Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = plant-based dietary supplements (PDS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 2056 KiB  
Review
Polyphenols and Their Impact on the Prevention of Neurodegenerative Diseases and Development
by Izabela Grabska-Kobyłecka, Piotr Szpakowski, Aleksandra Król, Dominika Książek-Winiarek, Andrzej Kobyłecki, Andrzej Głąbiński and Dariusz Nowak
Nutrients 2023, 15(15), 3454; https://doi.org/10.3390/nu15153454 - 4 Aug 2023
Cited by 116 | Viewed by 14723
Abstract
It is well known that neurodegenerative diseases’ development and progression are accelerated due to oxidative stress and inflammation, which result in impairment of mitochondrial function, cellular damage, and dysfunction of DNA repair systems. The increased consumption of antioxidants can postpone the development of [...] Read more.
It is well known that neurodegenerative diseases’ development and progression are accelerated due to oxidative stress and inflammation, which result in impairment of mitochondrial function, cellular damage, and dysfunction of DNA repair systems. The increased consumption of antioxidants can postpone the development of these disorders and improve the quality of patients’ lives who have already been diagnosed with neurodegenerative diseases. Prolonging life span in developed countries contributes to an increase in the incidence ratio of chronic age-related neurodegenerative disorders, such as PD (Parkinson’s disease), AD (Alzheimer’s disease), or numerous forms of age-related dementias. Dietary supplementation with neuroprotective plant-derived polyphenols might be considered an important element of healthy aging. Some polyphenols improve cognition, mood, visual functions, language, and verbal memory functions. Polyphenols bioavailability differs greatly from one compound to another and is determined by solubility, degree of polymerization, conjugation, or glycosylation resulting from chemical structure. It is still unclear which polyphenols are beneficial because their potential depends on efficient transport across the BBB (blood-brain barrier), bioavailability, and stability in the CNS (central nervous system). Polyphenols improve brain functions by having a direct impact on cells and processes in the CNS. For a direct effect, polyphenolic compounds must be able to overcome the BBB and accumulate in brain tissue. In this review, the latest achievements in studies (animal models and clinical trials) on the effect of polyphenols on brain activity and function are described. The beneficial impact of plant polyphenols on the brain may be summarized by their role in increasing brain plasticity and related cognition improvement. As reversible MAO (monoamine oxidase) inhibitors, polyphenols are mood modulators and improve neuronal self-being through an increase in dopamine, serotonin, and noradrenaline amounts in the brain tissue. After analyzing the prohealth effects of various eating patterns, it was postulated that their beneficial effects result from synergistic interactions between individual dietary components. Polyphenols act on the brain endothelial cells and improve the BBB’s integrity and reduce inflammation, thus protecting the brain from additional injury during stroke or autoimmune diseases. Polyphenolic compounds are capable of lowering blood pressure and improving cerebral blood flow. Many studies have revealed that a nutritional model based on increased consumption of antioxidants has the potential to ameliorate the cognitive impairment associated with neurodegenerative disorders. Randomized clinical trials have also shown that the improvement of cognitive functions resulting from the consumption of foods rich in flavonoids is independent of age and health conditions. For therapeutic use, sufficient quantities of polyphenols must cross the BBB and reach the brain tissue in active form. An important issue in the direct action of polyphenols on the CNS is not only their penetration through the BBB, but also their brain metabolism and localization. The bioavailability of polyphenols is low. The most usual oral administration also conflicts with bioavailability. The main factors that limit this process and have an effect on therapeutic efficacy are: selective permeability across BBB, gastrointestinal transformations, poor absorption, rapid hepatic and colonic metabolism, and systemic elimination. Thus, phenolic compounds have inadequate bioavailability for human applications to have any beneficial effects. In recent years, new strategies have been attempted in order to exert cognitive benefits and neuroprotective effects. Converting polyphenols into nanostructures is one of the theories proposed to enhance their bioavailability. The following nanoscale delivery systems can be used to encapsulate polyphenols: nanocapsules, nanospheres, micelles, cyclodextrins, solid lipid nanoparticles, and liposomes. It results in great expectations for the wide-scale and effective use of polyphenols in the prevention of neurodegenerative diseases. Thus far, only natural polyphenols have been studied as neuroprotectors. Perhaps some modification of the chemical structure of a given polyphenol may increase its neuroprotective activity and transportation through the BBB. However, numerous questions should be answered before developing neuroprotective medications based on plant polyphenols. Full article
(This article belongs to the Special Issue Neuroprotection with Bioactive Compounds)
Show Figures

