Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (93)

Search Parameters:
Keywords = plant–insect networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3134 KiB  
Article
A Hybrid Deep Learning Approach for Cotton Plant Disease Detection Using BERT-ResNet-PSO
by Chetanpal Singh, Santoso Wibowo and Srimannarayana Grandhi
Appl. Sci. 2025, 15(13), 7075; https://doi.org/10.3390/app15137075 - 23 Jun 2025
Viewed by 478
Abstract
Cotton is one of the most valuable non-food agricultural products in the world. However, cotton production is often hampered by the invasion of disease. In most cases, these plant diseases are a result of insect or pest infestations, which can have a significant [...] Read more.
Cotton is one of the most valuable non-food agricultural products in the world. However, cotton production is often hampered by the invasion of disease. In most cases, these plant diseases are a result of insect or pest infestations, which can have a significant impact on production if not addressed promptly. It is, therefore, crucial to accurately identify leaf diseases in cotton plants to prevent any negative effects on yield. This paper presents a hybrid deep learning approach based on Bidirectional Encoder Representations from Transformers with Residual network and particle swarm optimization (BERT-ResNet-PSO) for detecting cotton plant diseases. This approach starts with image pre-processing, which they pass to a BERT-like encoder after linearly embedding the image patches. It results in segregating disease regions. Then, the output of the encoded feature is passed to ResNet-based architecture for feature extraction and further optimized by PSO to increase the classification accuracy. The approach is tested on a cotton dataset from the Plant Village dataset, where the experimental results show the effectiveness of this hybrid deep learning approach, achieving an accuracy of 98.5%, precision of 98.2% and recall of 98.7% compared to the existing deep learning approaches such as ResNet50, VGG19, InceptionV3, and ResNet152V2. This study shows that the hybrid deep learning approach is capable of dealing with the cotton plant disease detection problem effectively. This study suggests that the proposed approach is beneficial to help avoid crop losses on a large scale and support effective farming management practices. Full article
Show Figures

Figure 1

22 pages, 1257 KiB  
Article
Habitat Composition and Preference by the Malabar Slender Loris (Loris lydekkerianus malabaricus) in the Western Ghats, India
by Smitha D. Gnanaolivu, Joseph J. Erinjery, Marco Campera and Mewa Singh
Forests 2025, 16(6), 876; https://doi.org/10.3390/f16060876 - 22 May 2025
Viewed by 543
Abstract
Habitat degradation poses a critical threat to the Malabar slender loris (Loris lydekkerianus malabaricus), yet little is known about its microhabitat requirements in intact forest. In Aralam Wildlife Sanctuary, we combined nocturnal trail surveys (337 loris sightings) with plotless sampling of [...] Read more.
Habitat degradation poses a critical threat to the Malabar slender loris (Loris lydekkerianus malabaricus), yet little is known about its microhabitat requirements in intact forest. In Aralam Wildlife Sanctuary, we combined nocturnal trail surveys (337 loris sightings) with plotless sampling of 2830 trees (86 species from 35 families) to characterize both vegetation structure and loris presence. Our results show that lorises occur almost exclusively in mildly degraded wet evergreen and secondary moist deciduous subcanopies, where understory trees and climber networks provide continuous pathways. Individuals are most often encountered at heights of 5–15 m—ascending into higher strata as the night progresses—reflecting a balance between foraging access and predator avoidance. Substrate analysis revealed strong preferences for twigs ≤ 1 cm (36.98%) and small branches 2–5 cm in diameter, oriented obliquely to minimize energetic costs and maintain stability during slow, deliberate arboreal locomotion. Day-sleeping sites were overwhelmingly located within dense tangles of lianas on large-girth trees, where intertwined stems and thorny undergrowth offer concealment from both mammalian and avian predators. Vegetation surveys documented a near-equal mix of evergreen (50.6%) and deciduous (49.4%) species—including 26 endemics (18 restricted to the Western Ghats)—with Aporosa cardiosperma emerging as the most abundant riparian pioneer, suggesting both ecological resilience and potential simplification in fragmented patches. Complementing field observations, our recent habitat-suitability modeling in Aralam indicates that broad-scale climatic and anthropogenic factors—precipitation patterns, elevation, and proximity to roads—are the strongest predictors of loris occupancy, underscoring the interplay between landscape-level processes and microhabitat structure. Together, these findings highlight the imperative of multi-strata forest restoration—planting insect-hosting native trees, maintaining continuous canopy and climber networks, and integrating small “mini-forest” modules—to recreate the structural complexity vital for slender loris conservation and the broader resilience of Western Ghats biodiversity. Full article
(This article belongs to the Special Issue Wildlife Ecology and Conservation in Forest Habitats)
Show Figures

