by Chr4_30690229 can be directly applied to the breeding application of screening rice BS-resistant varieties. Full article
(This article belongs to the Special Issue Disease Resistance Breeding of Field Crops)
Show Figures

Figure 1

19 pages, 9353 KiB  
Article
Physiological and Structural Changes in Leaves of Platycrater arguta Seedlings Exposed to Increasing Light Intensities
by Chunyan Wei, Guangyu Luo, Zexin Jin, Junmin Li and Yueling Li
Plants 2024, 13(9), 1263; https://doi.org/10.3390/plants13091263 - 30 Apr 2024
Cited by 7 | Viewed by 2103
Abstract
Understanding the light adaptation of plants is critical for conservation. Platycrater arguta, an endangered deciduous shrub endemic to East Asia, possesses high ornamental and phylogeographic value. However, the weak environmental adaptability of P. arguta species has limited its general growth and conservation. [...] Read more.
Understanding the light adaptation of plants is critical for conservation. Platycrater arguta, an endangered deciduous shrub endemic to East Asia, possesses high ornamental and phylogeographic value. However, the weak environmental adaptability of P. arguta species has limited its general growth and conservation. To obtain a deeper understanding of the P. arguta growth conditions, we examined the leaf morphology and physiology via anatomical and chloroplast ultrastructural analyses following exposure to different natural light intensities (full light, 40%, and 10%). The findings indicated that P. arguta seedings in the 10% light intensity had significantly improved leaf morphological characteristics and specific leaf area compared to those exposed to other intensities. The net photosynthetic rate, chlorophyll (Chl) content, photosynthetic nitrogen use efficiency (PNUE), and photosynthetic phosphorus use efficiency (PPUE) exhibited marked increases at a 10% light intensity compared to both 40% light and full light intensities, whereas the light compensation point and dark respiration levels reached their lowest values under the 10% light condition. With reduced light, leaf thickness, palisade tissue, spongy tissue, and stomatal density significantly decreased, whereas the stomatal length, stomatal width, and stomatal aperture were significantly elevated. When exposed to 10% light intensity, the ultrastructure of chloroplasts was well developed, chloroplasts and starch grain size, the number of grana, and thylakoids all increased significantly, while the number of plastoglobules was significantly reduced. Relative distance phenotypic plasticity index analysis exhibited that P. arguta adapts to varying light environments predominantly by adjusting PPUE, Chl b, PNUE, chloroplast area, and the activity of PSII reaction centers. We proposed that P. arguta efficiently utilizes low light to reconfigure its energy metabolism by regulating its leaf structure, photosynthetic capacity, nutrient use efficiency, and chloroplast development. Full article
(This article belongs to the Special Issue Microscopy Techniques in Plant Studies)
Show Figures

Figure 1

8 pages, 2299 KiB  
Article
The tgd5 Mutation Affects Plastid Structure and Causes Giant Lipid Droplet Formation in Trichomes of Arabidopsis
by Kanae Matsuoka, Hiroko Kubotera, Rina Miyazaki, Shota Moriyama, Makoto T. Fujiwara and Ryuuichi D. Itoh
Int. J. Plant Biol. 2024, 15(1), 46-53; https://doi.org/10.3390/ijpb15010004 - 9 Jan 2024
Viewed by 1574
Abstract
Trichomes, epidermal protrusions in terrestrial plants, play diverse roles in plant defense, metabolism, and development. Arabidopsis thaliana, a model plant with single-celled and non-glandular trichomes, is a valuable system for studying cell differentiation in plants. However, organelle biology in Arabidopsis trichomes is [...] Read more.
Trichomes, epidermal protrusions in terrestrial plants, play diverse roles in plant defense, metabolism, and development. Arabidopsis thaliana, a model plant with single-celled and non-glandular trichomes, is a valuable system for studying cell differentiation in plants. However, organelle biology in Arabidopsis trichomes is relatively underexplored. Using light and transmission electron microscopy, we investigated the phenotypes of intracellular structures in Arabidopsis trichomes caused by tgd5 mutations, which are known to disrupt lipid transfer from the endoplasmic reticulum to plastids and have a large impact on chloroplast morphology in pavement and guard cells. Significant phenotypic changes in the plastid structure were observed in tgd5 trichome cells, including the absence of plastoglobuli, the emergence of clusters of electron-dense particles in the stroma, and the possibly cup-shaped morphology of plastids. Additionally, the tgd5 mutations triggered the formation of giant, up to 15 µm in diameter, neutral lipid-containing droplets in the trichome cells, as revealed using histochemical staining with lipophilic dyes. These lipid droplets were substantially larger and more frequent in trichome cells than in other types of cells in tgd5. These findings highlight the role of TGD5 in maintaining plastid structure and implicate the unique activity of lipid metabolism in Arabidopsis trichomes. Full article
(This article belongs to the Section Plant Physiology)
Show Figures

