Fast Determination of Furocoumarins in Food Supplements Containing Heracleum sphondylium L. Using Capillary Electrophoresis
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals and Food Supplements
2.3. Preparation of Analyte Solutions and Herbal Extracts
2.3.1. Furocoumarin Analyte Solutions
2.3.2. Extraction with EtOH
2.4. Sample Preparation from Food Supplements
2.5. Capillary Electrophoretic Conditions
2.6. Method Validation Parameters
3. Results
3.1. Method Development for the Determination of Furocoumarins
3.2. Method Validation
3.3. Method Application
3.3.1. Determination of Furocoumarins in Herbal Extracts
3.3.2. Furocoumarin Determination in Food Supplements
4. Discussion
4.1. Development of an Analytical Method for the Determination of Furocoumarins
4.2. Determination of Furocoumarins
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACN | Acetonitrile |
BGE | Background electrolyte |
CD | Cyclodextrin |
CZE | Capillary zone electrophoresis |
CH2Cl2 | Dichloromethane |
EFSA | European Food Safety Authority |
EKC | Electrokinetic chromatography |
EtOH | Ethanol |
EOF | Electro-osmotic flow |
HPLC-UV | High-performance liquid chromatography with ultraviolet detection |
MEEKC | Microemulsion electrokinetic chromatography |
MeOH | Methanol |
MEKC | Micellar electrokinetic chromatography |
LC-MS | Liquid chromatography–mass spectrometry |
LOD | Limit of detection |
LOQ | Limit of quantification |
RSD | Relative standard deviation |
S-β-CD | Sulfated-β-cyclodextrin |
SBE-β-CD | Sulfobutylated-β-cyclodextrin |
SDC | Sodium deoxycholate |
SDS | Sodium dodecyl sulfate |
tbsp | Tablespoon |
References
- Arigò, A.; Rigano, F.; Russo, M.; Trovato, E.; Dugo, P.; Mondello, L. Dietary Intake of Coumarins and Furocoumarins through Citrus Beverages: A Detailed Estimation by a HPLC-MS/MS Method Combined with the Linear Retention Index System. Foods 2021, 10, 1533. [Google Scholar] [CrossRef] [PubMed]
- Melough, M.M.; Cho, E.; Chun, O.K. Furocoumarins: A Review of Biochemical Activities, Dietary Sources and Intake, and Potential Health Risks. Food Chem. Toxicol. 2018, 113, 99–107. [Google Scholar] [CrossRef]
- Hung, W.L.; Suh, J.H.; Wang, Y. Chemistry and Health Effects of Furocoumarins in Grapefruit. J. Food Drug Anal. 2017, 25, 71–83. [Google Scholar] [CrossRef]
- Alehaideb, Z.; Matou-Nasri, S. Determination of Benchmark Doses for Linear Furocoumarin Consumption Associated with Inhibition of Cytochrome P450 1A2 Isoenzyme Activity in Healthy Human Adults. Toxicol. Rep. 2021, 8, 1437–1444. [Google Scholar] [CrossRef] [PubMed]
- Alehaideb, Z. Prediction of Herb-Drug Interactions Involving Consumption of Furocoumarin-Mixtures and Cytochrome P450 1A2-Mediated Caffeine Metabolism Inhibition in Humans. Saudi Pharm. J. 2023, 31, 444–452. [Google Scholar] [CrossRef]
- Bickers, D.R.; Mukhtar, H.; Molica, S.J.; Pathak, M.A. The Effect of Psoralens on Hepatic and Cutaneous Drug Metabolizing Enzymes and Cytochrome P-450. J. Investig. Dermatol. 1982, 79, 201–205. [Google Scholar] [CrossRef]
- Berkley, S.F.; Hightower, A.W.; Beier, R.C.; Fleming, D.W.; Brokopp, C.D.; Ivie, G.W.; Broome, C.V. Dermatitis in Grocery Workers Associated with High Natural Concentrations of Furocoumarins in Celery. Ann. Intern. Med. 1986, 105, 351–355. [Google Scholar] [CrossRef]
- Melough, M.M.; Chun, O.K. Dietary Furocoumarins and Skin Cancer: A Review of Current Biological Evidence. Food Chem. Toxicol. 2018, 122, 163–171. [Google Scholar] [CrossRef]
- Hoang, M.; Qureshi, A.; Oancea, E.; Cho, E. Furocoumarins Potentiate UVA-Induced DNA Damage in Skin Melanocytes. Biochem. Biophys. Res. Commun. 2023, 684, 149066. [Google Scholar] [CrossRef]
- Sun, W.Y.; Rice, M.S.; Park, M.K.; Chun, O.K.; Melough, M.M.; Nan, H.M.; Willett, W.C.; Li, W.Q.; Qureshi, A.A.; Cho, E.Y. Intake of Furocoumarins and Risk of Skin Cancer in 2 Prospective US Cohort Studies. J. Nutr. 2020, 150, 1535–1544. [Google Scholar] [CrossRef] [PubMed]
- Cieśla, Ł.; Bogucka-Kocka, A.; Hajnos, M.; Petruczynik, A.; Waksmundzka-Hajnos, M. Two-Dimensional Thin-Layer Chromatography with Adsorbent Gradient as a Method of Chromatographic Fingerprinting of Furocoumarins for Distinguishing Selected Varieties and Forms of Heracleum spp. J. Chromatogr. A 2008, 1207, 160–168. [Google Scholar] [CrossRef]
- WFO The World Flora Online. Available online: https://worldfloraonline.org (accessed on 2 March 2025).