Figure 1

14 pages, 1560 KiB  
Review
Advances in the Biosynthesis of Plant Terpenoids: Models, Mechanisms, and Applications
by Renwu Cheng, Shuqi Yang, Dongli Wang, Fangcuo Qin, Shengkun Wang and Sen Meng
Plants 2025, 14(10), 1428; https://doi.org/10.3390/plants14101428 - 10 May 2025
Cited by 2 | Viewed by 2325
Abstract
Plants have evolved complex terpene defenses. Terpenoids accumulate in plant tissues or release as volatile in response to ever-changing environment, playing essential roles in chemo-ecological functions as defense against pathogen and insect, improving pollination and seed dispersal, facilitation plant-to-plant communication. They are also [...] Read more.
Plants have evolved complex terpene defenses. Terpenoids accumulate in plant tissues or release as volatile in response to ever-changing environment, playing essential roles in chemo-ecological functions as defense against pathogen and insect, improving pollination and seed dispersal, facilitation plant-to-plant communication. They are also gaining attention in pharmaceuticals, nutraceuticals, fragrance, and biofuels. Here, we highlight the recent progress in the fundamental pathways of terpenoid biosynthesis, key enzymes, and their corresponding genes involved in terpenoid synthesis. We identified the further exploration of biosynthetic networks and the development of novel terpenoid resources, proposed the need for further exploration of biosynthetic networks and the development of novel terpenoid resources. Based on that knowledge, future research should be directed towards the mechanisms governing terpenoid biosynthesis dependent environmental change and molecular breeding. Full article
(This article belongs to the Special Issue Secondary Metabolites in Plants)
Show Figures

Figure 1

33 pages, 2472 KiB  
Review
Multi-Omics Approaches Against Abiotic and Biotic Stress—A Review
by Venkatramanan Varadharajan, Radhika Rajendran, Pandiyan Muthuramalingam, Ashish Runthala, Venkatesh Madhesh, Gowtham Swaminathan, Pooja Murugan, Harini Srinivasan, Yeonju Park, Hyunsuk Shin and Manikandan Ramesh
Plants 2025, 14(6), 865; https://doi.org/10.3390/plants14060865 - 10 Mar 2025
Cited by 6 | Viewed by 3397
Abstract
Plants face an array of environmental stresses, including both abiotic and biotic stresses. These stresses significantly impact plant lifespan and reduce agricultural crop productivity. Abiotic stresses, such as ultraviolet (UV) radiation, high and low temperatures, salinity, drought, floods, heavy metal toxicity, etc., contribute [...] Read more.
Plants face an array of environmental stresses, including both abiotic and biotic stresses. These stresses significantly impact plant lifespan and reduce agricultural crop productivity. Abiotic stresses, such as ultraviolet (UV) radiation, high and low temperatures, salinity, drought, floods, heavy metal toxicity, etc., contribute to widespread crop losses globally. On the other hand, biotic stresses, such as those caused by insects, fungi, and weeds, further exacerbate these challenges. These stressors can hinder plant systems at various levels, including molecular, cellular, and development processes. To overcome these challenges, multi-omics computational approaches offer a significant tool for characterizing the plant’s biomolecular pool, which is crucial for maintaining homeostasis and signaling response to environmental changes. Integrating multiple layers of omics data, such as proteomics, metabolomics, ionomics, interactomics, and phenomics, simplifies the study of plant resistance mechanisms. This comprehensive approach enables the development of regulatory networks and pathway maps, identifying potential targets for improving resistance through genetic engineering or breeding strategies. This review highlights the valuable insights from integrating multi-omics approaches to unravel plant stress responses to both biotic and abiotic factors. By decoding gene regulation and transcriptional networks, these techniques reveal critical mechanisms underlying stress tolerance. Furthermore, the role of secondary metabolites in bio-based products in enhancing plant stress mitigation is discussed. Genome editing tools offer promising strategies for improving plant resilience, as evidenced by successful case studies combating various stressors. On the whole, this review extensively discusses an advanced multi-omics approach that aids in understanding the molecular basis of resistance and developing novel strategies to improve crops’ or organisms’ resilience to abiotic and biotic stresses. Full article
Show Figures