Figure 1

20 pages, 11313 KiB  
Article
Genome-Wide Identification and Analysis of the MADS-Box Gene Family in Almond Reveal Its Expression Features in Different Flowering Periods
by Xingyue Liu, Dongdong Zhang, Zhenfan Yu, Bin Zeng, Shaobo Hu, Wenwen Gao, Xintong Ma, Yawen He and Huanxue Qin
Genes 2022, 13(10), 1764; https://doi.org/10.3390/genes13101764 - 29 Sep 2022
Cited by 2 | Viewed by 2814
Abstract
The MADS-box gene family is an important family of transcription factors involved in multiple processes, such as plant growth and development, stress, and in particular, flowering time and floral organ development. Almonds are the best-selling nuts in the international fruit trade, accounting for [...] Read more.
The MADS-box gene family is an important family of transcription factors involved in multiple processes, such as plant growth and development, stress, and in particular, flowering time and floral organ development. Almonds are the best-selling nuts in the international fruit trade, accounting for more than 50% of the world’s dried fruit trade, and one of the main economic fruit trees in Kashgar, Xinjiang. In addition, almonds contain a variety of nutrients, such as protein and dietary fiber, which can supplement nutrients for people. They also have the functions of nourishing the yin and kidneys, improving eyesight, and strengthening the brain, and they can be applied to various diseases. However, there is no report on the MADS-box gene family in almond (Prunus dulcis). In this study, a total of 67 PdMADS genes distributed across 8 chromosomes were identified from the genome of almond ‘Wanfeng’. The PdMADS members were divided into five subgroups—Mα, Mβ, Mγ, Mδ, and MIKC—and the members in each subgroup had conserved motif types and exon and intron numbers. The number of exons of PdMADS members ranged from 1 to 20, and the number of introns ranged from 0 to 19. The number of exons and introns of different subfamily members varied greatly. The results of gene duplication analysis showed that the PdMADS members had 16 pairs of segmental duplications and 9 pairs of tandem duplications, so we further explored the relationship between the MADS-box gene members in almond and those in Arabidopsis thaliana, Oryza sativa, Malus domestica, and Prunus persica based on colinear genes and evolutionary selection pressure. The results of the cis-acting elements showed that the PdMADS members were extensively involved in a variety of processes, such as almond growth and development, hormone regulation, and stress response. In addition, the expression patterns of PdMADS members across six floral transcriptome samples from two almond cultivars, ‘Wanfeng’ and ‘Nonpareil’, had significant expression differences. Subsequently, the fluorescence quantitative expression levels of the 15 PdMADS genes were highly similar to the transcriptome expression patterns, and the gene expression levels increased in the samples at different flowering stages, indicating that the two almond cultivars expressed different PdMADS genes during the flowering process. It is worth noting that the difference in flowering time between ‘Wanfeng’ and ‘Nonpareil’ may be caused by the different expression activities of PdMADS47 and PdMADS16 during the dormancy period, resulting in different processes of vernalization. We identified a total of 13,515 target genes in the genome based on the MIKC DNA-binding sites. The GO and KEGG enrichment results showed that these target genes play important roles in protein function and multiple pathways. In summary, we conducted bioinformatics and expression pattern studies on the PdMADS gene family and investigated six flowering samples from two almond cultivars, the early-flowering ‘Wanfeng’ and late-flowering ‘Nonpareil’, for quantitative expression level identification. These findings lay a foundation for future in-depth studies on the mechanism of PdMADS gene regulation during flowering in different almond cultivars. Full article
(This article belongs to the Collection Feature Papers in Bioinformatics)
Show Figures