- Abbet, C.; Mayor, R.; Roguet, D.; Spichiger, R.; Hamburger, M.; Potterat, O. Ethnobotanical Survey on Wild Alpine Food Plants in Lower and Central Valais (Switzerland). J. Ethnopharmacol. 2014, 151, 624–634. [Google Scholar] [CrossRef] [PubMed]
- Senejoux, F.; Demougeot, C.; Cuciureanu, M.; Miron, A.; Cuciureanu, R.; Berthelot, A.; Girard-Thernier, C. Vasorelaxant Effects and Mechanisms of Action of Heracleum sphondylium L. (Apiaceae) in Rat Thoracic Aorta. J. Ethnopharmacol. 2013, 147, 536–539. [Google Scholar] [CrossRef]
- Benedec, D.; Hanganu, D.; Filip, L.; Oniga, I.; Tiperciuc. Brindusa; Olah, N.-K.; Gheldiu, A.-M.; Raita, O.; Vlase, L. Chemical, Antioxidant and Antibacterial Studies of Romanian Heracleum Sphondylium. Farmacia 2017, 65, 252–256. [Google Scholar]
- Fierascu, R.C.; Padure, I.M.; Avramescu, S.M.; Ungureanu, C.; Bunghez, R.I.; Ortan, A.; Dinu-Pirvu, C.; Fierascu, I.; Soare, L.C. Preliminary Assessment of the Antioxidant, Antifungal and Germination Inhibitory Potential of Heracleum sphondylium L. (Apiaceae). Farmacia 2016, 64, 403–408. [Google Scholar]
- Dorel Plant. Available online: https://dorelplant.ro/product/tinctura-de-branca-ursului/ (accessed on 22 January 2025).
- Dacia Plant. Available online: https://www.daciaplant.ro/branca-ursului-tinctura.html (accessed on 22 January 2025).
- Herbagetica. Available online: https://herbagetica.ro/branca-marelui-urs233.html?___SID=S (accessed on 22 January 2025).
- Rotta Natura. Available online: https://www.rottanatura.com/cauta/branca%20ursului (accessed on 22 January 2025).
- Aroma Plant. Available online: https://aromaplantbonchis.ro/product/tinctura-de-branca-ursului/ (accessed on 22 January 2025).
- Pro Natura. Available online: https://pro-natura.ro/shop/branca-ursului-x-60-capsule/ (accessed on 22 January 2025).
- Cosmo Pharm. Available online: https://www.cosmopharm.eu/produs/branca-ursului-4000/ (accessed on 22 January 2025).
- Compendium of Botanicals Reported to Contain Naturally Occuring Substances of Possible Concern for Human Health When Used in Food and Food Supplements. EFSA J. 2012, 10, 2663. [CrossRef]
- De Mână. Available online: https://de-mana.com/products/hogweed-fenugreek-tincture-500ml (accessed on 7 February 2025).
- Rotta Natura Online Store. Available online: https://www.rottanatura.com/en/hogweed-extract?srsltid=AfmBOoqL7NBAji8dZedywQbEclNV8NxrF9Rka0K1EzIGTzmWBfWGerDR (accessed on 7 February 2025).
- EMEA/HMPC. Reflection Paper on Risk Associated with the Use of Herbals Containing Angelica archangelica.Doc. 2006. Available online: https://www.ema.europa.eu/en/risks-associated-furocoumarins-contained-preparations-angelica-archangelica-l-scientific-guideline (accessed on 22 January 2025).