Figure 1

16 pages, 15268 KiB  
Article
Potential Functions and Transmission Dynamics of Fungi Associated with Anoplophora glabripennis Across Different Life Stages, Between Sexes, and Between Habitats
by Qing Liu, Yuanting Jia, Yishuo Li, Shilong Geng, Yanqi Yu, Zhangyan Wang, Xinru Wang, Ningning Fu, Jianyong Zeng, Xiaoyu Su, Huiping Li and Hualing Wang
Insects 2025, 16(3), 273; https://doi.org/10.3390/insects16030273 - 5 Mar 2025
Viewed by 849
Abstract
The fungi residing in the gut and associated habitats play a crucial role in the growth and development of Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), a wood-boring pest. Yet, how they are acquired and maintained across generations, and their respective roles throughout the life [...] Read more.
The fungi residing in the gut and associated habitats play a crucial role in the growth and development of Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), a wood-boring pest. Yet, how they are acquired and maintained across generations, and their respective roles throughout the life cycle, remain unknown. To this end, we used high-throughput ITS sequencing analysis to characterize the fungal composition and diversity associated with A. glabripennis across three different life stages, between sexes, and between its habitats. Overall, the fungi composition was stage specific, with adult gut communities being more diverse than those of larvae and eggs. Male fungal communities differed significantly, while frass and female communities were more similar to each other. The top 10 most abundant genera were investigated, with Fusarium consistently observed in all samples and exhibiting the highest overall abundance. Function predictions revealed the presence of potentially beneficial fungi that may support A. glabripennis invasion across all groups. Additionally, we observed complex network structures in the fungal communities associated with eggs and males, and stronger positive correlations in those of eggs and newly hatched larvae. Source tracking analysis suggested that these fungi were vertically transmitted, following a transmission pathway of ‘female gut–frass–egg–larval gut’, occurring via frass deposited in oviposition sites. Our findings provide a nuanced understanding of the intricate interactions among plants, insects, and fungi, shedding light on the acquisition, maintenance, and roles of gut-associated fungi in A. glabripennis. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

22 pages, 23079 KiB  
Article
Antithrombotic Effect of Chenopodium album L. Extract and Its Fractions via Regulating TLRs and the Downstream MAPKs and PI3K/AKT Signaling Pathways in Zebrafish
by Xiyue Wang, Miaoyunhuan Wang, Yuqing Dong, Shuqing Yu, Shanshan Zhang, Pinghua Sun, Lu Wang, Jibin Liu, Houwen Lin, Xinhui Pan and Xiaobin Li
Int. J. Mol. Sci. 2025, 26(5), 2118; https://doi.org/10.3390/ijms26052118 - 27 Feb 2025
Cited by 1 | Viewed by 897
Abstract
Chenopodium album L., as a folkloric herb, is traditionally used to treat poisonous insect bites, vitiligo, and other ailments. However, its impact on thrombosis remains unknown. In this study, we discovered that the ethanol extract of C. album exhibited a remarkable antithrombotic effect [...] Read more.
Chenopodium album L., as a folkloric herb, is traditionally used to treat poisonous insect bites, vitiligo, and other ailments. However, its impact on thrombosis remains unknown. In this study, we discovered that the ethanol extract of C. album exhibited a remarkable antithrombotic effect using a zebrafish thrombosis model for the first time. Activity evaluation showed that fraction CA-C could improve thrombus aggregation in the caudal vein, increase blood return in the heart, and alleviate the slowing of blood flow compared with those in the model group. Then, analysis by ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass (UPLC-Q-TOF-MS) identified 58 constituents of CA-C, with most of them belonging to flavonoids, alkaloids, and steroidal saponin components. Moreover, using a comprehensive strategy of network pharmacological analysis, transcriptomic assay, and RT-qPCR validation, we found that CA-C could mediate the TLR’s signaling pathway and its downstream MAPKs and PI3K/AKT signaling pathways to exert an antithrombotic effect. This study broadens the clinical application of plant C. album and provides new insight into the chemical profile, pharmacodynamics, and potential mechanisms of CA-C as candidate agents for treating thrombosis. Full article
(This article belongs to the Special Issue Plant Bioactive Compounds in Human Diseases)
Show Figures