Figure 1

15 pages, 2174 KiB  
Article
Nutritional Enrichment of Plant Leaves by Combining Genes Promoting Tocopherol Biosynthesis and Storage
by Luca Morelli, Laura García Romañach, Gaetan Glauser, Venkatasalam Shanmugabalaji, Felix Kessler and Manuel Rodriguez-Concepcion
Metabolites 2023, 13(2), 193; https://doi.org/10.3390/metabo13020193 - 28 Jan 2023
Cited by 10 | Viewed by 2158
Abstract
The enrichment of plant tissues in tocochromanols (tocopherols and tocotrienols) is an important biotechnological goal due to their vitamin E and antioxidant properties. Improvements based on stimulating tocochromanol biosynthesis have repeatedly been achieved, however, enhancing sequestering and storage in plant plastids remains virtually [...] Read more.
The enrichment of plant tissues in tocochromanols (tocopherols and tocotrienols) is an important biotechnological goal due to their vitamin E and antioxidant properties. Improvements based on stimulating tocochromanol biosynthesis have repeatedly been achieved, however, enhancing sequestering and storage in plant plastids remains virtually unexplored. We previously showed that leaf chloroplasts can be converted into artificial chromoplasts with a proliferation of plastoglobules by overexpression of the bacterial crtB gene. Here we combined coexpression of crtB with genes involved in tocopherol biosynthesis to investigate the potential of artificial leaf chromoplasts for vitamin E accumulation in Nicotiana benthamiana leaves. We show that this combination improves tocopherol levels compared to controls without crtB and confirm that VTE1, VTE5, VTE6 and tyrA genes are useful to increase the total tocopherol levels, while VTE4 further leads to enrichment in α-tocopherol (the tocochromanol showing highest vitamin E activity). Additionally, we show that treatments that further promote plastoglobule formation (e.g., exposure to intense light or dark-induced senescence) result in even higher improvements in the tocopherol content of the leaves. An added advantage of our strategy is that it also results in increased levels of other related plastidial isoprenoids such as carotenoids (provitamin A) and phylloquinones (vitamin K1). Full article
(This article belongs to the Special Issue Nicotiana spp. as Production Platforms for Bioproducts)
Show Figures

Figure 1

19 pages, 3395 KiB  
Article
Bean and Pea Plastoglobules Change in Response to Chilling Stress
by Joanna Wójtowicz, Joanna Grzyb, Joanna Szach, Radosław Mazur and Katarzyna B. Gieczewska
Int. J. Mol. Sci. 2021, 22(21), 11895; https://doi.org/10.3390/ijms222111895 - 2 Nov 2021
Cited by 4 | Viewed by 3049
Abstract
Plastoglobules (PGs) might be characterised as microdomains of the thylakoid membrane that serve as a platform to recruit proteins and metabolites in their spatial proximity in order to facilitate metabolic channelling or signal transduction. This study provides new insight into changes in PGs [...] Read more.
Plastoglobules (PGs) might be characterised as microdomains of the thylakoid membrane that serve as a platform to recruit proteins and metabolites in their spatial proximity in order to facilitate metabolic channelling or signal transduction. This study provides new insight into changes in PGs isolated from two plant species with different responses to chilling stress, namely chilling-tolerant pea (Pisum sativum) and chilling-sensitive bean (Phaseolus coccineus). Using multiple analytical methods, such as high-performance liquid chromatography and visualisation techniques including transmission electron microscopy and atomic force microscopy, we determined changes in PGs’ biochemical and biophysical characteristics as a function of chilling stress. Some of the observed alterations occurred in both studied plant species, such as increased particle size and plastoquinone-9 content, while others were more typical of a particular type of response to chilling stress. Additionally, PGs of first green leaves were examined to highlight differences at this stage of development. Observed changes appear to be a dynamic response to the demands of photosynthetic membranes under stress conditions. Full article
(This article belongs to the Special Issue Biotic and Abiotic Stress Effects on Plant Structure and Physiology)
Show Figures

