Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (114)

Search Parameters:
Keywords = plant-derived functional ingredients

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 6349 KiB  
Article
Valorization of Waste from Lavender Distillation Through Optimized Encapsulation Processes
by Nikoletta Solomakou, Dimitrios Fotiou, Efthymia Tsachouridou and Athanasia M. Goula
Foods 2025, 14(15), 2684; https://doi.org/10.3390/foods14152684 - 30 Jul 2025
Viewed by 174
Abstract
This study evaluated and compared two encapsulation techniques—co-crystallization and ionic gelation—for stabilizing bioactive components derived from lavender distillation residues. Utilizing aqueous ethanol extraction (solid residues) and concentration (liquid residues), phenolic-rich extracts were incorporated into encapsulation matrices and processed under controlled conditions. Comprehensive characterization [...] Read more.
This study evaluated and compared two encapsulation techniques—co-crystallization and ionic gelation—for stabilizing bioactive components derived from lavender distillation residues. Utilizing aqueous ethanol extraction (solid residues) and concentration (liquid residues), phenolic-rich extracts were incorporated into encapsulation matrices and processed under controlled conditions. Comprehensive characterization included encapsulation efficiency (Ef), antioxidant activity (AA), moisture content, hygroscopicity, dissolution time, bulk density, and color parameters (L*, a*, b*). Co-crystallization outperformed ionic gelation across most criteria, achieving significantly higher Ef (>150%) and superior functional properties such as lower moisture content (<0.5%), negative hygroscopicity (−6%), and faster dissolution (<60 s). These features suggested enhanced physicochemical stability and suitability for applications requiring long shelf life and rapid solubility. In contrast, extruded beads exhibited high moisture levels (94.0–95.4%) but allowed better control over morphological features. The work introduced a mild-processing approach applied innovatively to the valorization of lavender distillation waste through structurally stable phenolic delivery systems. By systematically benchmarking two distinct encapsulation strategies under equivalent formulation conditions, this study advanced current understanding in bioactive microencapsulation and offers new tools for developing functional ingredients from aromatic plant by-products. Full article
Show Figures

Graphical abstract

17 pages, 3907 KiB  
Article
Safety Validation of Plant-Derived Materials for Skin Application
by Euihyun Kim, Hyo Hyun Seo, Dong Sun Shin, Jihyeok Song, Seon Kyu Yun, Jeong Hun Lee and Sang Hyun Moh
Cosmetics 2025, 12(4), 153; https://doi.org/10.3390/cosmetics12040153 - 21 Jul 2025
Viewed by 601
Abstract
The cosmetic industry faces a critical need to balance commercial innovation with scientific validation, especially regarding the safety and efficacy of raw materials. Plant-derived materials (PDMs) offer a promising alternative to animal-derived ingredients in cosmetics, particularly due to their safety and compliance with [...] Read more.
The cosmetic industry faces a critical need to balance commercial innovation with scientific validation, especially regarding the safety and efficacy of raw materials. Plant-derived materials (PDMs) offer a promising alternative to animal-derived ingredients in cosmetics, particularly due to their safety and compliance with vegan and ethical standards. Unlike compounds such as polydeoxyribonucleotide (PDRN), which is derived from the testis or seminal fluid of Salmonidae species and raises concerns regarding its origin, sustainability, and consumer acceptability, PDMs provide a cleaner, ethically preferable profile. In this study, we evaluated 50 PDM candidates using in vitro cell viability, wound healing, and immunocytochemistry assays, along with primary skin irritation tests in human participants. None of the samples showed harmful effects. Notably, sample Nos. 38 and 42 demonstrated significant wound-healing capacity and upregulated filaggrin expression without causing notable irritation in clinical testing. These findings support the biological activity and safety of specific PDMs as functional cosmetic ingredients. This study presents scientifically validated evidence for plant-based alternatives to animal-derived materials and offers a new milestone in the shift toward sustainable and ethical cosmetic development. By bridging the gap between consumer demand and scientific rigor, this study provides a robust platform for future innovations in vegan cosmetics. Full article
Show Figures