Figure 1

16 pages, 2175 KiB  
Article
The Role of Flower Strips in Increasing Beneficial Insect Biodiversity and Pest Control in Vineyards
by Roma Durak, Martyna Materowska, Renee Hadley, Lynda Oosterhuis, Tomasz Durak and Beata Borowiak-Sobkowiak
Sustainability 2025, 17(5), 2018; https://doi.org/10.3390/su17052018 - 26 Feb 2025
Viewed by 900
Abstract
In ecosystems that have been disturbed by agricultural management, ecosystem services such as adequate pest control are also disturbed. Exploiting interactions between beneficial insects and plants can contribute to improving ecosystem service delivery and biological control. One of the effective methods of naturally [...] Read more.
In ecosystems that have been disturbed by agricultural management, ecosystem services such as adequate pest control are also disturbed. Exploiting interactions between beneficial insects and plants can contribute to improving ecosystem service delivery and biological control. One of the effective methods of naturally increasing the biodiversity of beneficial insects on crop plantations is the use of plant strips. The aim of our work was to demonstrate the role of flower strips in the sustainable management of vineyards. In particular, the relationship between the composition and flowering time of plants in flower strips and beneficial insects such as predators, parasitoids, and wild pollinators from Central Europe and the Western USA was shown. Most plants used for flower strips belong to the Asteraceae family. The most attractive to beneficial insects were Eriogonum niveum, Ericameria nauseosa, and Purshia tridentata in the USA, while in the vineyard in Poland they were garden plant species but also native species, especially Erigeron annuus, Taraxacum ssp., and Polygonum persicaria. The planned replacement of flowering times of plant species was observed from March to October, which ensured continuity in the availability of food for beneficial insects. Appropriately selected plants can attract selected species of predators and parasitoids, which can regulate the number of a specific pest species. Diversifying agricultural ecosystems is a promising pest control strategy that reduces pesticide use and thus supports sustainable agriculture. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

34 pages, 6071 KiB  
Review
Can the Beach–Dune Ecosystem Be Preserved Without Protecting the Beach? Ecological Assessment with a Focus on Specialized Beetle Fauna as Environmental Quality Indicators
by Lorenzo Zanella and Fabio Vianello
Sustainability 2025, 17(5), 1922; https://doi.org/10.3390/su17051922 - 24 Feb 2025
Viewed by 1170
Abstract
Anthropogenic development has historically concentrated in coastal areas to exploit resources from fishing and commercial navigation. In recent centuries, intensive tourism has added pressure on sandy shorelines, leading to their modification. This development model has led to the disappearance of most coastal sand [...] Read more.
Anthropogenic development has historically concentrated in coastal areas to exploit resources from fishing and commercial navigation. In recent centuries, intensive tourism has added pressure on sandy shorelines, leading to their modification. This development model has led to the disappearance of most coastal sand dunes and their rich biodiversity, which includes specialized plant and animal species adapted to sandy substrates, harsh arid conditions, and variable levels of salinity. The European Community’s conservation policies, particularly the Habitats Directive (Council Directive 92/43/EEC), have facilitated the preservation and restoration of the few remaining dune systems. However, these policies have unfortunately overlooked the protection of the adjacent beaches, which are integral to the coastal ecosystem. The loss of biodiversity typical of the beach–dune ecosystems is examined in relation to the anthropogenic disturbance factors, with particular attention to mechanical beach cleaning. Indeed, the metabolizable energy generated by this decomposer biomass is crucial for supporting a diverse trophic network of predators, ranging from insects to birds. The rapid disappearance of the specialized beetle fauna is examined, and some essential criteria for defining standard biotic indices suitable for monitoring these ecosystems are suggested. This approach aims to support more effective conservation programs for these fragile environments. We recommend revising the regulatory framework for safeguarding beach–dune ecosystems, while also proposing some key management principles to be incorporated into the protection guidelines. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