Graphical abstract

11 pages, 1881 KiB  
Article
Lipid and Fatty Acids Accumulation Features of Entomoneis cf. paludosa during Exponential and Stationary Growth Phases in Laboratory Culture
by Yekaterina Bedoshvili, Yulia Podunay, Alyona Nikonova, Artyom Marchenkov, Elvira Bairamova, Nikolai Davidovich and Yelena Likhoshway
Diversity 2021, 13(10), 459; https://doi.org/10.3390/d13100459 - 23 Sep 2021
Cited by 5 | Viewed by 2389
Abstract
Diatoms are capable of accumulating substantial amounts of triacylglycerides in their cells, which differ in the composition of fatty acids depending on the conditions of cultivation, making them attractive subjects in biotechnology. In the present study, we characterized the structural features of lipid [...] Read more.
Diatoms are capable of accumulating substantial amounts of triacylglycerides in their cells, which differ in the composition of fatty acids depending on the conditions of cultivation, making them attractive subjects in biotechnology. In the present study, we characterized the structural features of lipid bodies in the diatom Entomoneis cf. paludosa (W. Smith) Reimer strain 8.0727-B and revealed the peculiarities of fatty acid composition in cultures during the stationary and exponential growth phases. Laser scanning confocal microscopy revealed an increased number of lipid bodies in the cytoplasm during the stationary phase of culture growth. Electron microscopy of ultrathin sections showed that an extreme increase in the number and size of plastoglobules in the cells occurs in the stationary phase of culture growth. The gas chromatography with mass spectrometric detection method revealed differences in the fatty acid composition depending on the growth phase. The studied strain can be recommended as a source of hexadecanoic and octadecanoic fatty acids from the culture during the stationary growth phase, as well as eicosapentaenoic fatty acid from the culture during the exponential growth phase. Full article
(This article belongs to the Section Microbial Diversity and Culture Collections)
Show Figures

Figure 1

25 pages, 83564 KiB  
Article
An Argon-Ion-Induced Pale Green Mutant of Arabidopsis Exhibiting Rapid Disassembly of Mesophyll Chloroplast Grana
by Alvin Sanjaya, Yusuke Kazama, Kotaro Ishii, Ryohsuke Muramatsu, Kengo Kanamaru, Sumie Ohbu, Tomoko Abe and Makoto T. Fujiwara
Plants 2021, 10(5), 848; https://doi.org/10.3390/plants10050848 - 22 Apr 2021
Cited by 4 | Viewed by 4728
Abstract
Argon-ion beam is an effective mutagen capable of inducing a variety of mutation types. In this study, an argon ion-induced pale green mutant of Arabidopsis thaliana was isolated and characterized. The mutant, designated Ar50-33-pg1, exhibited moderate defects of growth and greening and exhibited [...] Read more.
Argon-ion beam is an effective mutagen capable of inducing a variety of mutation types. In this study, an argon ion-induced pale green mutant of Arabidopsis thaliana was isolated and characterized. The mutant, designated Ar50-33-pg1, exhibited moderate defects of growth and greening and exhibited rapid chlorosis in photosynthetic tissues. Fluorescence microscopy confirmed that mesophyll chloroplasts underwent substantial shrinkage during the chlorotic process. Genetic and whole-genome resequencing analyses revealed that Ar50-33-pg1 contained a large 940 kb deletion in chromosome V that encompassed more than 100 annotated genes, including 41 protein-coding genes such as TYRAAt1/TyrA1, EGY1, and MBD12. One of the deleted genes, EGY1, for a thylakoid membrane-localized metalloprotease, was the major contributory gene responsible for the pale mutant phenotype. Both an egy1 mutant and F1 progeny of an Ar50-33-pg1 × egy1 cross-exhibited chlorotic phenotypes similar to those of Ar50-33-pg1. Furthermore, ultrastructural analysis of mesophyll cells revealed that Ar50-33-pg1 and egy1 initially developed wild type-like chloroplasts, but these were rapidly disassembled, resulting in thylakoid disorganization and fragmentation, as well as plastoglobule accumulation, as terminal phenotypes. Together, these data support the utility of heavy-ion mutagenesis for plant genetic analysis and highlight the importance of EGY1 in the structural maintenance of grana in mesophyll chloroplasts. Full article
(This article belongs to the Special Issue Molecular Biology of Plastids)
Show Figures