Graphical abstract

21 pages, 2852 KiB  
Article
Effect of Apple, Chestnut, and Acorn Flours on the Technological and Sensory Properties of Wheat Bread
by Fryderyk Sikora, Ireneusz Ochmian, Magdalena Sobolewska and Robert Iwański
Appl. Sci. 2025, 15(14), 8067; https://doi.org/10.3390/app15148067 - 20 Jul 2025
Viewed by 480
Abstract
The increasing interest in fibre-enriched and functional bakery products has led to the exploration of novel plant-based ingredients with both technological functionality and consumer acceptance. This study evaluates the effects of incorporating flours derived from apple (Malus domestica cv. Oberländer Himbeerapfel), sweet [...] Read more.
The increasing interest in fibre-enriched and functional bakery products has led to the exploration of novel plant-based ingredients with both technological functionality and consumer acceptance. This study evaluates the effects of incorporating flours derived from apple (Malus domestica cv. Oberländer Himbeerapfel), sweet chestnut (Castanea sativa), horse chestnut (Aesculus hippocastanum), and red, sessile, and pedunculate oak (Quercus rubra, Q. petraea, and Q. robur) into wheat bread at 5%, 10%, and 15% substitution levels. The impact on crumb structure, crust colour, textural parameters (hardness, adhesiveness, springiness), and sensory attributes was assessed. The inclusion of apple and sweet chestnut flours resulted in a softer crumb, lower adhesiveness, and higher sensory scores related to flavour, aroma, and crust appearance. In contrast, higher levels of oak- and horse-chestnut-derived flours increased crumb hardness and reduced overall acceptability due to bitterness or excessive density. Apple flour preserved crumb brightness and contributed to warm tones, while oak flours caused more intense crust darkening. These findings suggest that selected non-traditional flours, especially apple and sweet chestnut, can enhance the sensory and physical properties of wheat bread, supporting the development of fibre-rich, clean-label formulations aligned with consumer trends in sustainable and functional baking. Full article
Show Figures

Figure 1

18 pages, 1321 KiB  
Article
In Silico Proteomic Profiling and Bioactive Peptide Potential of Rapeseed Meal
by Katarzyna Garbacz, Jacek Wawrzykowski, Michał Czelej and Adam Waśko
Foods 2025, 14(14), 2451; https://doi.org/10.3390/foods14142451 - 12 Jul 2025
Viewed by 380
Abstract
Rapeseed meal, a byproduct of oil extraction, is increasingly recognised as a valuable source of plant protein and health-promoting peptides. This study aimed to identify key proteins in cold-pressed rapeseed meal and assess their potential to release bioactive peptides through in silico hydrolysis [...] Read more.
Rapeseed meal, a byproduct of oil extraction, is increasingly recognised as a valuable source of plant protein and health-promoting peptides. This study aimed to identify key proteins in cold-pressed rapeseed meal and assess their potential to release bioactive peptides through in silico hydrolysis using plant-derived proteases, namely papain, bromelain, and ficin. Proteomic profiling via two-dimensional electrophoresis and MALDI-TOF/TOF mass spectrometry revealed cruciferin as the dominant protein, along with other metabolic and defence-related proteins. In silico digestion of these sequences using the BIOPEP database generated thousands of peptide fragments, of which over 50% were predicted to exhibit bioactivities, including ACE and DPP-IV inhibition, as well as antioxidant, neuroprotective, and anticancer effects. Among the evaluated enzymes, bromelain exhibited the highest efficacy, yielding the greatest quantity and diversity of bioactive peptides. Notably, peptides with antihypertensive and antidiabetic properties were consistently identified across all of the protein and enzyme variants. Although certain rare functions, such as anticancer and antibacterial activities, were observed only in specific hydrolysates, their presence underscores the broader functional potential of peptides derived from rapeseed. These findings highlight the potential of rapeseed meal as a sustainable source of functional ingredients while emphasising the necessity for experimental validation to confirm the predicted bioactivities. Full article
Show Figures

