The Role of Flower Strips in Increasing Beneficial Insect Biodiversity and Pest Control in Vineyards
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Walla Walla Vineyard
3.2. Lubcza Vineyard
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kowalska, J.; Antkowiak, M.; Sienkiewicz, P. Flower strips and their ecological multifunctionality in agricultural field. Agriculture 2022, 12, 1470. [Google Scholar] [CrossRef]
- Costanzo, A.; Bárberi, P. Functional Agrobiodiversity and Agroecosystem Services in Sustainable Wheat Production: A Review. Agron. Sustain. Dev. 2014, 34, 327–348. [Google Scholar] [CrossRef]
- Gurr, G.M.; Wratten, S.D.; Luna, J.M. Multi-Function Agricultural Biodiversity: Pest Management and Other Benefits. Basic Appl. Ecol. 2003, 4, 107–116. [Google Scholar] [CrossRef]
- Tschumi, M.; Albrecht, M.; Entling, M.H.; Jacot, K. High Effectiveness of Tailored Flower Strips in Reducing Pests and Crop Plant Damage. Proc. R. Soc. B 2015, 282, 20151369. [Google Scholar] [CrossRef]
- Tschumi, M.; Albrecht, M.; Collatz, J.; Dubsky, V.; Entling, M.H.; Najar-Rodriguez, A.J.; Jacot, K. Tailored Flower Strips Promote Natural Enemy Biodiversity and Pest Control in Potato Crops. J. Appl. Ecol. 2016, 53, 1169–1176. [Google Scholar] [CrossRef]
- Pfiffner, L.; Wyss, E. Use of Sown Wildflower Strips to Enhance Natural Enemies of Agricultural Pests. In Ecological Engineering for Pest Management: Advances in Habitat Manipulation for Arthropods; Gurr, G.M., Wratten, S.D., Altieri, M.A., Eds.; CSIRO Publishing: Collingwood, Australia, 2004; pp. 165–186. [Google Scholar]
- Bianchi, F.J.J.A.; Mikos, V.; Brussard, L.; Delbaere, B.; Pulleman, M.M. Opportunities and Limitations for Functional Agrobiodiversity in the European Context. Environ. Sci. Technol. 2013, 27, 223–231. [Google Scholar] [CrossRef]
- Conniff, R. Growing Insects: Farmers Can Help to Bring Back Pollinators. Yale Environ. 2014, 360. Available online: https://e360.yale.edu/features/growing_insects_farmers_can_help_to_bring_back_pollinators (accessed on 29 December 2024).
- Krauss, J.; Gallenberger, I.; Steffan-Dewenter, I. Decreased Functional Diversity and Biological Pest Control in Conventional Compared to Organic Crop Fields. PLoS ONE 2011, 6, e19502. [Google Scholar] [CrossRef]
- Alaux, C.; Ducloz, F.; Crauser, D.; Le Conte, Y. Diet Effects on Honeybee Immunocompetence. Biol. Lett. 2010, 6, 562–565. [Google Scholar] [CrossRef]
- Bengtsson, J.; Ahnström, J.; Weibull, A.-C. The effects of organic agriculture on biodiversity and abundance: A meta-analysis: Organic agriculture, biodiversity and abundance. J. Appl. Ecol. 2005, 42, 261–269. [Google Scholar] [CrossRef]
- Veres, A.; Petit, S.; Conord, C.; Lavigne, C. Does landscape composition affect pest abundance and their control by natural enemies? A review. Agric. Ecosyst. Environ. 2013, 166, 110–117. [Google Scholar] [CrossRef]
- Paredes, D.; Rosenheim, J.A.; Chaplin-Kramer, R.; Winter, S.; Karp, D.S. Landscape simplification increases vineyard pest outbreaks and insecticide use. Ecol. Lett. 2021, 24, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Reiff, J.M.; Kolb, S.; Entling, M.H.; Herndl, T.; Möth, S.; Walzer, A.; Kropf, M.; Hoffmann, C.; Winter, S. Organic Farming and Cover-Crop Management Reduce Pest Predation in Austrian Vineyards. Insects 2021, 12, 220. [Google Scholar] [CrossRef] [PubMed]