Figure 1

13 pages, 2143 KiB  
Article
The Effects of Copper and Silver Nanoparticles on Container-Grown Scots Pine (Pinus sylvestris L.) and Pedunculate Oak (Quercus robur L.) Seedlings
by Marta Aleksandrowicz-Trzcińska, Magdalena Bederska-Błaszczyk, Adam Szaniawski, Jacek Olchowik and Marcin Studnicki
Forests 2019, 10(3), 269; https://doi.org/10.3390/f10030269 - 17 Mar 2019
Cited by 23 | Viewed by 4589
Abstract
Metal nanoparticles (NPs) are finding ever-wider applications in plant production (agricultural and forestry-related) as fertilisers, pesticides and growth stimulators. This makes it essential to examine their impact on a variety of plants, including trees. In the study detailed here, we investigated the effects [...] Read more.
Metal nanoparticles (NPs) are finding ever-wider applications in plant production (agricultural and forestry-related) as fertilisers, pesticides and growth stimulators. This makes it essential to examine their impact on a variety of plants, including trees. In the study detailed here, we investigated the effects of nanoparticles of silver and copper (i.e., AgNPs and CuNPs) on growth, and chlorophyll fluorescence, in the seedlings of Scots pine and pedunculate oak. We also compared the ultrastructure of needles, leaves, shoots and roots of treated and untreated plants, under transmission electron microscopy. Seedlings were grown in containers in a peat substrate, prior to the foliar application of NPs four times in the course of the growing season, at the four concentrations of 0, 5, 25 and 50 ppm. We were able to detect species-specific activity of the two types of NP. Among seedling pines, the impact of both types of NP at the concentrations supplied limited growth slightly. In contrast, no such effect was observed for the oaks grown in the trial. Equally, it was not possible to find ultrastructural changes in stems and roots associated with the applications of NPs. Cell organelles apparently sensitive to the action of both NPs (albeit only at the highest applied concentration of 50 ppm) were chloroplasts. The CuNP-treated oaks contained large plastoglobules, whereas those dosed with AgNP contained large starch granules. The NP-treated pines likewise exhibited large numbers of plastoglobules, while the chloroplasts of NP-treated plants in general presented shapes that changed from lenticular to round. In addition, large osmophilic globules were present in the cytoplasm. Reference to maximum quantum yields from photosystem II (Fv/Fm)—on the basis of chlorophyll a fluorescence measurements—revealed a slight debilitation of oak seedlings following the application of both kinds of NP at higher concentrations. In contrast, in pines, this variable revealed no influence of AgNPs, as well as a favourable effect due to the CuNPs applied at a concentration of 5 ppm. Our research also showed that any toxic impact on pine or oak seedlings due to the NPs was limited and only present with higher concentrations. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

9 pages, 2586 KiB  
Communication
Microscopic Analyses of Fruit Cell Plastid Development in Loquat (Eriobotrya japonica) during Fruit Ripening
by Pengjun Lu, Ruqian Wang, Changqing Zhu, Xiumin Fu, Shasha Wang, Don Grierson and Changjie Xu
Molecules 2019, 24(3), 448; https://doi.org/10.3390/molecules24030448 - 27 Jan 2019
Cited by 7 | Viewed by 5310
Abstract
Plastids are sites for carotenoid biosynthesis and accumulation, but detailed information on fruit plastid development and its relation to carotenoid accumulation remains largely unclear. Here, using Baisha (BS; white-fleshed) and Luoyangqing (LYQ; red-fleshed) loquat (Eriobotrya japonica), a detailed microscopic analysis of [...] Read more.
Plastids are sites for carotenoid biosynthesis and accumulation, but detailed information on fruit plastid development and its relation to carotenoid accumulation remains largely unclear. Here, using Baisha (BS; white-fleshed) and Luoyangqing (LYQ; red-fleshed) loquat (Eriobotrya japonica), a detailed microscopic analysis of plastid development during fruit ripening was carried out. In peel cells, chloroplasts turned into smaller chromoplasts in both cultivars, and the quantity of plastids in LYQ increased by one-half during fruit ripening. The average number of chromoplasts per peel cell in fully ripe fruit was similar between the two cultivars, but LYQ peel cell plastids were 20% larger and had a higher colour density, associated with the presence of larger plastoglobules. In flesh cells, chromoplasts could be observed only in LYQ during the middle and late stages of ripening, and the quantity on a per-cell basis was higher than that in peel cells, but the size of chromoplasts was smaller. It was concluded that chromoplasts are derived from the direct conversion of chloroplasts to chromoplasts in the peel, and from de novo differentiation of proplastids into chromoplasts in flesh. The relationship between plastid development and carotenoid accumulation is discussed. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