Figure 1

17 pages, 1634 KiB  
Article
Fast Determination of Furocoumarins in Food Supplements Containing Heracleum sphondylium L. Using Capillary Electrophoresis
by Eszter Laczkó Zöld, Csenge Kis, Erzsébet Nagy-György, Erzsébet Domokos, Elek Ferencz and Zoltán-István Szabó
Foods 2025, 14(13), 2348; https://doi.org/10.3390/foods14132348 - 2 Jul 2025
Viewed by 352
Abstract
Hercaleum sphondylium L., commonly known as hogweed, is a plant species that has been employed as an ingredient in food supplements aimed at enhancing reproductive organ functionality, restoring hormonal equilibrium, and producing an aphrodisiac effect. Importantly, the European Food Safety Authority (EFSA) has [...] Read more.
Hercaleum sphondylium L., commonly known as hogweed, is a plant species that has been employed as an ingredient in food supplements aimed at enhancing reproductive organ functionality, restoring hormonal equilibrium, and producing an aphrodisiac effect. Importantly, the European Food Safety Authority (EFSA) has designated it as a “substance of possible concern for human health” when found in food and food supplements, as detailed in the EFSA compendium of botanicals. Given the potential health consequences associated with the ingestion of furocoumarin-containing plants, the primary objective of this study was to develop a straightforward and rapid method for screening various furocoumarins (bergapten, isobergapten, isopimpinellin, imperatorin, and xanthotoxin) that are found in hogweed plant products and hogweed-derived food supplements. A novel ultrafast micellar electrokinetic chromatographic method was established, achieving analysis durations of less than 3 min for the complete separation of the analytes. This method is additionally characterized by its simplicity, allowing for the analysis of samples following a rapid extraction procedure and dilution, without necessitating extra cleanup steps. The investigation of ten food supplements indicated that seven products contained no detectable levels of furocoumarins, one product presented levels close to the harmless threshold, and two products exhibited concentrations significantly exceeding this threshold. The results of this study illustrate the potential of micellar electrokinetic chromatography as a feasible alternative technique for the analysis of furocoumarins in herbal products and food supplements. Full article
Show Figures

Figure 1

35 pages, 426 KiB  
Review
Crataegus monogyna Jacq., Sorbus aria (L.) Crantz and Prunus spinosa L.: From Edible Fruits to Functional Ingredients: A Review
by Cristina Tamayo-Vives, María Úbeda, Patricia Morales, Patricia García-Herrera and María Cortes Sánchez-Mata
Foods 2025, 14(13), 2299; https://doi.org/10.3390/foods14132299 - 28 Jun 2025
Viewed by 620
Abstract
Plants have historically served as key sources of nutrition and popular medicine, which persists in current applications. The increasing demand for natural bioactive compounds has intensified the incorporation of plant-derived ingredients in both the food and pharmaceutical industries. This narrative review focuses on [...] Read more.
Plants have historically served as key sources of nutrition and popular medicine, which persists in current applications. The increasing demand for natural bioactive compounds has intensified the incorporation of plant-derived ingredients in both the food and pharmaceutical industries. This narrative review focuses on the fruits of Crataegus monogyna Jacq., Sorbus aria (L.) Crantz, and Prunus spinosa L. (Rosaceae), traditionally utilized in Europe and characterized by a high content of phenolic compounds, flavonoids, and anthocyanins. These metabolites are associated with antioxidant, anti-inflammatory, and cardioprotective properties. The available literature on their phytochemical profiles, biological activities, and integration into the Mediterranean Diet is critically assessed. Evidence supports their potential as functional food components. Despite encouraging in vitro results, the scarcity of in vivo and clinical studies limits the translational potential of these findings. Further research is warranted to validate their efficacy and safety in human health. This review underscores the value of integrating traditional ethnobotanical and ethnopharmacological knowledge with contemporary scientific research to explore novel applications of these underutilized wild fruits. Full article
27 pages, 2962 KiB  
Review
Celosia argentea: Towards a Sustainable Betalain Source—A Critical Review and Future Prospects
by Preekamol Klanrit, Sudarat Thanonkeo, Poramaporn Klanrit, Poramate Klanrit, Kanchanok Mueangnak and Pornthap Thanonkeo
Plants 2025, 14(13), 1940; https://doi.org/10.3390/plants14131940 - 24 Jun 2025
Viewed by 809
Abstract
Betalains are nitrogen-containing, water-soluble, and non-toxic natural pigments found in various plant species. Among these, Celosia argentea (Amaranthaceae) has garnered attention as a significant source, accumulating substantial quantities of both red–purple betacyanins and yellow–orange betaxanthins. Impressively, betalain concentrations in C. argentea inflorescences can [...] Read more.
Betalains are nitrogen-containing, water-soluble, and non-toxic natural pigments found in various plant species. Among these, Celosia argentea (Amaranthaceae) has garnered attention as a significant source, accumulating substantial quantities of both red–purple betacyanins and yellow–orange betaxanthins. Impressively, betalain concentrations in C. argentea inflorescences can reach up to 14.91 mg/g dry weight (DW), a level comparable to that reported in red beetroot. Beyond harvesting from inflorescences, betalains can also be produced using cell culture systems, which can yield even higher amounts, up to 42.08 mg/g DW. Beyond their role as vibrant natural colorants, betalains exhibit impressive health-promoting properties, most notably potent antioxidant activities. For instance, C. argentea inflorescence extracts demonstrate approximately 84.07% 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 88.70% 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging. Extracts derived from cell cultures show even higher scavenging capacities, reaching up to 99.28% for ABTS and 99.63% for DPPH, rivaling the antioxidant standard (ascorbic acid). Further research indicates additional potential benefits, including anti-inflammatory, antimicrobial, anticancer, antidiabetic, and hepatoprotective properties. This diverse bioactivity underpins their value across various industries. Betalains serve as natural colorants and functional ingredients in food and beverages, offer sustainable alternatives for textile dyeing, and hold therapeutic promise in cosmetics and pharmaceuticals. This review critically examines existing research on betalain production in C. argentea. Recognizing that research specific to C. argentea is less extensive compared with that on species such as Beta vulgaris and Hylocereus polyrhizus, this review analyzes its biosynthetic pathways, diverse biological properties, and wide-ranging applications. This is achieved by integrating available C. argentea-specific data with relevant insights drawn from these more broadly studied betalain sources. Furthermore, the review discusses perspectives on future research directions aimed at optimizing yield and exploring the full potential of betalains, specifically within C. argentea. Full article
(This article belongs to the Special Issue Bioactive Compounds in Plants—2nd Edition)
Show Figures