- Tirillini, B.; Ricci, A. Furocoumarin Production by Callus Tissues of Heracleum sphondylium L. Phytother. Res. 1998, 12, S25–S26. [Google Scholar] [CrossRef]
- Ušjak, L.J.; Drobac, M.M.; Niketić, M.S.; Petrović, S.D. Chemosystematic Significance of Essential Oil Constituents and Furocoumarins of Underground Parts and Fruits of Nine Heracleum L. Taxa from Southeastern Europe. Chem. Biodivers. 2018, 15, e1800412. [Google Scholar] [CrossRef]
- Kurtul, E.; Küpeli Akkol, E.; Karpuz Ağören, B.; Yaylacı, B.; Bahadır Acıkara, Ö.; Sobarzo-Sánchez, E. Phytochemical Investigation and Assessment of the Anti-Inflammatory Activity of Four Heracleum Taxa Growing in Turkey. Front. Pharmacol. 2024, 15, 1494786. [Google Scholar] [CrossRef]
- Zhou, D.D.; Zhang, Q.; Li, S.P.; Yang, F.Q. Capillary Electrophoresis in Phytochemical Analysis (2014–2017). Sep. Sci. PLUS 2018, 1, 676–701. [Google Scholar] [CrossRef]
- Park, J.; Cho, Y.S.; Seo, D.W.; Choi, J.Y. An Update on the Sample Preparation and Analytical Methods for Synthetic Food Colorants in Food Products. Food Chem. 2024, 459, 140333. [Google Scholar] [CrossRef]
- Ntrallou, K.; Gika, H.; Tsochatzis, E. Analytical and Sample Preparation Techniques for the Determination of Food Colorants in Food Matrices. Foods 2020, 9, 58. [Google Scholar] [CrossRef]
- Muschietti, L.; Redko, F.; Ulloa, J. Adulterants in Selected Dietary Supplements and Their Detection Methods. Drug Test. Anal. 2020, 12, 861–886. [Google Scholar] [CrossRef] [PubMed]
- Blebea, N.M.; Hancu, G.; Vlad, R.A.; Pricopie, A. Applications of Capillary Electrophoresis for the Determination of Cannabinoids in Different Matrices. Molecules 2023, 28, 638. [Google Scholar] [CrossRef]
- Custodio-Mendoza, J.A.; Pokorski, P.; Aktas, H.; Napiórkowska, A.; Kurek, M.A. Advances in Chromatographic Analysis of Phenolic Phytochemicals in Foods: Bridging Gaps and Exploring New Horizons. Foods 2024, 13, 2268. [Google Scholar] [CrossRef] [PubMed]
- Przybylska, A.; Gackowski, M.; Koba, M. Application of Capillary Electrophoresis to the Analysis of Bioactive Compounds in Herbal Raw Materials. Molecules 2021, 26, 2135. [Google Scholar] [CrossRef]
- Gackowski, M.; Przybylska, A.; Kruszewski, S.; Koba, M.; Madra-Gackowska, K.; Bogacz, A. Recent Applications of Capillary Electrophoresis in the Determination of Active Compounds in Medicinal Plants and Pharmaceutical Formulations. Molecules 2021, 26, 4141. [Google Scholar] [CrossRef]
- Lee Simas Porto, B.; Valdés, A.; Cifuentes, A.; Alvarez-Rivera, G. Capillary Electrophoresis in Phytochemical Analysis: Advances and Applications in the Period 2018–2021. TrAC Trends Anal. Chem. 2023, 161, 116974. [Google Scholar] [CrossRef]
- Wu, M.H.; Zhao, L.H.; Song, Y.; Zhang, W.; Xiang, B.R.; Mei, L.H. Determination of Five Coumarins in Cnidii Fructus by Micellar Electrokinetic Capillary Chromatography. Planta Medica 2005, 71, 1152–1156. [Google Scholar] [CrossRef]
- Dresler, S.; Bogucka-Kocka, A.; Kováčik, J.; Kubrak, T.; Strzemski, M.; Wójciak-Kosior, M.; Rysiak, A.; Sowa, I. Separation and Determination of Coumarins Including Furocoumarins Using Micellar Electrokinetic Capillary Chromatography. Talanta 2018, 187, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hou, M.; Yu, Y.; Xie, W.; Chang, R.; Zhang, G.; Zhang, H.; Yu, H.; Chen, A. Simultaneous separation and determination of six furanocoumarins in Radix Angelicae dahuricae by CZE with dual CDs system. Anal. Biochem. 2022, 655, 114869. [Google Scholar] [CrossRef]
- EMA Committee for Medicinal Products for Human Use. ICH Q2(R2) Guideline on Validation of Analytical Procedures. 2023. Available online: www.ema.europa.eu/contact (accessed on 22-01-2025).