13 pages, 2923 KiB  
Article
In Silico Identification of Banana High-Confidence MicroRNA Binding Sites Targeting Banana Streak GF Virus
by Muhammad Aleem Ashraf, Babar Ali, Maryam Fareed, Ahsan Sardar, Eisha Saeed, Samaa Islam, Shaher Bano and Naitong Yu
Appl. Microbiol. 2025, 5(1), 13; https://doi.org/10.3390/applmicrobiol5010013 - 27 Jan 2025
Viewed by 1218
Abstract
Banana streak GF virus (BSGFV) is the extremely dangerous monopartite badnavirus (genus, Badnavirus; family, Caulimoviridae) of banana (Musa acuminata AAA Group) that imposes a serious threat to global banana production. The BSGFV causes a devastating pandemic in banana crops, transmitted by [...] Read more.
Banana streak GF virus (BSGFV) is the extremely dangerous monopartite badnavirus (genus, Badnavirus; family, Caulimoviridae) of banana (Musa acuminata AAA Group) that imposes a serious threat to global banana production. The BSGFV causes a devastating pandemic in banana crops, transmitted by deadly insect pest mealybug vectors and replicated through an RNA intermediate. The BSGFV is a reverse-transcribing DNA virus that has a monopartite open circular double-stranded DNA (dsDNA) genome with a length of 7325 bp. RNA interference (RNAi) is a natural mechanism that has revolutionized the target gene regulation of various organisms to combat virus infection. The current study aims to locate the potential target binding sites of banana-encoded microRNAs (mac-miRNAs) on the BSGFV-dsDNA-encoded mRNAs based on three algorithms, RNA22, RNAhybrid and TAPIR. Mature banana (2n = 3x = 33) miRNAs (n = 32) were selected and hybridized to the BSGFV genome (MN296502). Among the 32 targeted mature locus-derived mac-miRNAs investigated, two banana mac-miRNA homologs (mac-miR162a and mac-miR172b) were identified as promising naturally occurring biomolecules to have binding affinity at nucleotide positions 5502 and 9 of the BSGFV genome. The in silico banana-genome-encoded mac-miRNA/mbg-miRNA-regulatory network was developed with the BSGFV—ORFs using Circos software (version 0.69-9) to identify potential therapeutic target proteins. Therefore, the current work provides useful biological material and opens a new range of opportunities for generating BSGFV-resistant banana plants through the genetic manipulation of the selected miRNAs. Full article
(This article belongs to the Special Issue Microbial Evolutionary Genomics and Bioinformatics)
Show Figures