Figure 1

15 pages, 3167 KiB  
Article
Assessment of Antimicrobial Activity and Safety of Pediococcus pentosaceus Isolated from Ginseng as a Functional Cosmetic Ingredient
by Xiangji Jin, Qiwen Zheng, Trang Thi Minh Nguyen, Gyeong-Seon Yi, Su-Jin Yang and Tae-Hoo Yi
Microorganisms 2025, 13(5), 1093; https://doi.org/10.3390/microorganisms13051093 - 8 May 2025
Viewed by 657
Abstract
Lactic acid bacteria (LAB) are gaining increasing attention as functional ingredients in the cosmetic industry, particularly those derived from natural plant sources. Although various LAB strains have been widely applied in cosmetic formulations, studies investigating the effects of naturally derived LAB on the [...] Read more.
Lactic acid bacteria (LAB) are gaining increasing attention as functional ingredients in the cosmetic industry, particularly those derived from natural plant sources. Although various LAB strains have been widely applied in cosmetic formulations, studies investigating the effects of naturally derived LAB on the skin remain limited. In this study, we isolated an LAB strain from ginseng and evaluated its potential as a functional cosmetic ingredient. The antimicrobial activity of the strain was assessed against skin-associated pathogens Staphylococcus aureus and Staphylococcus epidermidis, while cytotoxicity was evaluated using HaCaT and Caco-2 cells. Considering the limitations of vertebrate animal testing, infection and survival assays were conducted using Galleria mellonella larvae as an alternative in vivo model. The ginseng-derived strain exhibited 99.93% similarity to Pediococcus pentosaceus and was designated P. pentosaceus THG-219. It exhibited an MIC of 0.625 mg/mL and 1.25 mg/mL against S. aureus KCTC 3881 and S. epidermidis KCTC 1917, respectively. Its antimicrobial activity was further enhanced following ethyl acetate fractionation. P. pentosaceus THG-219 showed no toxicity in G. mellonella larvae and exerted antibacterial effects in this model. No cytotoxicity was observed in HaCaT and Caco-2 cells. Furthermore, P. pentosaceus THG-219 promoted host cell adhesion while inhibiting pathogen adhesion. It also exhibited excellent acid, bile, and heat tolerance, suggesting strong survivability under harsh conditions. Collectively, these results indicate that P. pentosaceus THG-219, isolated from ginseng, is a promising, safe, and stable candidate for development as a functional cosmetic ingredient. Full article
(This article belongs to the Special Issue Microorganisms in Functional Foods)
Show Figures