- Cafeo, G.; Irrera, E.; Russo, M.; Dugo, P. Extraction and Chromatographic Approaches for Coumarin, Furocoumarin, and Polymethoxyflavone Characterization in Foods. Foods 2024, 13, 2517. [Google Scholar] [CrossRef] [PubMed]
- Kerekes, D.; Csorba, A.; Gosztola, B.; Németh-Zámbori, É.; Kiss, T.; Csupor, D.o. Furocoumarin Content of Fennel—Below the Safety Threshold. Molecules 2019, 24, 2844. [Google Scholar] [CrossRef]
- Dussy, F.; Engeli, B.; Ryser, N.; McCombie, G. Determination of 23 Furocoumarins in 82 Food Samples and Implications for Risk Assessment. JSFA Rep. 2025, 5, 50–61. [Google Scholar] [CrossRef]
- Melough, M.M.; Lee, S.G.; Cho, E.; Kim, K.; Provatas, A.A.; Perkins, C.; Park, M.K.; Qureshi, A.; Chun, O.K. Identification and Quantitation of Furocoumarins in Popularly Consumed Foods in the U.S. Using QuEChERS Extraction Coupled with UPLC-MS/MS Analysis. J. Agric. Food Chem. 2017, 65, 5049–5055. [Google Scholar] [CrossRef] [PubMed]
- Pira, E.; Romano, C.; Sulotto, F.; Pavan, I.; Monaco, E. Heracleum Mantegazzianum Growth Phases and Furocoumarin Content. Contact Dermat. 1989, 21, 300–303. [Google Scholar] [CrossRef]
- Erdelmeier, C.A.J.; Meier, B. Reversed-Phase High-Performance Liquid Chromatographic Separartion of Closely Related Furocoumarins. J. Chromatogr. 1985, 346, 456–460. [Google Scholar] [CrossRef]
- DFG-SKLM. Aktualisierung der Toxikologischen Beurteilung von Furocumarinen in Lebensmitteln SKLM; 2010. Available online: https://www.dfg.de/resource/blob/169584/c313c76f2e5ed7c0c8419a8bdf6bf31e/sklm-aktualisierung-furocumarine-100125-data.pdf (accessed on 8 May 2025).
- Schlatter, J.; Zimmerli, B.; Dick, R.; Panizzon, R.; Schlatter, C.H. Dietary Intake and Risk Assessment of Phototoxic Furocoumarins in Humans. Food Chem. Toxicol. 1991, 29, 523–530. [Google Scholar] [CrossRef]
Parameter | Level | Xanthotoxin | Isopimpinellin | Bergapten | Isobergapten | Imperatorin |
---|---|---|---|---|---|---|
Range (μg/mL) | 5–100 | 2.5–100 | 2.5–100 | 2.5–50 | 2.5–100 | |
Regression equation | y = 0.7098x−0.3895 | y = 1.2534x + 1.903 | y = 1.5857x + 0.9365 | y = 1.3935x + 3.3618 | y = 1.2153x + 4.7527 | |
r2 | 0.996 | 0.99 | 0.993 | 0.999 | 0.999 | |
LOD (μg/mL) | 2 | 1 | 1 | 1 | 1 | |
LOQ (μg/mL) | 5 | 2.5 | 2.5 | 2.5 | 2.5 | |
Accuracy (recovery%) | 10 μg/mL | 105.60% | 102.15% | 99.87% | 102.02% | 99.40% |
20 μg/mL | 93.54% | 101.37% | 102.69% | 106.99% | 104.09% | |
50/100 μg/mL * | 104.30% | 95.54% | 98.21% | 101.10% | 103.65% | |
System precision (RSD%) | 20 μg/mL | |||||
Migration time | 0.29% | 0.12% | 0.45% | 0.54% | 0.82% | |
Peak area | 3.13% | 1.66% | 2.15% | 2.79% | 2.43% | |
Repeatability (RSD%) | 10 μg/mL | 4.22% | 3.69% | 4.62% | 4.43% | 4.57% |
20 μg/mL | 2.52% | 2.69% | 2.29% | 3.16% | 2.55% | |
50/100 μg/mL * | 1.40% | 2.70% | 2.25% | 2.51% | 1.28% |