Figure 1

20 pages, 8209 KiB  
Article
Genome-Wide Identification and Comprehensive Analysis of the PPO Gene Family in Glycine max and Glycine soja
by Ziye Song, Bo Wang, Jia Liu, Nianxi Liu, Zhigang Yi, Zhi Li, Zhimin Dong, Chunbao Zhang, Yingshan Dong and Yuqiu Li
Genes 2025, 16(1), 17; https://doi.org/10.3390/genes16010017 - 26 Dec 2024
Viewed by 1007
Abstract
Background: Polyphenol oxidases (PPOs) form a multigene family that is widely distributed in plants, animals, and insects. To date, PPOs have been identified in plants such as Populus L. and Solanum tuberosum L., but studies on PPOs in soybean (Glycine [...] Read more.
Background: Polyphenol oxidases (PPOs) form a multigene family that is widely distributed in plants, animals, and insects. To date, PPOs have been identified in plants such as Populus L. and Solanum tuberosum L., but studies on PPOs in soybean (Glycine max (L.) Merr.) and wild soybean (Glycine soja Sieb. and Zucc.) remain limited. Methods: To clarify the nature, structure, evolution, expression pattern, and interaction network of PPOs in these plants, we performed bioinformatics analysis and evaluated the expression patterns of PPOs in soybean and wild soybean throughout the growth period and under salt stress. Results: We identified 17 and 15 genes belonging to the PPO family. These genes were distributed across chromosomes 7 and 6 and could be divided into three groups. Most of these genes only contained one coding sequence (CDS), and their gene structure, conserved motifs, and 3D structures were very similar. Although there were a few intraspecies gene duplications, 75 gene replication pairs between soybean and wild soybean were detected. A Ka/Ks analysis showed that the PPOs in these plants were mainly subjected to purity selection. Moreover, the expression of the PPO genes varied greatly during different stages of the growth period and under salt stress, showing high temporal and spatial specificity. The protein interaction networks of these genes appeared to be quite distinct. Through the interaction analysis of the candidate gene GmPPO2 selected under salt stress, Glyma.07G059000, Glyma.10G279000, and Glyma.03G167900 were identified as the candidate genes regulating salt stress tolerance in soybean. Conclusions: These findings provide a foundation for further research on the evolution of soybean and wild soybean, as well as the functions of the PPO gene family. Full article
(This article belongs to the Special Issue Genetic and Genomic Studies of Crop Breeding)
Show Figures

Figure 1

12 pages, 870 KiB  
Review
The Roles of Phytohormones in Plant Defense Mechanisms Against the Brown Planthopper
by Huiying Wang, Wenjun Zha, An Huang, Yan Wu, Shaojie Shi, Lei Zhou and Aiqing You
Genes 2024, 15(12), 1579; https://doi.org/10.3390/genes15121579 - 8 Dec 2024
Cited by 1 | Viewed by 2023
Abstract
The brown planthopper (BPH; Nilaparvata lugens Stål) is the most significant insect pest compromising rice production globally. Phytohormones, which are small organic compounds produced by plants, play a crucial role in regulating plant growth and development. Nevertheless, extensive research has established that phytohormones [...] Read more.
The brown planthopper (BPH; Nilaparvata lugens Stål) is the most significant insect pest compromising rice production globally. Phytohormones, which are small organic compounds produced by plants, play a crucial role in regulating plant growth and development. Nevertheless, extensive research has established that phytohormones are essential in modulating plant defense against BPH. Plants can achieve equilibrium between growth and defense by utilizing the intricate network of phytohormone signaling pathways to initiate optimal and efficient defensive responses to insects. In this review, we primarily address the roles of phytohormones in conferring resistance against BPH, with a focus on hormone cross-talk. We also discuss the potential value of integrating hormones with other agricultural practices to enhance plant defense and agricultural yield, which highlights the significance of novel approaches for environment-friendly insect pest management. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Plant Stress Responses)
Show Figures