Figure 1

23 pages, 3997 KiB  
Review
Anticancer Mechanisms of Ginsenoside Compound K: A Review
by Yu-Po Lee, Hui-Ting Chan, Tzu-Hsuan Li, Lichieh (Julie) Chu, Sheau-Long Lee, Yu-Quan Chang and Robert YL Wang
Diseases 2025, 13(5), 143; https://doi.org/10.3390/diseases13050143 - 5 May 2025
Viewed by 1093
Abstract
Cancer, also known as malignant tumors, is formed due to abnormal mutations and the proliferation of human cells. Cancer cells not only demonstrate accelerated proliferation but also show robust invasive and metastatic potential, disseminating from a primary affected region of the body to [...] Read more.
Cancer, also known as malignant tumors, is formed due to abnormal mutations and the proliferation of human cells. Cancer cells not only demonstrate accelerated proliferation but also show robust invasive and metastatic potential, disseminating from a primary affected region of the body to multiple areas and potentially culminating in organ dysfunction or failure, thereby jeopardizing the individual’s life. The rapid growth of the biopharmaceutical market has given rise to numerous novel medicines, thereby precipitating a paradigm shift in contemporary drug development methodologies. This modification is focused on identifying methodologies that can effectively target cancerous cells while minimizing damage to normal cells. There is an increasing societal movement that supports the utilization of natural ingredients derived from plants. In recent years, traditional herbal medicine has experienced a surge in popularity within the global cancer market. In comparison with the use of more toxic chemotherapy methods, there has been an increasing focus on advanced therapies that exhibit reduced side effects. Ginsenoside compound K (CK) is derived from the natural components in ginseng through biotransformation. The utilization of CK in cancer research is a practice engaged in by numerous scientists. The underlying rationale is that CK exhibits a multitude of effects within the realm of cancer research, including but not limited to the mitigation of inflammation, the suppression of cancerous cell proliferation, and the safeguarding of cardiovascular, hepatic, and renal functions. This review methodically identifies and organizes CK-related journals according to the following key points of cancer treatment: the effects on cancer cells themselves, angiogenesis inhibition, modulation of immune response to identify cancer cells, and inflammation regulation. The intricate interplay between ginsenoside CK and cells is elucidated through a graphical representation. The present review focuses on the results of CK in in vitro tests. It is our hope that the present article will aid future studies on the results of CK in vivo tests, clarify the correlation between cellular mechanisms in vivo and in vitro tests, and assist in the development of drugs. Full article
Show Figures

Figure 1

21 pages, 2688 KiB  
Article
Production of Multifunctional Hydrolysates from the Lupinus mutabilis Protein Using a Micrococcus sp. PC7 Protease
by Keyla Sofía Llontop-Bernabé, Arturo Intiquilla, Carlos Ramirez-Veliz, Marco Santos, Karim Jiménez-Aliaga, Amparo Iris Zavaleta, Samuel Paterson and Blanca Hernández-Ledesma
BioTech 2025, 14(2), 32; https://doi.org/10.3390/biotech14020032 - 27 Apr 2025
Cited by 1 | Viewed by 1131
Abstract
The growing demand for functional foods has driven the search for bioactive compounds derived from plant proteins. Lupinus mutabilis “Tarwi”, a legume native to the Peruvian Andes, stands out for its high protein content and potential as a source of bioactive peptides (BPs). [...] Read more.
The growing demand for functional foods has driven the search for bioactive compounds derived from plant proteins. Lupinus mutabilis “Tarwi”, a legume native to the Peruvian Andes, stands out for its high protein content and potential as a source of bioactive peptides (BPs). In this study, the functionality of the proteins contained in the albumin fraction (AF) isolated by tangential ultrafiltration (TFF) was investigated by using the OmicsBox software. The identified proteins were functionally classified into three groups: cellular component (35.57%), molecular function (33.45%), and biological process (30.97%). The isolated AF was hydrolysed with the native protease PC7 (HAP), optimizing the E/S ratio and time parameters. Additionally, sequential hydrolysis of the PC7 protease and alcalase (HAPA) was performed. In vitro multifunctionality assays, HAP and HAPA demonstrated the ability to scavenge radicals (ABTS and ORAC) and inhibit angiotensin-converting enzyme (ACE)-I and dipeptidyl peptidase IV (DPP-IV). The findings of this study highlight the potential of L. mutabilis albumin hydrolysate as a multifunctional ingredient for functional foods aimed at managing chronic conditions associated with oxidative stress, hypertension, and/or metabolic disorders. Full article
Show Figures