- Thies, C.; Haenke, S.; Scherber, C.; Bengtsson, J.; Bommarco, R.; Clement, L.W.; Ceryngier, P.; Dennis, C.; Emmerson, M.; Gagic, V.; et al. The relationship between agricultural intensification and biological control: Experimental tests across Europe. Ecol. Appl. 2011, 21, 2187–2196. [Google Scholar] [CrossRef]
- Begg, G.S.; Cook, S.M.; Dye, R.; Ferrante, M.; Franck, P.; Lavigne, C.; Lövei, G.L.; Mansion-Vaquie, A.; Pell, J.K.; Petit, S.; et al. A functional overview of conservation biological control. Crop Prot. 2017, 97, 145–158. [Google Scholar] [CrossRef]
- Rusch, A.; Chaplin-Kramer, R.; Gardiner, M.M.; Hawro, V.; Holland, J.; Landis, D.; Thies, C.; Tscharntke, T.; Weisser, W.W.; Winqvist, C.; et al. Agricultural landscape simplification reduces natural pest control: A quantitative synthesis. Agric. Ecosyst. Environ. 2016, 221, 198–204. [Google Scholar] [CrossRef]
- Antkowiak, M.; Kowalska, J.; Trzciński, P. Flower Strips as an Ecological Tool to Strengthen the Environmental Balance of Fields: Case Study of a National Park Zone in Western Poland. Sustainability 2024, 16, 1251. [Google Scholar] [CrossRef]
- Jacobsen, S.K.; Sørensen, H.; Sigsgaard, L. Perennial flower strips in apple orchards promote natural enemies in their proximity. Crop Prot. 2022, 156, 105962. [Google Scholar] [CrossRef]
- Herrera, R.A.; Cotes, B.; Agustí, N.; Tasin, M.; Porcel, M. Using flower strips to promote green lacewings to control cabbage insect pests. J. Pest Sci. 2022, 95, 669–683. [Google Scholar] [CrossRef]
- Serée, L.; Chiron, F.; Valantin-Morison, M.; Barbottin, A.; Gardarin, A. Flower strips, crop management and landscape composition effects on two aphid species and their natural enemies in faba bean. Agric. Ecosyst. Environ. 2022, 331, 107902. [Google Scholar] [CrossRef]
- Wilson, H.; Daane, K.M. Review of Ecologically-Based Pest Management in California Vineyards. Insects 2017, 8, 108. [Google Scholar] [CrossRef] [PubMed]
- Molthan, J.; Ruppert, V. Significance of flowering wild herbs in boundary strips and fields for flower-visiting beneficial insects. Mitt. Biol. Bundesanst. Land Forstwirtsch. 1988, 247, 85–99. [Google Scholar]
- Dangles, O.; Casas, J. Ecosystem services provided by insects for achieving sustainable development goals. Ecosyst. Serv. 2019, 35, 109–115. [Google Scholar] [CrossRef]
- Xie, Y.; Tian, L.; Han, X.; Yang, Y. Research advances in allelopathy of volatile organic compounds (VOCs) of plants. Horticulturae 2021, 7, 278. [Google Scholar] [CrossRef]
- Gajger, I.T.; Dar, S.A. Plant allelochemicals as sources of insecticides. Insects 2021, 12, 189. [Google Scholar] [CrossRef]
- Farooq, M.; Jabran, K.; Cheema, Z.A.; Wahid, A.; Siddique, K.H. The role of allelopathy in agricultural pest management. Pest Manag. Sci. 2011, 67, 493–506. [Google Scholar] [CrossRef]
- Shan, Z.; Zhou, S.; Shah, A.; Arafat, Y.; Arif Hussain Rizv, S.; Shao, H. Plant Allelopathy in Response to Biotic and Abiotic Factors. Agronomy 2023, 13, 2358. [Google Scholar] [CrossRef]
- Alborn, H.; Turlings, T.; Jones, T.; Stenhagen, G.; Loughrin, J.; Tumlinson, J. An elicitor of plant volatiles from beet armyworm oral secretion. Science 1997, 276, 945–949. [Google Scholar] [CrossRef]
- Pickett, J.; Rasmussen, H.; Woodcock, C.; Matthes, M.; Napier, J. Plant stress signalling: Understanding and exploiting plant–plant interactions. Biochem. Soc. Trans. 2003, 31, 123–127. [Google Scholar] [CrossRef]