Sample Type, EtOH Concentration Used for Extraction (%) | Root, 30% | Root, 50% | Root, 80% | Green Fruits, 30% | Green Fruits, 50% | Green Fruits, 80% |
---|---|---|---|---|---|---|
Compound | ||||||
Xanthotoxin | 0.23 ± 0.006 | 0.35 ± 0.002 | 0.51 ± 0.073 | 0.34 ± 0.02 | 0.49 ± 0.032 | 0.61 ± 0.037 |
Isopimpinellin | 0.38 ± 0.102 | 3.09 ± 0.128 | 2.94 ± 0.105 | 0.20 ± 0.002 | 0.31 ± 0.021 | 0.38 ± 0.010 |
Bergapten | 0.17 ± 0.002 | 1.28 ± 0.122 | 1.80 ± 0.043 | 0.52 ± 0.014 | 0.87 ± 0.101 | 0.86 ± 0.103 |
Isobergapten | 0.24 ± 0.003 | 1.50 ± 0.143 | 1.00 ± 0.057 | <LOD | <LOD | <LOD |
Imperatorin | <LOD | <LOD | <LOD | 0.30 ± 0.032 | 1.01 ± 0.062 | 1.67± 0.072 |
TOTAL | 1.02 ± 0.113 | 6.23 ± 0.454 | 6.25 ± 0.278 | 1.37 ± 0.068 | 2.68 ± 0.217 | 3.52 ± 0.222 |
Compound | Sample 8 | Sample 9 | Sample 10 |
---|---|---|---|
Xanthotoxin | 153.83 ± 6.31 | 35.07 ± 3.82 | 82.94 ± 4.48 |
Isopimpinellin | 57.61 ± 2.20 | 12.35 ± 1.34 | 23.28 ± 0.99 |
Bergapten | 143.23 ± 10.72 | 28.11 ± 1.92 | 39.12 ± 1.58 |
Isobergapten | <LOD | <LOD | <LOD |
Imperatorin | 89.04 ± 9.51 | <LOQ | 24.10 ± 1.57 |
TOTAL | 443.71 ± 28.74 | 75.53 ± 7.08 | 169.44 ± 8.62 |
Compound | Sample 8 | Sample 9 | Sample 10 | |||
---|---|---|---|---|---|---|
mg/tbsp | mg/day | mg/tbsp | mg/day | mg/tbps | mg/day | |
Xanthotoxin | 2.31 | 6.92 | 0.53 | 1.58 | 1.24 | 3.73 |
Isopimpinellin | 0.86 | 2.59 | 0.19 | 0.56 | 0.35 | 1.05 |
Bergapten | 2.15 | 6.45 | 0.42 | 1.26 | 0.59 | 1.76 |
Isobergapten | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Imperatorin | 1.34 | 4.01 | <LOD | <LOD | 0.36 | 1.08 |
TOTAL | 6.66 | 19.97 | 1.13 | 3.40 | 2.54 | 7.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laczkó Zöld, E.; Kis, C.; Nagy-György, E.; Domokos, E.; Ferencz, E.; Szabó, Z.-I. Fast Determination of Furocoumarins in Food Supplements Containing Heracleum sphondylium L. Using Capillary Electrophoresis. Foods 2025, 14, 2348. https://doi.org/10.3390/foods14132348
Laczkó Zöld E, Kis C, Nagy-György E, Domokos E, Ferencz E, Szabó Z-I. Fast Determination of Furocoumarins in Food Supplements Containing Heracleum sphondylium L. Using Capillary Electrophoresis. Foods. 2025; 14(13):2348. https://doi.org/10.3390/foods14132348
Chicago/Turabian StyleLaczkó Zöld, Eszter, Csenge Kis, Erzsébet Nagy-György, Erzsébet Domokos, Elek Ferencz, and Zoltán-István Szabó. 2025. "Fast Determination of Furocoumarins in Food Supplements Containing Heracleum sphondylium L. Using Capillary Electrophoresis" Foods 14, no. 13: 2348. https://doi.org/10.3390/foods14132348
APA StyleLaczkó Zöld, E., Kis, C., Nagy-György, E., Domokos, E., Ferencz, E., & Szabó, Z.-I. (2025). Fast Determination of Furocoumarins in Food Supplements Containing Heracleum sphondylium L. Using Capillary Electrophoresis. Foods, 14(13), 2348. https://doi.org/10.3390/foods14132348