Figure 1

20 pages, 7045 KiB  
Article
Iris germanica L. Rhizome-Derived Exosomes Ameliorated Dihydrotestosterone-Damaged Human Follicle Dermal Papilla Cells Through the Activation of Wnt/β-Catenin Pathway
by Mujun Kim, Jung Woo, Jinsick Kim, Minah Choi, Hee Jung Shin, Youngseok Kim, Junoh Kim and Dong Wook Shin
Int. J. Mol. Sci. 2025, 26(9), 4070; https://doi.org/10.3390/ijms26094070 - 25 Apr 2025
Viewed by 835
Abstract
Hair loss is often associated with oxidative stress and mitochondrial dysfunction in human follicle dermal papilla cells (HFDPCs), resulting in impaired cellular function and follicle degeneration. Thus, many studies have been conducted on natural plants aimed at inhibiting hair loss. This study investigated [...] Read more.
Hair loss is often associated with oxidative stress and mitochondrial dysfunction in human follicle dermal papilla cells (HFDPCs), resulting in impaired cellular function and follicle degeneration. Thus, many studies have been conducted on natural plants aimed at inhibiting hair loss. This study investigated the therapeutic potential of exosomes derived from the rhizomes of Iris germanica L. (Iris-exosomes) in HFDPCs damaged by dihydrotestosterone (DHT). Iris-exosomes significantly reduced reactive oxygen species (ROS) levels, restoring mitochondrial membrane potential and ATP production, thereby mitigating oxidative stress and improving mitochondrial function. These effects occurred alongside enhanced cellular processes critical for hair follicle regeneration, including increased cell migration, alkaline phosphatase (ALP) activity, and three-dimensional (3D) spheroid formation, which replicates the follicle-like microenvironment and promotes inductive potential. Furthermore, Iris-exosomes stimulated the Wnt/β-catenin signaling pathway by enhancing glycogen synthase kinase-3β (GSK-3β), AKT, and extracellular signal-regulated kinase (ERK), leading to β-catenin stabilization and nuclear translocation, thereby supporting the expression of genes essential for hair growth. Taken together, these findings suggest that Iris-exosomes can be promising ingredients for alleviating hair loss. Full article
(This article belongs to the Special Issue Molecular Insights into Hair Regeneration)
Show Figures

Graphical abstract

17 pages, 1053 KiB  
Review
Probiotics and Prebiotics in the Aspect of Health Benefits and the Development of Novel Plant-Based Functional Food
by Barbara Sionek and Aleksandra Szydłowska
Appl. Sci. 2025, 15(6), 3137; https://doi.org/10.3390/app15063137 - 13 Mar 2025
Cited by 1 | Viewed by 3310
Abstract
In the food market, significant changes have been observed in recent years, and what is more, they are associated with an increased “nutritional awareness” among consumers. The role of food producers is no longer limited to presenting consumers with a rich range of [...] Read more.
In the food market, significant changes have been observed in recent years, and what is more, they are associated with an increased “nutritional awareness” among consumers. The role of food producers is no longer limited to presenting consumers with a rich range of products; their composition is also not without significance. There is an increase in interest in the so-called “functional food”, which, in addition to traditional nutrients, also provides ingredients with specific properties that have a beneficial effect on human health. One of the types of such food is the so-called “probiotic food”. Probiotics play a key role in the design of functional foods of plant origin, as they can contribute to improving the health of the digestive system, strengthen immunity, and prophylactically act in the case of many civilization diseases. In the context of plant-based foods, particular attention is paid to the development of products that support the balance of the intestinal microbiota while providing the health benefits typical of plant-based products such as fiber, vitamins, and antioxidants. It should also be mentioned that the functional food segment in question shows not only a high trend in development in terms of the diversity of the products offered but also fits into the trend of environmentally friendly production in line with sustainable development trends. This article aimed to present the possibility of using probiotics and prebiotics in the functional innovative development of plant products. The impact of the fermentation process on the health value of the plant-derived food matrix will be discussed, as well as the technological challenges associated with this issue. This article analyzes the potential health benefits resulting from the consumption of fermented plant products and the hygiene aspects of the production process with examples of innovative probiotic plant products. It should be recognized that plant food is a promising option to deliver probiotics, paraprobiotics, and prebiotics, providing health benefits to consumers. Full article
(This article belongs to the Special Issue New Insights into Food Ingredients for Human Health Promotion)
Show Figures