- Bianchi, F.J.J.A.; Booij, C.J.H.; Tscharntke, T. Sustainable pest regulation in agricultural landscapes: A review on landscape composition, biodiversity and natural pest control. Proc. R. Soc. B Biol. Sci. 2006, 273, 1715–1727. [Google Scholar] [CrossRef]
- Bostanian, N.; Vincent, C.; Isaacs, R. Arthropod Management in Vineyards: Arthropod Management; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Lasnier, J.; McFadden-Smith, W.; Moreau, D.; Bouchard, P.; Vincent, C. Guide to the Key Arthropods of Vineyards of Eastern Canada; Agriculture and Agri-Food Canada Technical Bulletin Number: A59-72/2019E, AAC: 12895E; Agriculture and Agri-Food Canada: Ottawa, ON, Canada, 2019; 114p. [Google Scholar]
- Blackman, R.L.; Eastop, V.F. Aphids on the World’s Crops. An Identification and Information Guide, 2nd ed.; John Wiley & Sons: Chichester, UK, 2000; 414p. [Google Scholar]
- Hałaj, R.; Osiadacz, B.; Klejdysz, T.; Strażyński, P. Viteus vitifoliae (Fitch, 1885), a new species of aphid in Poland (Hemiptera: Aphidomorpha: Phylloxeridae). Pol. J. Entomol. 2011, 80, 457–464. [Google Scholar] [CrossRef]
- Ioriatti, C.; Anfora, G.; Tasin, M.; De Cristofaro, A.; Witzgall, P.; Lucchi, A. Chemical ecology and management of Lobesia botrana (Lepidoptera; Tortricidae). J. Econ. Entomol. 2011, 104, 1125–1137. [Google Scholar] [CrossRef] [PubMed]
- Glemser, E.J.; Dowling, L.; Inglis, D.; Pickering, G.J.; McFadden-Smith, W.; Sears, M.K.; Hallett, R.H. A novel method for controlling multicolored Asian lady beetle (Coleoptera: Coccinellidae) in vineyards. Environ. Entomol. 2012, 41, 1169–1176. [Google Scholar] [CrossRef] [PubMed]
- Pickering, G.J.; Botezatu, A. A review of ladybug taint in wine: Origins, prevention, and remediation. Molecules 2021, 26, 4341. [Google Scholar] [CrossRef]
- USDA Natural Resources Conservation Service. The PLANTS Database; National Plant Data Center: Baton Rouge, LA, USA, 2011. Available online: http://plants.usda.gov (accessed on 13 February 2025).
- Tutin, T.G.; Heywood, V.H.; Burges, N.A.; Moore, D.M.; Valentine, D.H.; Walters, S.M.; Webb, D.A. (Eds.) Flora Europaea; Cambridge University Press: Cambridge, UK, 1964; Volumes 1–5. [Google Scholar]
- Pavek, P.; Fleenor, R.; Stannard, M.; Dring, T.; Cane, J.; John, L.S.; Tilley, D. Plants for Pollinators in the Inland Northwest. Biol. Tech. Note 2016, 24. Available online: https://www.nrcs.usda.gov/plantmaterials/wapmctn11733.pdf (accessed on 29 December 2024).
- Ogle, D.; John, L.S.; Stannard, M. Grass, Grass-like, Forb, Legume, and Woody Species for the Intermountain West. Ida. Plant Mater. Tech. 2011, 24. Available online: https://www.nrcs.usda.gov/plant-materials (accessed on 29 December 2024).
- Euro+Med 2006–. Euro+Med PlantBase—The Information Resource for Euro-Mediterranean Plant Diversity. Berlin: Botanic Garden and Botanical Museum Berlin. Available online: http://ww2.bgbm.org/EuroPlusMed/ (accessed on 13 February 2025).
- Ulloa Ulloa, C.; Acevedo-Rodríguez, P.; Beck, S.; Belgrano, M.J.; Bernal, R.; Berry, P.E.; Brako, L.; Celis, M.; Davidse, G.; Forzza; et al. Vascular Plants of the Americas VPA Website. Tropicos, Botanical Information System at the Missouri Botanical Garden, St. Louis. 2018. Available online: http://www.tropicos.org/Project/VPA (accessed on 13 February 2025).