Figure 1

22 pages, 2708 KiB  
Article
Biodiverse Management of Perennial Flower Margins in Farmland: Meandering Mowing by ‘Three-Strip Management’ to Boost Pollinators and Beneficial Insects
by Laurian Parmentier, Hannah Vanderstappen and Geert Haesaert
Insects 2024, 15(12), 953; https://doi.org/10.3390/insects15120953 - 30 Nov 2024
Viewed by 2098
Abstract
Agricultural intensification has led to significant declines in beneficial insect populations, such as pollinators and natural enemies, along with their ecosystem services. The installation of perennial flower margins in farmland is a popular agri-environmental scheme to mitigate these losses, promoting biodiversity, pollination, and [...] Read more.
Agricultural intensification has led to significant declines in beneficial insect populations, such as pollinators and natural enemies, along with their ecosystem services. The installation of perennial flower margins in farmland is a popular agri-environmental scheme to mitigate these losses, promoting biodiversity, pollination, and pest control. However, outcomes can vary widely, and recent insights into flower margins in an agricultural context suggest that management could be an important contributor to this variation. This study evaluated two mowing management regimes: the new “three-strip management” method with uneven, curved mowing lines and regular phased mowing as a control method. During the third year of application, we evaluated the effects on the alpha diversity indices of pollinators and natural enemies, as well as plant–pollinator visitation networks. Curved three-strip management significantly increased the abundance of all pollinator groups (+44%) and natural enemies (+50%), and the taxonomic richness and diversity of pollinators, especially for rarer solitary bees. Floral diversity was also higher, with more unique plants blooming in early spring and late summer, generating more unique plant–pollinator interactions (+54%) and a positive impact on multiple network-level properties. Our findings provide new evidence that nature-based management methods can be a win–win solution, creating high-quality habitats that enhance the insect diversity of various groups, support associated ecosystem services, and help restore overall farmland biodiversity. Full article
(This article belongs to the Special Issue Pollinator Biodiversity and Ecosystem Services)
Show Figures

Graphical abstract

20 pages, 13503 KiB  
Article
Mechanism of Exogenous Jasmonic Acid-Induced Resistance to Thrips palmi in Hemerocallis citrina Baroni Revealed by Combined Physiological, Biochemical and Transcriptomic Analyses
by Zhuonan Sun, Ning Ma, Ye Yang, Jun Wang, Nan Su, Hongxia Liu and Jie Li
Agronomy 2024, 14(11), 2507; https://doi.org/10.3390/agronomy14112507 - 25 Oct 2024
Cited by 4 | Viewed by 1616
Abstract
Jasmonic acid (JA) is a regulator of plant resistance to phytophagous insects, and exogenous JA treatment induces plant insect resistance. This study investigated the mechanism of exogenous JA-induced resistance of Hemerocallis citrina Baroni (daylily) to Thrips palmi at the biochemical and molecular levels. [...] Read more.
Jasmonic acid (JA) is a regulator of plant resistance to phytophagous insects, and exogenous JA treatment induces plant insect resistance. This study investigated the mechanism of exogenous JA-induced resistance of Hemerocallis citrina Baroni (daylily) to Thrips palmi at the biochemical and molecular levels. Daylily leaves sprayed with JA showed significantly higher levels of secondary metabolites—tannins, flavonoids, and total phenols, and activity of defense enzymes—peroxidase, phenylalanine ammonia lyase, polyphenol oxidase, and protease inhibitor (PI) than control leaves; the most significant effects were observed with 1 mmol L−1 JA. Owing to an improved defense system, significantly fewer T. palmi were present on the JA-treated plants than control plants. The JA-treated leaves had a smoother wax layer and fewer stomata, which was unfavorable for insect egg attachment. The differentially expressed genes (DEGs) were significantly enriched in insect resistance pathways such as lignin and wax biosynthesis, cell wall thickening, antioxidant enzyme synthesis, PI synthesis, secondary metabolite synthesis, and defense hormone signaling. A total of 466 DEGs were predicted to be transcription factors, mainly bHLH and WRKY family members. Weighted gene co-expression network analysis identified 13 key genes; TRINITY_DN16412_c0_g1 and TRINITY_DN6953_c0_g1 are associated with stomatal regulation and lipid barrier polymer synthesis, TRINITY_DN7582_c0_g1 and TRINITY_DN11770_c0_g1 regulate alkaloid synthesis, and TRINITY_DN7597_c1_g3 and TRINITY_DN1899_c0_g1 regulate salicylic acid and ethylene biosynthesis. These results indicate that JA treatment of daylily improved its resistance to T. palmi. These findings provide a scientific basis for the utilization of JA as an antagonist to control T. palmi in daylily. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