15 pages, 12684 KiB  
Article
Molecular and Ultrastructural Mechanisms Underlying Yellow Dwarf Symptom Formation in Wheat after Infection of Barley Yellow Dwarf Virus
by Wei Rong, Xindong Wang, Xifeng Wang, Sebastien Massart and Zengyan Zhang
Int. J. Mol. Sci. 2018, 19(4), 1187; https://doi.org/10.3390/ijms19041187 - 13 Apr 2018
Cited by 22 | Viewed by 5873
Abstract
Wheat (Tritium aestivum L.) production is essential for global food security. Infection of barley yellow dwarf virus-GAV (BYDV-GAV) results in wheat showing leaf yellowing and plant dwarfism symptom. To explore the molecular and ultrastructural mechanisms underlying yellow dwarf symptom formation in BYDV-GAV-infected [...] Read more.
Wheat (Tritium aestivum L.) production is essential for global food security. Infection of barley yellow dwarf virus-GAV (BYDV-GAV) results in wheat showing leaf yellowing and plant dwarfism symptom. To explore the molecular and ultrastructural mechanisms underlying yellow dwarf symptom formation in BYDV-GAV-infected wheat, we investigated the chloroplast ultrastructure via transmission electron microscopy (TEM), examined the contents of the virus, H2O2, and chlorophyll in Zhong8601, and studied the comparative transcriptome through microarray analyses in the susceptible wheat line Zhong8601 after virus infection. TEM images indicated that chloroplasts in BYDV-GAV-infected Zhong8601 leaf cells were fragmentized. Where thylakoids were not well developed, starch granules and plastoglobules were rare. Compared with mock-inoculated Zhong8601, chlorophyll content was markedly reduced, but the virus and H2O2 contents were significantly higher in BYDV-GAV-infected Zhong8601. The transcriptomic analyses revealed that chlorophyll biosynthesis and chloroplast related transcripts, encoding chlorophyll a/b binding protein, glucose-6-phosphate/phosphate translocator 2, and glutamyl-tRNA reductase 1, were down-regulated in BYDV-GAV-infected Zhong8601. Some phytohormone signaling-related transcripts, including abscisic acid (ABA) signaling factors (phospholipase D alpha 1 and calcineurin B-like protein 9) and nine ethylene response factors, were up-regulated. Additionally, reactive oxygen species (ROS)-related genes were transcriptionally regulated in BYDV-GAV infected Zhong8601, including three up-regulated transcripts encoding germin-like proteins (promoting ROS accumulation) and four down-regulated transcripts encoding peroxides (scavenging ROS). These results clearly suggest that the yellow dwarf symptom formation is mainly attributed to reduced chlorophyll content and fragmentized chloroplasts caused by down-regulation of the chlorophyll and chloroplast biosynthesis related genes, ROS excessive accumulation, and precisely transcriptional regulation of the above-mentioned ABA and ethylene signaling- and ROS-related genes in susceptible wheat infected by BYDV-GAV. Full article
(This article belongs to the Special Issue Plant Defense Genes Against Biotic Stresses)
Show Figures