- Griffiths-Lee, J.; Davenport, B.; Foster, B.; Nicholls, E.; Goulson, D. Sown wildflowers between vines increase beneficial insect abundance and richness in a British vineyard. Agric. For. Entomol. 2023, 25, 139–151. [Google Scholar] [CrossRef]
- Oosterhuis, L. Habitat in the Vineyard. A Step-By-Step Guide for the Walla Walla Valley; Issuu, Inc.: Palo Alto, CA, USA, 2022. [Google Scholar]
- Earnshaw, S. Hedgerows and Farmscaping for California Agriculture: A Resource Guide for Farmers; Community Alliance with Family Farmers: Sacramento, CA, USA, 2018. [Google Scholar]
- James, D.G.; Seymour, L.S.; Lauby, G.; Buckley, K. Beneficial insects attracted to native flowering buckwheats (Eriogonum Michx) in central Washington. Environ. Entomol. 2014, 43, 942–948. [Google Scholar] [CrossRef]
- James, D.G.; Lauby, G.; Seymour, L.; Buckley, K. Beneficial insects associated with stinging nettle (Urtica dioica L.) in central Washington State. Pan-Pac. Entomol. 2015, 91, 82–90. [Google Scholar] [CrossRef]
- James, D.G.; Seymour, L.; Lauby, G.; Buckley, K. Beneficial insect attraction to milkweeds (Asclepias speciosa, Asclepias fascicularis) in Washington State, USA. Insects 2016, 7, 30. [Google Scholar] [CrossRef]
- Fiedler, A.K.; Landis, D.A.; Wratten, S.D. Maximizing ecosystem services from conservation biological control: The role of habitat management. Biol. Control 2008, 45, 254–271. [Google Scholar] [CrossRef]
- Sáenz-Romo, M.G.; Veas-Bernal, A.; Martínez-García, H.; Ibáñez-Pascual, S.; Martínez-Villar, E.; Campos-Herrera, R.; Marco-Mancebón, V.S. Effects of ground cover management on insect predators and pests in a Mediterranean vineyard. Insects 2019, 10, 421. [Google Scholar] [CrossRef] [PubMed]
- Irvin, N.A.; Bistline-East, A.; Hoddle, M.S. The effect of an irrigated buckwheat cover crop on grapevine productivity, beneficial insect, and grape pest abundance in southern California. Biol. Control 2016, 93, 72–83. [Google Scholar] [CrossRef]
- Benheim, D.; Rochfort, S.; Robertson, E.; Potter, I.D.; Powell, K.S. Grape phylloxera (Daktulosphaira vitifoliae): A review of potential detection and alternative management options. Ann. Appl. Biol. 2012, 161, 91–115. [Google Scholar] [CrossRef]
- Wheeler, A.G., Jr.; Henry, T.J. Ceratocapsus modestus (Hemiptera: Miridae), a predator of grape phylloxera. Melsheimer Entomol. Ser. 1978, 25, 6–10. [Google Scholar]
- Wheeler, A.G., Jr.; Jubb, G.L., Jr. Predators of grape phylloxera and woolly aphids. Coleopt. Bull. 1979, 33, 199–204. [Google Scholar] [CrossRef]
- Kirchmair, M.; Neuhauser, S.; Strasser, H.; Voloshchuk, N.; Hoffmann, M.; Huber, L. Biological control of grape phylloxera: Historical review and future prospects. Acta Hortic. 2009, 816, 13–17. [Google Scholar] [CrossRef]
- Pope, T.W.; Roberts, J.M. Vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae), management: Current state and future perspectives. Annu. Rev. Entomol. 2022, 67, 221–238. [Google Scholar] [CrossRef]
- Albrecht, M.; Kleijn, D.; Williams, N.M.; Tschumi, M.; Blaauw, B.R.; Bommarco, R.; Campbell, A.J.; Dainese, M.; Drummond, F.A.; Entling, M.H.; et al. The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: A quantitative synthesis. Ecol. Lett. 2021, 23, 1488–1498. [Google Scholar] [CrossRef]