14 pages, 6074 KiB  
Article
Members of WRKY Group III Transcription Factors Are Important in Mite Infestation in Strawberry (Fragaria × ananassa Duch.)
by Peng Chen, Xianhong Zhou, Haiting Wang, Xiuxia Zhang, Lei Wang, Huanhuan Gao, Qianying Zhuang, Heqin Li and Ansheng Zhang
Plants 2024, 13(19), 2822; https://doi.org/10.3390/plants13192822 - 9 Oct 2024
Cited by 1 | Viewed by 1254
Abstract
Strawberry is frequently attacked by mites, which directly affects the yield and quality of this fruit species. The WRKY Group III transcription factors (TFs) play an important role in plant tolerance to biotic sources of stress, such as pathogens and insect pests. In [...] Read more.
Strawberry is frequently attacked by mites, which directly affects the yield and quality of this fruit species. The WRKY Group III transcription factors (TFs) play an important role in plant tolerance to biotic sources of stress, such as pathogens and insect pests. In this study, six Group III WRKY TFs (FaWRKY25, FaWRKY31, FaWRKY32, FaWRKY43, FaWRKY44, and FaWRKY45) were identified in strawberry. A phylogenetic analysis showed that the six WRKY III TFs were divided into two clades and all had a conserved WRKYGQK domain and the C-X7-C-X23-H-T-C zinc finger motif. An interaction network analysis revealed that FaWRKY44 was co-expressing with FaWRKY25 and FaWRKY45. The expression patterns showed that the WRKY Group III genes responded to plant hormones and mite infestation in strawberry. To further verify the role of FaWRKY25 in plant resistance to mites, we cloned the FaWRKY25 gene and overexpressed it in transgenic plants. An in vivo subcellular localization analysis indicated that the FaWRKY25 protein was localized in the nucleus. Fewer mites were also detected on the wild-type plants than on FaWRKY25-overexpressing transgenic plants, suggesting that FaWRKY25 negatively regulates the resistance of strawberry to mites. The present study advances our understanding on a potential target that mites use to manipulate host plant defenses. Full article
(This article belongs to the Special Issue Growth, Development, and Stress Response of Horticulture Plants)
Show Figures

Figure 1

17 pages, 4757 KiB  
Article
Identification, Cloning, and Characterization of Two Acupuncture-Injury-Inducing Promoters in Rice
by Jianyu Wang, Zengfeng Ma, Dong Fu, Yan Wu, Zaihui Zhou, Changyan Li and Junhao Shen
Int. J. Mol. Sci. 2024, 25(19), 10564; https://doi.org/10.3390/ijms251910564 - 30 Sep 2024
Cited by 1 | Viewed by 1136
Abstract
As an important global food crop, rice is damaged by a variety of piercing–sucking pests. Identifying a broad-spectrum promoter induced by the physical signal of sucking pests and applying it to transgenic breeding to mitigate the damage caused by different sucking pests will [...] Read more.
As an important global food crop, rice is damaged by a variety of piercing–sucking pests. Identifying a broad-spectrum promoter induced by the physical signal of sucking pests and applying it to transgenic breeding to mitigate the damage caused by different sucking pests will significantly improve the efficiency of our breeding. This study compared the transcriptome changes in two rice varieties under needle-wounding stress to investigate their differential responses to mechanical damage. The results showed that the insect-susceptible variety TN1 exhibited more differentially expressed genes (DEGs) and greater changes in expression levels after needle treatment, indicating a more active internal gene regulatory network. GO and KEGG enrichment analysis further revealed that TN1 not only exhibited changes in genes related to the extracellular environment, but also mobilized more genes associated with stress response and defense. By screening the differentially expressed genes, we identified two promoters (P1 and P2) with inducible expression characteristics in both the resistant and susceptible rice varieties. These promoters were able to effectively drive the expression of the insect resistance gene OsLecRK1* and enhance the resistance of transgenic plants against the brown planthopper. This study provides promoter resources for the development of insect-resistant transgenic crops. Full article
(This article belongs to the Special Issue Physiology and Molecular Biology of Plant Stress Tolerance)
Show Figures

Figure 1

Back to TopTop