Graphical abstract

19 pages, 3754 KiB  
Article
The Effect of Silver and Copper Nanoparticles on the Condition of English Oak (Quercus robur L.) Seedlings in a Container Nursery Experiment
by Jacek Olchowik, Roman Mariusz Bzdyk, Marcin Studnicki, Magdalena Bederska-Błaszczyk, Alexander Urban and Marta Aleksandrowicz-Trzcińska
Forests 2017, 8(9), 310; https://doi.org/10.3390/f8090310 - 25 Aug 2017
Cited by 62 | Viewed by 7053
Abstract
Some studies indicate that metal nanoparticles can be used in plant cultivation as fungicides and growth stimulators. The aim of this study was to evaluate the effect of silver (AgNPs) and copper nanoparticles (CuNPs) on the growth parameters, on the extent of leaves [...] Read more.
Some studies indicate that metal nanoparticles can be used in plant cultivation as fungicides and growth stimulators. The aim of this study was to evaluate the effect of silver (AgNPs) and copper nanoparticles (CuNPs) on the growth parameters, on the extent of leaves infected by powdery mildew and on spontaneous ectomycorrhizal colonization of English oak (Quercus robur L.) seedlings growing in containers. Nanoparticles were applied to foliage four times during one vegetation season, at four concentrations: 0, 5, 25 and 50 ppm. The adsorption of NPs to leaves was observed by microscopical imaging (TEM). The tested concentrations of AgNPs and CuNPs did not have any significant effect on the growth parameters of the oak seedlings. TEM results showed disturbances in the shape of plastids, plastoglobules and the starch content of oak leaves treated with 50 ppm Cu- and AgNPs, while no changes in the ultrastructure of stems and roots of oak plants treated with NPs were observed. No significant difference in powdery mildew disease intensity was observed after NP foliar app lication. Four ectomycorrhizal taxa were detected on oak roots (Sphaerosporella brunnea, Thelephora terrestris, Paxillus involutus and Laccaria proxima). Oak seedlings treated (foliar) with CuNPs and AgNPs at 25 ppm were characterised by the highest degree of mycorrhization (respectively, 37.1% and 37.5%) among all treatments including the control treatment. None of the tested NPs manifested phytotoxicity in the examined Q. robur seedlings under container nursery conditions. Full article
Show Figures

Figure 1

22 pages, 4268 KiB  
Article
Unraveling Massive Crocins Transport and Accumulation through Proteome and Microscopy Tools during the Development of Saffron Stigma
by Lourdes Gómez-Gómez, Verónica Parra-Vega, Alba Rivas-Sendra, Jose M. Seguí-Simarro, Rosa Victoria Molina, Claudia Pallotti, Ángela Rubio-Moraga, Gianfranco Diretto, Alicia Prieto and Oussama Ahrazem
Int. J. Mol. Sci. 2017, 18(1), 76; https://doi.org/10.3390/ijms18010076 - 1 Jan 2017
Cited by 47 | Viewed by 7189
Abstract
Crocins, the glucosides of crocetin, are present at high concentrations in saffron stigmas and accumulate in the vacuole. However, the biogenesis of the saffron chromoplast, the changes during the development of the stigma and the transport of crocins to the vacuole, are processes [...] Read more.
Crocins, the glucosides of crocetin, are present at high concentrations in saffron stigmas and accumulate in the vacuole. However, the biogenesis of the saffron chromoplast, the changes during the development of the stigma and the transport of crocins to the vacuole, are processes that remain poorly understood. We studied the process of chromoplast differentiation in saffron throughout stigma development by means of transmission electron microscopy. Our results provided an overview of a massive transport of crocins to the vacuole in the later developmental stages, when electron dense drops of a much greater size than plastoglobules (here defined “crocinoplast”) were observed in the chromoplast, connected to the vacuole with a subsequent transfer of these large globules inside the vacuole. A proteome analysis of chromoplasts from saffron stigma allowed the identification of several well-known plastid proteins and new candidates involved in crocetin metabolism. Furthermore, expressions throughout five developmental stages of candidate genes responsible for carotenoid and apocarotenoid biogenesis, crocins transport to the vacuole and starch metabolism were analyzed. Correlation matrices and networks were exploited to identify a series of transcripts highly associated to crocetin (such as 1-Deoxy-d-xylulose 5-phosphate synthase (DXS), 1-Deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), carotenoid isomerase (CRTISO), Crocetin glucosyltransferase 2 (UGT2), etc.) and crocin (e.g., ζ-carotene desaturase (ZDS) and plastid-lipid-associated proteins (PLAP2)) accumulation; in addition, candidate aldehyde dehydrogenase (ADH) genes were highlighted. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