- Paraskevopoulou, A.T.; Pappous, E.; Biniari, K.; Bertsouklis, K.F.; Daskalakis, I.; Perdikis, D. Enhancing the rural landscape character: The low frequency of inter-row wildflower meadow harvest positively affects biodiversity while maintaining grape traits in a ‘Sultanina’ vineyard in Greece. Agronomy 2022, 12, 550. [Google Scholar] [CrossRef]
- Ragasová, L.; Kopta, T.; Winkler, J.; Sochor, J.; Pokluda, R. The impact of vineyard inter-row vegetation on plant and insect diversity. Eur. J. Hortic. Sci. 2021, 86, 360–370. [Google Scholar] [CrossRef]
- Fernando, M.; Scott, N.; Shrestha, A.; Gao, S.; Hale, L. A native plant species cover crop positively impacted vineyard water dynamics, soil health, and vine vigor. Agric. Ecosyst. Environ. 2024, 367, 108972. [Google Scholar] [CrossRef]
Plant | Attract | Prey |
---|---|---|
Asteraceae | ||
Achillea millefolium L. | Flies, Butterflies, Bugs, Hoverflies, Hoverfly larvae | Aleyrodidae, Aphids, caterpillars, Coccoidea, Halyomorpha, Pseudococcidae, Thysanoptera, Tetranychidae, mites |
Artemisia tridentata Nutt. | Bees, Moths, Butterflies, Flies, Hoverflies, Hoverfly larvae | Aleyrodidae, Aphids, caterpillars, Coccoidea, Halyomorpha, Pseudococcidae, Thysanoptera, Tetranychidae, mites |
Chrysothamnus sp. | Butterfly larvae | |
Helianthus annuus L. | Butterflies, Bees | |
Ericameria nauseosa (Pall. ex Pursh) G.L. Nesom & G.I. Baird | Bees, Butterflies | |
Eriophyllum lanatum (Pursh) J. Forbes | Bees | |
Rosaceae | ||
Crataegus douglasii Lindl. | Native Bees, Butterflies, Wasps, Ants | Aleyrodidae, Aphids, Ciccoidae, Psyllidae, Pseudococcidae, Thysanoptera, mites |
Physocarpus capitatus (Pursh) Kuntze | Native Bees, Butterflies | |
Sanguisorba minor Scop. | Bees | |
Purshia tridentata (Pursh) DC. | Bees, Butterflies, Wasps, Ants, Butterfly larvae | Aleyrodidae, caterpillars, Coccoidea, mites, Thysanoptera |
Polygonaceae | ||
Eriogonum compositum Douglas ex Benth. | Native Bees, Butterfly Larvae, Beetles, Bugs | Aleyrodidae, Aphids, caterpillars, Coccoidea, moth larvae, Psyllidae, Pseudococcidae, root worms, Thysanoptera, mites |
Eriogonum elatum Douglas ex Benth. | Bees, Butterflies | |
Eriogonum niveum Douglas ex Benth. | Bees, Butterflies, Wasps, Ants, Butterfly larvae | Aleyrodidae, caterpillars, Coccoidea, mites, Thysanoptera |
Fabaceae | ||
Medicago sativa L. Onobrychis viciifolia Scop. | Bees, Honeybees, Bumblebees, Butterflies Bees | |
Apocynaceae | ||
Asclepias speciosa Torr. | Butterflies, Butterfly larvae | |
Linaceae | ||
Linum lewisii Pursh. | Bees | |
Hydrangeaceae | ||
Philadelphus lewisii Pursh. | Bees, Butterflies | |
Poaceae | ||
Pseudoroegeneria spicata (Pursh) Á. Löve | ||
Malvaceae | ||
Sphaeralcea munroana (Douglas ex Lindl.) Spach | Bees, Butterflies, Flies, Hoverflies, Hoverfly larvae | Aleyrodidae, Aphids, caterpillars, Coccoidea, Halyomorpha, mites, Pseudococcidae, Thysanoptera, Tetranychidae |
Plant | Attract | Prey |
---|---|---|
Compositae (Asteraceae) | ||
Anthemis cotula L. | Bees, Butterflies | |
Calendula officinalis L. | Bees, Butterflies | |