Figure 1

16 pages, 2033 KiB  
Article
Exploring Antioxidant Properties of Standardized Extracts from Medicinal Plants Approved by the Thai FDA for Dietary Supplementation
by Surasak Limsuwan, Nurulhusna Awaeloh, Pinanong Na-Phatthalung, Thammarat Kaewmanee and Sasitorn Chusri
Nutrients 2025, 17(5), 898; https://doi.org/10.3390/nu17050898 - 4 Mar 2025
Cited by 2 | Viewed by 1762
Abstract
Background/Objectives: There is a growing interest in plant-derived antioxidants as functional food ingredients, given their potential to address oxidative stress-related diseases, notably neurodegenerative disorders. This study aims to investigate the antioxidant properties of medicinal plants that have been approved by the Thai FDA [...] Read more.
Background/Objectives: There is a growing interest in plant-derived antioxidants as functional food ingredients, given their potential to address oxidative stress-related diseases, notably neurodegenerative disorders. This study aims to investigate the antioxidant properties of medicinal plants that have been approved by the Thai FDA for dietary supplementation, with the goal of further utilizing them as food-functional ingredients to prevent neurodegenerative conditions. Methods: A systematic review-based methodology was employed on a list of 211 medicinal plants, and 21 medicinal plants were chosen based on their documented antioxidant activity and acetylcholinesterase (AChE) inhibitory capacity. The 21 commercially available standardized extracts were subjected to evaluation for their phenolic and flavonoid content, as well as their antioxidant activities utilizing metal-chelating activity, DPPH, ABTS free radical scavenging, ferric-reducing antioxidant power (FRAP), and superoxide anion scavenging techniques. Results: Among the 21, six extracts—Bacopa monnieri, Camellia sinensis, Coffea arabica, Curcuma longa, Tagetes erecta, and Terminalia chebula—emerged as the most promising. These extracts exhibited elevated levels of phenolic (up to 1378.19 mg gallic acid equivalents per gram) and flavonoids, with Coffea arabica and Curcuma longa showing the strongest antioxidant and free radical scavenging activities, indicating their potential for use in functional foods aimed at delaying neurodegenerative diseases. Conclusions: Due to their high levels of phenolic and flavonoid compounds, along with strong metal-chelating abilities and significant free radical scavenging activities, these standardized extracts show potential for functional food applications that may help delay the onset of neurodegenerative diseases. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Graphical abstract