13 pages, 2905 KiB  
Technical Note
Plastoglobule-Targeting Competence of a Putative Transit Peptide Sequence from Rice Phytoene Synthase 2 in Plastids
by Min Kyoung You, Jin Hwa Kim, Yeo Jin Lee, Ye Sol Jeong and Sun-Hwa Ha
Int. J. Mol. Sci. 2017, 18(1), 18; https://doi.org/10.3390/ijms18010018 - 22 Dec 2016
Cited by 14 | Viewed by 4739
Abstract
Plastoglobules (PGs) are thylakoid membrane microdomains within plastids that are known as specialized locations of carotenogenesis. Three rice phytoene synthase proteins (OsPSYs) involved in carotenoid biosynthesis have been identified. Here, the N-terminal 80-amino-acid portion of OsPSY2 (PTp) was demonstrated to be a chloroplast-targeting [...] Read more.
Plastoglobules (PGs) are thylakoid membrane microdomains within plastids that are known as specialized locations of carotenogenesis. Three rice phytoene synthase proteins (OsPSYs) involved in carotenoid biosynthesis have been identified. Here, the N-terminal 80-amino-acid portion of OsPSY2 (PTp) was demonstrated to be a chloroplast-targeting peptide by displaying cytosolic localization of OsPSY2(ΔPTp):mCherry in rice protoplast, in contrast to chloroplast localization of OsPSY2:mCherry in a punctate pattern. The peptide sequence of a PTp was predicted to harbor two transmembrane domains eligible for a putative PG-targeting signal. To assess and enhance the PG-targeting ability of PTp, the original PTp DNA sequence (PTp) was modified to a synthetic DNA sequence (stPTp), which had 84.4% similarity to the original sequence. The motivation of this modification was to reduce the GC ratio from 75% to 65% and to disentangle the hairpin loop structures of PTp. These two DNA sequences were fused to the sequence of the synthetic green fluorescent protein (sGFP) and drove GFP expression with different efficiencies. In particular, the RNA and protein levels of stPTp-sGFP were slightly improved to 1.4-fold and 1.3-fold more than those of sGFP, respectively. The green fluorescent signals of their mature proteins were all observed as speckle-like patterns with slightly blurred stromal signals in chloroplasts. These discrete green speckles of PTp-sGFP and stPTp-sGFP corresponded exactly to the red fluorescent signal displayed by OsPSY2:mCherry in both etiolated and greening protoplasts and it is presumed to correspond to distinct PGs. In conclusion, we identified PTp as a transit peptide sequence facilitating preferential translocation of foreign proteins to PGs, and developed an improved PTp sequence, a stPTp, which is expected to be very useful for applications in plant biotechnologies requiring precise micro-compartmental localization in plastids. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Graphical abstract

27 pages, 2063 KiB  
Article
Physiological and Proteomic Responses of Diploid and Tetraploid Black Locust (Robinia pseudoacacia L.) Subjected to Salt Stress
by Zhiming Wang, Mingyue Wang, Likun Liu and Fanjuan Meng
Int. J. Mol. Sci. 2013, 14(10), 20299-20325; https://doi.org/10.3390/ijms141020299 - 14 Oct 2013
Cited by 111 | Viewed by 9151
Abstract
Tetraploid black locust (Robinia pseudoacacia L.) is adaptable to salt stress. Here, we compared morphological, physiological, ultrastructural, and proteomic traits of leaves in tetraploid black locust and its diploid relatives under salt stress. The results showed that diploid (2×) plants suffered from [...] Read more.
Tetraploid black locust (Robinia pseudoacacia L.) is adaptable to salt stress. Here, we compared morphological, physiological, ultrastructural, and proteomic traits of leaves in tetraploid black locust and its diploid relatives under salt stress. The results showed that diploid (2×) plants suffered from greater negative effects than those of tetraploid (4×) plants. After salt treatment, plant growth was inhibited, photosynthesis was reduced, reactive oxygen species, malondialdehyde content, and relative electrolyte leakage increased, and defense-related enzyme activities decreased in 2× compared to those in 4×. In addition, salt stress resulted in distorted chloroplasts, swollen thylakoid membranes, accumulation of plastoglobules, and increased starch grains in 2× compared to those in 4×. However, 4× developed diverse responses under salt stress. A comparative proteomic analysis revealed that 41 and 37 proteins were differentially expressed in 2× and 4×, respectively. These proteins were mainly involved in photosynthesis, stress and defense, energy, metabolism, transcription/translation, and transportation. Distinct patterns of protein changes between 2× and 4× were analyzed. Collectively, our results suggest that the plants showed significantly different responses to salt stress based on ploidy level of the plant. The 4× possessed a better salt protection mechanism than that of 2×, suggesting salt tolerance in the polyploid plant. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Back to TopTop