Centaurea cyanus L. | Bees, Butterflies | |
Cosmos bipinnatus Cav. | Lacewings, Parasitic wasps, Hoverflies, Hoverfly larvae, Flies, Bees, Butterflies | Aleyrodidae, Aphids, caterpillars, Coccoidea, mites, Halyomorpha, Pseudococcidae, Thysanoptera, Tetranychidae |
Echinacea purpurea (L.) Moench | Bees, Butterflies, Bumblebees | |
Matricaria chamomilla L. | Bees, Butterflies, Bumblebees | |
Erigeron annuus (L.) Desf. | Bees, Flies, Wasps, Hoverflies, Hoverfly larvae, Butterflies | Aleyrodidae, Aphids, caterpillars, Coccoidea, mites, Halyomorpha, Pseudococcidae, Thysanoptera, Tetranychidae |
Myosotis arvensis (L.) Hill | Bees, Butterflies, Flies, Hoverflies, Hoverfly larvae | Aleyrodidae, Aphids, caterpillars, Coccoidea, mites, Halyomorpha, Pseudococcidae, Thysanoptera, Tetranychidae |
Tagetes erecta L. | Bees, Butterflies, Ladybugs, Lacewings, Hoverflies, Hoverfly larvae, Parasitic wasps | Aleyrodidae, Aphids, caterpillars, Coccoidea, Halyomorpha, mites, Psyllidae, Pseudococcidae, Tetranychidae, Thysanoptera |
Taraxacum sp. | Bees, Native Bees, Buttreflies, Beetles, Hoverflies, Hoverfly larvae | Aleyrodidae, Aphids, caterpillars, Coccoidea, Halyomorpha, mites, Psyllidae, Pseudococcidae, Thysanoptera, Tetranychidae |
Xerochrysum bracteatum (Vent.) Tzvelev | Butterflies, Butterfly larvae, Native bees, Hoverflies, Hoverfly larvae, Beetles, Grasshoppers | Aleyrodidae, Aphids, Coccoidea, mites, Psyllidae, Pseudococcidae, Tetranychidae, Thysanoptera |
Zinnia sp. | Butterflies, Ladybugs, Wasps | Aleyrodidae, Aphids, caterpillars, Coccoidea, mites, Thysanoptera |
Polygonaceae | ||
Polygonum persicaria L. | Bees, Native bees, Butterflies, Hoverflies, Hoverfly larvae | Aleyrodidae, Aphids, caterpillars, Coccoidea, Halyomorpha, mites, Psyllidae, Pseudococcidae, Thysanoptera, Tetranychidae |
Fabaceae | ||
Trifolium sp. | Bees, Bumblebees, Butterflies, Moths | |
Brassicaceae | ||
Capsella bursa-pastoris (L.) Medik. | Flies, Bees, Hoverflies, Hoverfly larvae | Aleyrodidae, Aphids, caterpillars, Coccoidea, mites, Halyomorpha, Pseudococcidae, Thysanoptera, Tetranychidae |
Convolvulaceae | ||
Convolvulus arvensis L. | Bees, Honeybees, Butterflies, Moths | |
Lamiaceae | ||
Lavandula angustifolia Mill. | Bees, Bumblebees, Butterflies | |
Plumbaginaceae | ||
Limonium sinuatum (L.) Mill. | Bees, Butterflies | |
Ranunculaceae | ||
Nigella sativa L. | Bees, Native bees, Butterflies | |
Ranunculus arvensis L. | Butterflies | |
Caprifoliaceae | ||
Scabiosa stellata L. | Bees, Native bees, Butterflies | |
Caryophyllaceae | ||
Silene flos-cuculi (L.) Clairv. | Bees, Butterflies | |
Plantaginaceae | ||
Antirrhinum majus L. | Bees, Butterflies |
Pests | Predators | Parasitoids | Pathogens and Entomopathogenic Nematodes | References |
---|---|---|---|---|
Panonychus ulmi | Phytoseiidae (Typhlodromus spp., Amblyseius sp.), Anystidae (Anystis sp.) | Lasnier et al. 2019 [33] | ||
Tetranychus urticae | Phytoseiidae (Typhlodromus spp., Amblyseius sp.), Campylomma verbasci | Lasnier et al. 2019 [33], Bostanian et al. 2012 [32] | ||
Colomerus vitis | Phytoseiidae | Lasnier et al. 2019 [33] | ||