67 pages, 2138 KiB  
Review
Antioxidants to Defend Healthy and Youthful Skin—Current Trends and Future Directions in Cosmetology
by Anna Budzianowska, Katarzyna Banaś, Jaromir Budzianowski and Małgorzata Kikowska
Appl. Sci. 2025, 15(5), 2571; https://doi.org/10.3390/app15052571 - 27 Feb 2025
Cited by 6 | Viewed by 4775
Abstract
Antioxidants are indispensable in protecting the skin from oxidative stress caused by environmental factors such as ultraviolet (UV) radiation, pollution, and lifestyle-related influences. This review examines the essential role of antioxidants in modern cosmetology, highlighting their dual functionality as protective agents and active [...] Read more.
Antioxidants are indispensable in protecting the skin from oxidative stress caused by environmental factors such as ultraviolet (UV) radiation, pollution, and lifestyle-related influences. This review examines the essential role of antioxidants in modern cosmetology, highlighting their dual functionality as protective agents and active components in skincare formulations. Oxidative stress, primarily driven by an imbalance between reactive oxygen species (ROS) production and the skin’s defense mechanisms, accelerates aging processes, damages cellular structures, and compromises skin integrity. Antioxidants, whether natural or synthetic, act by neutralizing ROS, reducing inflammation, and promoting cellular repair, effectively mitigating these harmful effects. This comprehensive analysis synthesizes findings from 280 studies accessed via key databases, including PubMed, Scopus, and ScienceDirect. It investigates the biochemical mechanisms of antioxidant activity, emphasizing compounds such as vitamins (C, E, A), carotenoids, polyphenols, peptides, and minerals, alongside bioactive extracts derived from algae, fungi, lichens, and plants. Carotenoids, including ꞵ-carotene, lutein, lycopene, and astaxanthin, demonstrate potent antioxidant activity, making them crucial for photoprotection and anti-aging. Phenolic compounds, such as ferulic acid, resveratrol, hesperidin, and xanthohumol, play a significant role in neutralizing oxidative stress and improving skin health. This review also highlights bioactives from algae, fungi, and lichens. Algae, particularly microalgae like Haematococcus pluvialis, known for astaxanthin production, are highlighted for their extraordinary photoprotective and anti-aging properties. Brown algae (Fucus vesiculosus) and red algae (Porphyra) provide polysaccharides and bioactive molecules that enhance hydration and barrier function. Fungi contribute a wealth of antioxidant and anti-inflammatory compounds, including polysaccharides, ꞵ-glucans, and enzymes, which support cellular repair and protect against oxidative damage. Lichens, through unique phenolic metabolites, offer potent free-radical-scavenging properties and serve as effective ingredients in formulations targeting environmental stress. Plant-derived antioxidants offer a diverse range of benefits. Plant-derived antioxidants, such as flavonoids, phenolic acids, and carotenoids, further amplify skin resilience, hydration, and repair mechanisms, aligning with the growing demand for nature-inspired solutions in cosmetics. The integration of these diverse natural sources into cosmetic formulations reflects the industry’s commitment to sustainability, innovation, and efficacy. By harnessing the synergistic potential of bioactives from algae, fungi, lichens, and plants, modern cosmetology is advancing toward multifunctional, health-conscious, and eco-friendly products. Future research directions include optimizing delivery systems for these bioactives, enhancing their stability and bioavailability, and expanding their applications to meet evolving dermatological challenges. Full article
(This article belongs to the Special Issue Cosmetics Ingredients Research - 2nd Edition)
Show Figures

Figure 1

25 pages, 3116 KiB  
Article
Physicochemical and Sensory Evaluation of Sustainable Plant-Based Homopolymers as an Alternative to Traditional Emollients in Topical Emulsions
by Talita Ganem Meneguello, Nathalia Kopke Palma, Yasmin Rosa Santos, Ariel Figueira Carvalho, Ariane Dalan da Silva Ladeira, Fabiana Perrechil Bonsanto, Newton Andreo-Filho, Patricia Santos Lopes, Heather Ann Elizabeth Benson and Vania Rodrigues Leite-Silva
Pharmaceutics 2025, 17(2), 265; https://doi.org/10.3390/pharmaceutics17020265 - 17 Feb 2025
Cited by 2 | Viewed by 770
Abstract
Objectives: This study evaluated the potential of sustainably sourced, plant-based homopolymers derived from citronellol as an alternative to the traditional emollients used in pharmaceutical, cosmetic, and personal care products. With increasing emphasis on environmentally friendly ingredients and manufacturing processes, this study assessed [...] Read more.
Objectives: This study evaluated the potential of sustainably sourced, plant-based homopolymers derived from citronellol as an alternative to the traditional emollients used in pharmaceutical, cosmetic, and personal care products. With increasing emphasis on environmentally friendly ingredients and manufacturing processes, this study assessed the efficacy of these homopolymers in semi-solid and emulsion-based formulations. Methods: The analyses focused on physicochemical, sensory, biophysical, and neurosensory characteristics. Results: The results demonstrated that emulsions containing sustainable homopolymers maintained viscoelastic stability, preserving rheological properties over time under varying conditions. These formulations showed comparable structural and functional stability to those with traditional emollients while offering skin hydration, moisture retention, and elasticity, with reduced transepidermal water loss. Sensory evaluations highlighted positive user acceptance, with participants favoring the skin feel and in-use qualities of these emulsions over synthetic alternatives. Neurosensory analyses confirmed the strong visual appeal of the product packaging, capturing user attention effectively. Conclusions: These findings underline the capability of plant-based homopolymers to replace traditional emollients while providing significant consumer appeal and sustainability benefits. This study establishes their potential as viable components in the development of more eco-friendly topical formulations for the pharmaceutical, cosmetic, and personal care industries. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

Back to TopTop