Figure 1

21 pages, 3250 KiB  
Article
Healthy Eating Enhances Intrinsic Capacity, Thus Promoting Functional Ability of Retirement Home Residents in Northern Taiwan
by Kian-Yuan Lim, Hui-Chen Lo, In-Fai Cheong, Yi-Yen Wang, Zi-Rong Jian, I-Chen Chen, Yun-Chun Chan, Shyh-Dye Lee, Chi-Chun Chou and Feili Lo Yang
Nutrients 2022, 14(11), 2225; https://doi.org/10.3390/nu14112225 - 26 May 2022
Cited by 13 | Viewed by 3620
Abstract
Healthy aging is defined as the process of developing and maintaining functional ability in older age with intrinsic capacity, the composite of all the physical and mental capacities of an individual, being the core. This study was conducted to explore the intervention effects [...] Read more.
Healthy aging is defined as the process of developing and maintaining functional ability in older age with intrinsic capacity, the composite of all the physical and mental capacities of an individual, being the core. This study was conducted to explore the intervention effects of improved dietary quality on intrinsic capacity. A prospective single-group interventional quasi-experimental study with 59 functional independent older adults from retirement homes were recruited. Texture-modified plant-based dietary supplements were provided. In addition, dietary intake, functional ability, and intrinsic capacity in vitality, locomotion, cognition, and psychological capacity were assessed. Vitality was captured by nutritional status, muscle strength, and cardiorespiratory endurance. Locomotor capacity was assessed based on the performance of physical fitness in backscratch test, chair-sit-and-reach test, chair-stand test, one-foot-standing test, and gaits peed. Psychomotor capacity and cognition were measured by using 15-item Geriatric Depression Scale (GDS-15) and Mini-Mental State Examination (MMSE), respectively. In a 4-month of intervention, after controlling for baseline values and covariates, participants with higher dietary intervention adherence showed a significant improvement over time in vitality captured by cardiorespiratory endurance (Pinteraction = 0.009) and significant improvement in locomotion captured by gait speed (Pclusters = 0.034). A significant decrease in the chair-stand test (Ptime = <0.001) and MMSE (Ptime = 0.022) was observed during the four months of intervention. Enhanced intrinsic capacity further contributed to the improvement of ADL over time (Pinteraction = 0.034). In conclusion, healthy eating enhances intrinsic capacity in vitality and locomotion thus promoting functional ability among older adults. Full article
(This article belongs to the Special Issue Dietary Patterns and Healthy Aging)
Show Figures

Graphical abstract

27 pages, 654 KiB  
Review
Nutraceuticals Targeting Generation and Oxidant Activity of Peroxynitrite May Aid Prevention and Control of Parkinson’s Disease
by Mark F. McCarty and Aaron Lerner
Int. J. Mol. Sci. 2020, 21(10), 3624; https://doi.org/10.3390/ijms21103624 - 21 May 2020
Cited by 37 | Viewed by 7194
Abstract
Parkinson’s disease (PD) is a chronic low-grade inflammatory process in which activated microglia generate cytotoxic factors—most prominently peroxynitrite—which induce the death and dysfunction of neighboring dopaminergic neurons. Dying neurons then release damage-associated molecular pattern proteins such as high mobility group box 1 which [...] Read more.
Parkinson’s disease (PD) is a chronic low-grade inflammatory process in which activated microglia generate cytotoxic factors—most prominently peroxynitrite—which induce the death and dysfunction of neighboring dopaminergic neurons. Dying neurons then release damage-associated molecular pattern proteins such as high mobility group box 1 which act on microglia via a range of receptors to amplify microglial activation. Since peroxynitrite is a key mediator in this process, it is proposed that nutraceutical measures which either suppress microglial production of peroxynitrite, or which promote the scavenging of peroxynitrite-derived oxidants, should have value for the prevention and control of PD. Peroxynitrite production can be quelled by suppressing activation of microglial NADPH oxidase—the source of its precursor superoxide—or by down-regulating the signaling pathways that promote microglial expression of inducible nitric oxide synthase (iNOS). Phycocyanobilin of spirulina, ferulic acid, long-chain omega-3 fatty acids, good vitamin D status, promotion of hydrogen sulfide production with taurine and N-acetylcysteine, caffeine, epigallocatechin-gallate, butyrogenic dietary fiber, and probiotics may have potential for blunting microglial iNOS induction. Scavenging of peroxynitrite-derived radicals may be amplified with supplemental zinc or inosine. Astaxanthin has potential for protecting the mitochondrial respiratory chain from peroxynitrite and environmental mitochondrial toxins. Healthful programs of nutraceutical supplementation may prove to be useful and feasible in the primary prevention or slow progression of pre-existing PD. Since damage to the mitochondria in dopaminergic neurons by environmental toxins is suspected to play a role in triggering the self-sustaining inflammation that drives PD pathogenesis, there is also reason to suspect that plant-based diets of modest protein content, and possibly a corn-rich diet high in spermidine, might provide protection from PD by boosting protective mitophagy and thereby aiding efficient mitochondrial function. Low-protein diets can also promote a more even response to levodopa therapy. Full article
(This article belongs to the Special Issue Nutraceuticals in Chronic Diseases)
Show Figures

Figure 1

Back to TopTop