aphids: Aphis aurantii, Aphis craccivora, Aphis fabae, Aphis gossypii, Aphis illinoisensis, Aphis spiraecola, Aploneura ampelina, Aulacorthum solani, Brachycaudus helichrysi, Macrosiphum euphorbiae, Myzus persicae, Prociphilus oleae | Coccinella (Coccinella) septempunctata, Scymnus (Scymnus) interruptus, Adonia variegata, Coccidula rufa, Propylea quatuordecimpunctata, Hippodamia variegata, Syrphidae, Nabidae, Reduviidae, Chrysopidae, Hemerobiidae | Braconidae, Ichneumonidae | Sáenz Romo et al. 2019 [52], Lasnier et al. 2019 [33] | |
Viteus vitifoliae | Ceratocapsus modestus, Scymnus cervicalis, Tyroglyphus phylloxerae, Chrysopa sp. | Metarhizium anisopliae, Beauveria bassiana, Paecilomyces farinosus | Benheim et al. 2012 [54], Wheeler and Henry 1978 [55], Wheeler and Jubb 1979 [56], Kirchmair et al. 2009 [57] | |
Popillia japonica | Istocheta aldrichi, Tiphia vernalis | Lasnier et al. 2019 [33] | ||
Leafhoppers | Anystis sp., Syrphidae, Anagrus atomus | Anagrus spp., Trichogramma carverae | Lasnier et al. 2019 [33] | |
Parthenolecanium corni | mites (Anystidae, Trombidiidae and Erythraeidae), predatory bugs, spiders and coccinellids | Aphelinidae, Encyrtidae | Lasnier et al. 2019 [33] | |
Pseudococcus maritimus | (Anystidae, Trombidiidae, Erythraeidae), Hyaliodes vitripennis, Cryptolaemus montrouzieri, Nephus bineavatus, spiders | Aphelinidae, Encyrtidae | Lasnier et al. 2019 [33] | |
Planococcus ficus | Cryptolaemus montrouzieri | Anagyrus pseudococci, Leptomastidea abnormis, Coccidoxenoides perminutus, Anagyrus sp. near pseudococci | Lasnier et al. 2019 [33] | |
Lobesia botrana | Forficulidae, Tettigoniidae, Formicidae, Carabidae, Chrysopidae, Araneae, Coccinelidae | Tachinidae, Campoplex capitator | Reif et al. 2021 [14], Lasnier et al. 2019 [33] | |
Paralobesia viteana | Carabidae | Trichogramma minutum | Lasnier et al. 2019 [33] | |
Otiorhynchus sulcatus | Metarhizium anisopliae, Heterorhabditis bacteriophora, Heterorhabditis megidis, Steinernema kraussei | Bostanian et al. 2012 [32], Pope et al. 2022 [58] | ||
slugs | Carabidae | Lasnier et al. 2019 [33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durak, R.; Materowska, M.; Hadley, R.; Oosterhuis, L.; Durak, T.; Borowiak-Sobkowiak, B. The Role of Flower Strips in Increasing Beneficial Insect Biodiversity and Pest Control in Vineyards. Sustainability 2025, 17, 2018. https://doi.org/10.3390/su17052018
Durak R, Materowska M, Hadley R, Oosterhuis L, Durak T, Borowiak-Sobkowiak B. The Role of Flower Strips in Increasing Beneficial Insect Biodiversity and Pest Control in Vineyards. Sustainability. 2025; 17(5):2018. https://doi.org/10.3390/su17052018
Chicago/Turabian StyleDurak, Roma, Martyna Materowska, Renee Hadley, Lynda Oosterhuis, Tomasz Durak, and Beata Borowiak-Sobkowiak. 2025. "The Role of Flower Strips in Increasing Beneficial Insect Biodiversity and Pest Control in Vineyards" Sustainability 17, no. 5: 2018. https://doi.org/10.3390/su17052018
APA StyleDurak, R., Materowska, M., Hadley, R., Oosterhuis, L., Durak, T., & Borowiak-Sobkowiak, B. (2025). The Role of Flower Strips in Increasing Beneficial Insect Biodiversity and Pest Control in Vineyards. Sustainability, 17(5), 2018. https://doi.org/10.3390/su17052018